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Abstract
Given a contact network and coarse-grained diagnostic information such as electronicHealth-
care Reimbursement Claims (eHRC) data, canwe develop efficient intervention policies from
data to control an epidemic? Immunization is an important problem in multiple areas, espe-
cially epidemiology and public health. However, most existing studies rely on assuming
prior epidemiological models to develop pre-emptive strategies, which may fail to adapt to
the change in new epidemiological patterns and the availability of rich data such as eHRC.
In practice, disease spread is usually complicated, hence assuming an underlying model may
deviate from true spreading patterns, leading to possibly inaccurate interventions. Addition-
ally, the abundance of health care surveillance data (such as eHRC) makes it possible to study
data-driven strategies without too many restrictive assumptions. Hence, such a data-driven
intervention approach can help public-health experts take more practical decisions. In this
paper, we take into account propagation log and contact networks for controlling propaga-
tion. Different from previous model-based approaches, our solutions are solely data driven
in a sense that we develop immunization strategies directly from the network and eHRC
without assuming classical epidemiological models. In particular, we formulate the novel
and challenging data-driven immunization problem. To solve it, we first propose an efficient
sampling approach to align surveillance data with contact networks, then develop an efficient
algorithm with the provably approximate guarantee for immunization. Finally, we show the
effectiveness and scalability of our methods via extensive experiments on multiple datasets,
and conduct case studies on nation-wide real medical surveillance data.

Keywords Graph mining · Social networks · Immunization · Diffusion

1 Introduction

Vaccination and social distancing are among the principle strategies for controlling the spread
of infectious diseases [1,2]. CDC (Centers for Disease Control) guidelines for vaccine usage
are typically based on age groups, e.g., for young children and seniors—these do not result
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in optimal interventions, which minimize outcomes such as the total number of infections
[1]. Additionally, most work on designing immunization algorithms from a data-mining
viewpoint has focused on developing innovative strategies which assume knowledge of the
underlying disease model [3,4] or make assumptions of very fine-grained individual-level
surveillance data [5].

Recent trends have led to the increasing availability of electronic claims data and also
capabilities in developing very realistic urban population contact networks. This motivates
the following problem: given a contact network, and a coarse-grained propagation log such
as electronic Health Reimbursement Claims (eHRC), can we learn an efficient and realistic
intervention policy to control propagation (such as a flu outbreak)? Further, can we do it
directly without assuming any epidemiological models? Influenza viruses change constantly,
and hence designing interventions optimized for specific epidemicmodel parameters is likely
to be suboptimal [6].

The diagnostic propagation log data provide us with a good sense of how diseases spread,
while contact networks tell us how people interact with others. We take into account both for
immunization and study thedata-driven immunizationproblem.Someof themajor challenges
include: (1) the scale of these datasets (eHRC consists of billions of records and contact
networks have millions of nodes), and (2) eHRC data is anonymized, and available only at a
zipcode level. The main contributions of our paper are:

(a) Problem formulation We formulate the data-driven immunization problem given a
contact network and the propagation log. We first sample the most-likely “social-contact”
cascades from the propagation log to the contact network and then pose the immunization
problem at a location level, and show it is NP-hard.

(b) Effective algorithms We present efficient algorithms to get the most-likely samples,
and then provide a contribution-based greedy algorithm, ImmuConGreedy, with provably
approximate solutions to allocate vaccines to locations.

(c) Experimental evaluationWe present extensive experiments against several competitors,
including graph-based and model-based baselines, and demonstrate that our algorithms out-
perform baselines by reducing upto 45% of the infection with limited budget. Furthermore,
we conduct case studies on nation-wide real medical surveillance data with billions of records
to show the effectiveness of our methods. To the best of our knowledge, we are the first to
study realistic immunization policies on such large-scale datasets.

2 Preliminaries

We give a brief introduction of the propagation data eHRC and contact networks we used in
this section.

2.1 Propagation data (eHRC)

The propagation data for this study were primarily based on IMS Health claims data, elec-
tronic Healthcare Reimbursement Claims (eHRC), which consists of over a billion claims
for the period April 1, 2009–March 31, 2010. The claims data consist of reimbursement
claims recorded electronically from healthcare practitioners received from all parts of the
USA, including urban and rural areas. The dataset, its features, and its overall cover-
age/completeness are described in detail in [7,8]; for this study, we used daily flu reports,
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based on ICD-9 codes 486XX and 488XX and individual locations (zipcode) recorded in
the claims. Prior to our study, we obtained internal Institutional Review Board approval for
analyzing the dataset.

2.2 Activity-based populations

Weuse city-scale activity-based populations as contact networks (see [9,10] formore details).
Thesemodels are constructed by a “first-principles” approach and integrate over a dozen pub-
lic and commercial datasets, including census, land use, activity surveys and transportation
networks. The model includes detailed demographic attributes at an individual and house-
hold level, along with normative activities. These models have been used in a number of
studies on epidemic spread and public-health policy planning, including response strategies
for smallpox attacks [10] and the National strategy for pandemic flu [2].

3 Problem formulations

Table 1 lists the main notations used throughout the paper.
We use G(V , E) to denote an undirected unweighted graph and L = {L1, . . . , Ln} to

denote a set of locations. Vi ⊆ V denotes the set of nodes at location Li ; we assume there
are no overlapping nodes between locations. Large medical surveillance data, such as eHRC,
are usually anonymized due to privacy issues. Hence, in this paper, we assume that only
the number of infections is given. Formally, the propagation log R is an infection matrix
N ((tmax + 1) × n), where t0 and tmax are the earliest and last timesteps. Each element
N (L�, t) represents the number of patients in R at location L� at time t . Each row vector

Table 1 Terms and symbols

Symbol Definition and description

G(V , E) Graph G with the node set V and the edge set E

R Propagation log

N Infection matrix for the propagation log R

N (L�, ti ) The number of patients at ti in L�

t0 The earliest timestep t0 = 0

n Number of locations

L = {L1, . . . , Ln} Set of locations

m Number of vaccines

x Vaccine allocation vector [x1, . . . , xn ]′
k Number of samples inM
M Set of sampled cascades {M1, . . . ,Mk }
M A sampled cascade

SIM The starting infected node set in M

σG,M(x) The expected number of nodes SIM can reach when x is given

ρG,Mi (x) σG,M(0) − σG,M(x)

αM,� Number of nodes that have at least one parent inM at location L�

S� The initial starting node set at location L�, where |S�| = N (L�, t0)
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Fig. 1 Overview of our approach.Wefirst generate a set of cascades, then allocate vaccine to different locations

N(t) = [N (L1, t), . . . , N (Ln, t)] represents the number of infections at time t , and each
column vector NL�

= [N (L�, t0), . . . , N (L�, tmax)]T represents the number of infections at
location L�.

3.1 Interactions and surveillance

A contact network G models people’s interactions with others, which is a powerful tool to
control epidemics. For example, Prakash et al. [11] showed that the first eigenvalue of the
adjacencymatrix ofG is related to the epidemic threshold. An epidemicwill be quickly extin-
guished given a small epidemic threshold. Several effective algorithms have been proposed
to minimize the first eigenvalue to control epidemics [3,4,12]. However, all of them assume
an underlying epidemiological model such as Susceptible-Infected-Recovered (SIR) [13]. In
addition, they are strictly graph-basedmethodswithout looking into richmedical surveillance
data. Although graph-based methods can provide us with good baseline strategies, they do
not take into account particular patterns of a given virus. On the other hand, the disease prop-
agation data R such as eHRC can give us a coarse-grained picture of infections. However,
there is very little information on how an epidemic spreads via person-to-person contacts
from R. Hence, we believe the disease propagation data R, along with a contact network G,
can help us develop better and more implementable interventions to control an epidemic. For
example, we can take the surveillance data of the past flu season to allocate vaccines for the
current flu season.

3.2 Map R to nodes in G

Themain challenge of integrating R andG is that R (such aseHRC) in practice is anonymized.
Hence, we cannot associate each record in R with a node in G. In this paper, we tackle this
challenge by mapping infections from R to nodes in G at the location level. The idea is that
at each location L� and time ti , we pick N (L�, ti ) nodes in G as infected nodes. Note that
we can have multiple choices of mapping R to G. For example, in Fig. 1, N (L2, t0) = 1,
and hence, we can pick either A or B as infected node at t0. We denote these choices as M,
where M is a set of cascades. We define a cascade M as follows:
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Definition 3.1 (Cascade) A cascadeM is a directed acyclic graph (DAG) induced by R and
G. Each node u ∈ VM is associated with a location L� and a timestep ti , where u ∈ Vi
and u are infected at ti (denoted as t(u) = ti ). For node u and v in M, if eu,v ∈ E and
t(u) = t(v) − 1, there is a directed edge from u to v in M. We denote e(u, v) ∈ EM.

We could select N (L�, ti ) nodes uniformly at random as infected nodes in G for eachM.
However, it is not practical as infection distributions are not uniform. For example, if a node
u has an infected neighbor, u can be infected by that node; in contrast, if u does not have
any infected neighbor in R, it is unlikely to be infected. Hence, we propose to map R to G
according to the SocialContact approach.

3.3 SOCIALCONTACT

We say an infected node u gets infected by “social contact” in G, if u has a direct neighbor
that is infected earlier than u. Otherwise, we say that a node is infected by external forces. In
reality, infectious diseases (such as flu, mumps) usually spread via person-to-person contact.
Hence, for a mapped cascade M, we want to maximize the number of nodes caused by
SocialContact. Formally, we define αM = |{u|∃v, e(v, u) ∈ EM}|, i.e., αM is the number
of nodes that have at least one parent inM. Then, maximizing the number of nodes infected
by SocialContact is equivalent to maximizing αM. Figure 1 shows two cascades with the
best αM = 4: as only the node that starts the infection does not have a parent. To get k
cascades with SocialContact in M, we formulate the mapping problem:

Problem 3.1 (Mapping problem) Given a contact networkG, propagation log R, and number
of cascades k, findM∗ = {M∗

1, . . . ,M
∗
k }where each node u inM is associatedwith a location

L� and a time ti :

M∗ = argmax
M

∑

Mi∈M
αMi , s.t. |M| = k (1)

Remark 3.1 Since we do not specify any epidemiological model (such as SIR) for Prob-
lem 3.1, it is difficult to define any probability distribution forM. Hence, the sample average
approximation approach is not applicable for this problem.

3.4 Data-driven immunization

Oncewe generateM, wewant to study how to best allocate vaccines tominimize the infection
shown in R. Recently, Zhang et al. [4] proposed amodel-based group immunization problem,
in which they allocate vaccines to nodes within groups uniformly-at-random—this mimics
real-life distribution of vaccines by public-health authorities. We leverage their within-group
allocation approach. Let us define x = [x1, . . . , xn]′ as a vaccine allocation vector, where
xi is the number of vaccines given to location Li . If we give xi vaccines to location Li , xi
nodes will be uniformly randomly removed from Vi . The objective is to find an allocation
that “breaks” the cascades most effectively. We define SIM to be the starting “seed” infected
nodes in M, i.e., SIM = {u ∈ VM|tu = t0}, and σG,M(x) to be the expected number of
nodes that SIM can reach after x is allocated to locations inM. Hence, we want to minimize
σG,M(x) to limit the expected infection over any cascade M ∈ M. For example, in Fig. 1,
once two vaccines are given to L1 and L2, we minimize the number of nodes that B can reach
in the two cascades.
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For ease of description, let us define ρG,M(x) = σG,M(0) − σG,M(x). ρG,M(x) can be
thought as the number of nodes we can save if x is allocated. Since σG,Mi (0) is constant,
minimizing σG,M(x) is equivalent to maximizing ρG,M(x). Formally, our data-driven immu-
nization problem given M (from Problem 3.1) is:

Problem 3.2 (Data-driven immunization) Given a contact network G, a set of cascades M,
and budget m, find a vaccine allocation vector x∗:

x∗ = argmax
x

1

|M|
∑

Mi∈M
ρG,Mi (x), s.t. |x|1 = m (2)

3.5 Hardness

Both Problems 3.1 and 3.2 are NP-hard; this can be shown by reductions from theMax-K-Set
Union problem [14] and the DAV problem [5], respectively.

4 Proposedmethod

In this section, we develop two efficient algorithms,MappingGeneration for Problem 3.1
and ImmuConGreedy for Problem 3.2.

4.1 Generating cascades from SOCIALCONTACT

Main idea To tackle Problem 3.1, we first focus on a special case where k = 1 (find a single
cascadeM), then extend it to multiple cascades. The challenge here is that even when k = 1,
Problem 3.1 is still NP-hard. Our main idea to solve this is to first generate SIM (the seed
set), and then generate M from SIM. In principle, this can be done from checking SIM’s
i-hop neighbors. Clearly, SIM’s quality will directly affect M’s quality. However, it is still
hard to find SIM and generate M from SIM. Instead, we identify a necessary condition for
the optimal M, and propose a provable approximation algorithm to find SIM that satisfies
the condition. We make the algorithm faster by leveraging the Approximate Neighborhood
Function (ANF) technique. Then, we generate the corresponding cascadeM from SIM, and
propose a fast algorithm MappingGeneration to extend it to k cascades for Problem 3.1.

Finding SIM To find a high-quality SIM, we first examine what is the optimalM. According
to Eq. 1, the optimalM has the maximum value of αM. Let us define α∗

M as the maximum of
αM (αM ≤ α∗

M). Then, we have the following lemma:

Lemma 4.1 α∗
M = ∑tmax

t=t1 |N(t)|1, i.e., the number of infections after the earliest time t0.
Proof When we map R to G, the optimal case for a cascade M is that every node u with
t(u) > t0 has at least one parent in M, and the only nodes that do not have any parents are
the ones infected at the earliest time t0. Hence, α∗

M is the number of nodes that are infected
after t0. �	

Lemma 4.1 shows that the maximum αM is the number of infections after t0. However, as
shown in the next lemma, it is hard to find a SIM with the optimalM.

Lemma 4.2 Finding a set S IM for the cascadeM with αM = α∗
M is NP-hard.
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Proof We can reduce it from a K-Set Union problem which tries to pick K sets that cover at
least ρ elements. Consider an instance of the K-Set Union problemwith n sets (n > k) where
each set Ai contains m elements e j , we can construct the following instance: assuming only
one location L0, we create any node set S that connects to Ai , and each set Ai has an edge
to any e j ∈ Ai . For the log R, we have N (L0, t0) = |S|, N (L0, t1) = n, and N (L0, t2) = ρ,
then we want to find a M with αM = |K | + ρ. If we can find such M, the K-Set Union
problem must be solvable. �	

According to Lemma 4.2, it is intractable to examine the whole graph to get SIM for large
networks (such as Houston with 59 million edges in Sect. 5). Hence, instead we will look
at each location independently to find SIM, and aggregate the result to generateM.

Let us define αM,� as the number of nodes that have at least one parent in M at location
L�. Similar to αM, we have αM,� ≤ α∗

M,� where α∗
M,� = ∑tmax

i=1 N (L�, ti ). α∗
M,� is the

number of patients after t0 at location L� in R, and it is the optimal value for αM,�. Since
we want to find a set of starting nodes, here we define S� as a node set at location L�:
i.e., S� = {v|v ∈ S and v ∈ V�} where |S�| = N (L�, t0). For each location L�, we want
to find a set S� as the starting infected node set, such that S� will yield a cascade M that
minimizes αM,�. Our idea is to find S� that satisfies a necessary condition for the best αM,�.
We denote CF(S�, ti ) = |{u|u ∈ Vl , ∃v ∈ S�, dist(v, u) ≤ i}|, i.e., the number of nodes
that S� can reach within distance i (i-hops) in L� in G. Similarly, we denote CN (L�, ti ) =∑i

k=0 N (L�, ti ) (the cumulative number of infections in L� in R until time ti ). The next
lemma will show that for each location L�, when αM,� = α∗

M,�, the constraint in Eq. 3 must
be satisfied.

Lemma 4.3 (Necessary condition) Given a cascade M generating from S�, if αM,� = α∗
M,�,

then for any timestep ti ∈ [0, tmax] and all locations L�, we have

CF(S�, ti ) ≥ CN (L�, ti ) (3)

Proof If αM,� = α∗
M,�, every node that is infected after t0 has a parent. For any node u that is

infected at ti , umust bewithin the i th hops of S�, whichmeans the number of nodeswithin the
i-hops of S� is greater than the number of nodes infected at ti , i.e., CF(S�, ti ) ≥ CN (L�, ti ).

�	
Lemma 4.3 demonstrates a necessary condition (Eq. 3) for the maximum αM,�. Hence,

we seek to develop an efficient algorithm that can produce accurate results for the necessary
condition. Our idea is to construct a new objective function, which can get the necessary
condition for the best M at location L�. To do so, we propose the following problem to find
SIM:

Problem 4.1 Given graph G and infection matrix N, find S∗ = {S∗
1 , . . . , S

∗
n } s.t., |S∗

� | =
N (L�, t0) for any location L�, such that

S∗
� = argmin

S�

θ(S�) ∀ location L�,

where

θ(S�) =
tmax∑

i=0

1CF(S�,ti )<CN (L�,ti )(CN (L�, ti ) − CF(S�, ti )).

Here 1CF(S�,ti )<CN (L�,ti ) is an indicator function: if CF(S�, ti ) < CN (L�, ti ) then it is 1,
otherwise 0.
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Justification of Problem 4.1. Recall that α∗
M,� is the optimal value for αM,�, and θ(S�) is

nonnegative. We have the following lemma to connect θ(S�) = 0 with the optimal αM,�.

Lemma 4.4 If αM,� is optimal, then θ(S�) = 0.

Proof In the appendix. �	
Lemma 4.4 shows that if we minimize θ(S�), we are able to get the necessary condition

for the bestM at location L�. Therefore, we propose Problem 4.1 to get SIM.
Hardness Problem 4.1 is NP-hard, as it can be reduced from the set cover problem [14].
Solving Problem 4.1 Let us define g(S�) = [∑tmax

i=0 CN (L�, ti )] − θ(S�).
∑tmax

i=0 CN (L�, ti )
is constant, so minimizing θ(S�) is equivalent to maximizing g(S�). The next lemma will
show that g(S�) has interesting properties, which can help us get a near-optimal approximate
solution for it.

Lemma 4.5 g(S�) has the following properties: g(∅) = 0; it is monotonic increasing and
submodular.

Proof In the appendix. �	
Given the properties of g(S�) in Lemma 4.5, we can develop a natural greedy algorithm to

solve Problem4.1.with a provable guarantee (Lemma4.6).We call it SampleNaiveGreedy:
Each time it picks a node u∗ such that

u∗ = argmax
u∈V�

g(S� ∪ {u}) − g(S�),

until N (L�, t0) nodes have been selected to S�. We do it for all locations to get SIM.

Lemma 4.6 For each location L�, SampleNaiveGreedy gives a (1 − 1/e)-approximate
solution to g(S�).

Proof Minimizing θ(S�) is equivalent to maximizing g(S�) = (
∑tmax

i=1 CN (L�, ti )) − θ(S�)

as
∑tmax

i=1 CN (L�, ti ) is constant. g(S�) has the following properties: (1) g(∅) = 0; (2) it
is monotonic increasing; (3) it is a submodular function. Hence, the greedy algorithm to
maximize g(S�) gives a (1 − 1/e)-approximate solution [15]. �	

SampleNaiveGreedy selects a node with the maximum marginal gain of g(S�) itera-
tively. It gives us a (1 − 1/e) approximate solution; however, it takes O(|V |(|V | + |E |))
time if we run BFS to get each CF(S�, ti ) for each iteration. The time complexity to get all
|N(t0)|1 nodes as SIM is O(|N(t0)|1|V |(|V |+ |E |)), which is not scalable to large networks.
Hence, we need a faster algorithm.

Speeding up SAMPLENAIVEGREEDY In SampleNaiveGreedy, each time we recompute
CF(S� ∪{u}, ti ) for all i , which takes O(|E |+ |V |) time. We can speed up this computation
by leveraging the ANF (Approximate Neighborhood Function) algorithm [16], which uses
a classical probabilistic counting algorithm, the Flajolet–Martin algorithm [17] to approxi-
mate the sizes of union-ed node sets using bit strings. Here, we refer to the bit string that
approximates CF(S�, ti ) as F(S�, i). To estimate CF(S� ∪ {u}, ti ), we first do a bitwise-
OR operation: F(S� ∪ {u}, i) = [F(S�, i)ORF({u}, i)], then convert it to CF(S� ∪ {u}, ti ).
According to the ANF algorithm, CF(·, ti ) = φ(F(·)) = (2b)/.77351, where b is the aver-
age position of the leftmost zero bit of the bit string. Since the bitwise-OR operation takes
constant time, we can reduce the running time of CF(S� ∪ {u}, ti ) for all timesteps i from
O(|E | + |V |) to O(tmax).
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We propose SampleGreedy (Algorithm 1), a modified greedy algorithm with bitwise-
OR operations for Problem 4.1. It first gets F({u}, i) for all nodes at location L� over all
timesteps using ANF [16] (Line 2), then follows SampleNaiveGreedy. However, we use
bitwise-OR operations to speed up the computation of CF(S� ∪ {u}, ti ) (Line 7–8).

Algorithm 1 SampleGreedy
Require: graph G, and propagation log matrix N.
1: for each location L� do
2: Get F({u}, i) for all timestep i , all u ∈ V� using ANF [16]
3: y = N (L�, t0)
4: S� = ∅, and F(S�, i) = 0 for all timesteps i
5: for i = 1 to y do
6: for each node u ∈ V� − S� do
7: F(S� ∪ {u}, i) = F(S�, i) OR F({u}, i) for all ti
8: CF(S� ∪ {u}, ti ) = φ(F(S� ∪ {u}, i)) for all ti
9: end for
10: u∗ = argmaxu∈V�−S� g(S�) − g(S� ∪ {u})
11: S� = S� ∪ u∗
12: end for
13: end for
14: return SIM = {S1, . . . , Sn}

Lemma 4.7 SampleGreedy takes O((|V ||N(t0)|1 + |E |)tmax) time.

Proof Computing all F({u}, i) over all locations takes O((|V | + |E |)tmax) according to the
ANF algorithm. Since bitwise-OR operation takes constant time, hence, Line 8 and 9 takes
O(tmax) time, and Line 7–10 takes O(|V |tmax) time. Since ||N(t0)||1 is the total number of
starting infected nodes, it takes ||N(t0)||1|V |tmax time to pick total ||N(t0)||1 nodes. Hence,
the overall running time is O((|V |||N(t0)||1 + |E |)tmax). �	
Generating cascades from SIM Once we obtain SIM from Algorithm 1, we can generate
M from SIM. Similar to the result of Lemma 4.2, generatingM from SIM is also hard. Here
we propose a heuristic, the CascadeGeneration algorithm (Algorithm 2) for M. Let us
define D�

i = {u|u ∈ V�, ∃v ∈ SIM, dist(v, u) = i}, i.e., a set of nodes in location L� that
SIM can reach at distance i . We first add SIM to the cascadeM, and compute D�

i for all time
ti and location L� by running a BFS starting from SIM (Line 2). Then, we select nodes into
M by running another BFS from SIM as well: at each distance i from SIM, for each location
L� we pick N (L�, ti ) nodes uniformly at random to M, and add corresponding edges (Line
4–18). Note that we do it by permutating the set D�

i . N (L�, ti ) nodes are selected as follows:
(1) if |CandidateQueuel | ≥ N (L�, ti ) (the constraint in Eq. 3 follows), we pick N (L�, ti )
nodes uniformly at random, and add them to M from CandidateQueue (Line 8–10); (2)
otherwise, we add all nodes in CandidateQueue to M, record the number of nodes left
(Line 11–12), and finally randomly pick other nodes from V�, and add toM (Line 18).

Lemma 4.8 CascadeGeneration takes O(|V | + |E |) time.
Proof Running BFS takes O(|V | + |E |) (Line 2). For each timestep t at each nodes Li , we
check the nodes in D̂�

i ; hence, overall we just need to traverse the nodes once, which takes
linear time (Line 4–17). Hence, CascadeGeneration takes O(|V | + |E |) time. �	
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Algorithm 2 CascadeGeneration
Require: Graph G, propagation log matrix N, and node set SIM
1: Add all nodes in SIM to the cascade M
2: Compute D�

i for all time ti (by running BFS from SIM)
3: PreSet = SIM, NumLeftNode=0
4: for i = 1 to tmax do
5: for each location L� do
6: D̂�

i = Permutate(D�
i )

7: Add D̂�
i to the end of CandidateQueue�

8: if |CandidateQueue�| ≥ N (L�, ti ) then
9: CurSet=pop N (L�, ti ) nodes from the top of CandidateQueue�

10: else
11: CurSet=pop all nodes in CandidateQueue�

12: NumLeftNode+=(N (L�, ti )− |CandidateQueue|�)
13: end if
14: Add CurSet toM, and edges from PreSet to CurSet if e(u, v) ∈ G for any u ∈ PreSet and v ∈

CurSet
15: end for
16: PreSet=CurSet
17: end for
18: Uniformly randomly pick NumLeftNode nodes from V� toM
19: return M

Extend CASCADEGENERATION to k cascades We can simply extend Algorithm 2 to
k cascades. Note that CascadeGeneration permutes the nodes in D�

i (Line 6); hence,
for different permutations, we can generate different cascades. If the constraint in Eq. 3
holds, at time ti , we add N (L�, ti ) nodes uniformly at random into M from

∑i
j=1 |D�

i | −
∑i−1

j=1 N (L�, t j ) candidate nodes. If the constraint does not follow, we pick extra nodes from
V − VM uniformly at random, and add them to M.

Remark 4.1 The above random process will generate O(
∏

L�∈L
∏

i |D�
i |) cascades.

Remark 4.1 shows thatwe have a large number of cascades. In case ifwe needmore,we can
generate extra cascades by ranking the result of SampleGreedy: instead of picking the best
S�, we pick the top sets (inAlgorithm 1Line 10–11). In practice, as shown in our experiments,
we do not need to do this, as we have enough cascades. In addition, our cascades have high
quality: The average value of αM is almost the same as the optimal solution (Table 3).
MAPPINGGENERATION Combining the above results, we propose theMappingGenera-
tion algorithm (Algorithm 3) to solve Problem 3.1.

Claim 4.1 The time complexity of MappingGeneration (Algorithm 3) is O((|V ||N(t0)|1+
|E |)tmax + k̂(|V | + |E |)), where k̂ is the number of runs for CascadeGeneration to get k
cascades.

Algorithm 3MappingGeneration
Require: graph G, propagation log R
1: Generate propagation log matrix N
2: Run SampleGreedy (G,N) (Algorithm 1) to get SIM
3: RunCascadeGeneration (G,N, SIM) (Algorithm 2) until k unique cascades are found for M
4: return M.
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Fig. 2 Counter-example for the
diminishing return property of
ρG (x,Mi )

4.2 Data-driven immunization

Main idea In this section, we solve the data-driven immunization (Problem 3.2) assuming the
samples are available. We first show that ρG,Mi (x) in Problem 3.2 is neither submodular nor
supermodular. We then propose to optimize an alternative credit-based objective function,
which is an upperbound ofρG,Mi (x) (Problem4.2).We show that this function is nonnegative,
increasing and has the diminishing return property. Based on these properties, we propose a
greedy algorithm which gives a (1 − 1/e)-approximate solution.

Note that in Problem 3.2, ρG,Mi (x) is defined over an integer lattice, and is not a simple
set function. If a function h(x) has the diminishing return property over an integer lattice,
then for any x′ ≥ x and k, we have h(x + ek) − h(x) ≥ h(x′ + ek) − h(x′) (ek be the vector
with 1 at the kth index). According to [4], there exists a near-optimal algorithm to maximize
h(x). Unfortunately, ρG,Mi (x) does not follow the diminishing return property.

Remark 4.2 ρG(x,Mi ) does not have diminishing return property. Figure 2 shows a counter-
example, where all nodes are in different locations. Suppose x = 0, x′ = e1, then x ≤ x′;
however, ρG,Mi (x + e2) − ρG,Mi (x) = 5 and ρG,Mi (x

′ + e2) − ρG,Mi (x
′) = 8 − 2 = 6.

Instead, we develop a contribution-based approach. The idea is if we remove a node u in
Mi , the number of nodes u can save is related to u’s children. Each child of u can contribute
to the savings of removing u. First, let us denote I NMi (S) as the set of S’s parents in Mi ,
i.e., I NMi (S) = {u|e(u, v) ∈ Mi , v ∈ S}, and OUTMi (S) as the set of S’s children in Mi .
We define the contribution CG,Mi (S) recursively,

CG,Mi (S) = |S| +
∑

v∈OUTMi (S)

|I NMi ({v}) ∩ S|
|I NMi ({v})| CG,Mi ({v}).

|I NMi ({v})∩S|
|I NMi ({v})| is the fraction of savings v contributes to S, and CG,Mi ({v}) = 1. The intuition

is that since we do not have any propagation models, it is reasonable to assume the infected
v should be infected by any of its parents equally; hence, v contributes its savings equally to
each of its parents. Now we define the contribution function over an integer lattice,

ζG,Mi (x) =
∑

S

Pr(S)CG,Mi (S), (4)
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where S is a node set sampled from the random process of distributing x (|S| = |x|1).
Lemma 4.9 shows that ζG,Mi (x) is the upperbound of ρG,Mi (x).

Lemma 4.9 Given a cascadeMi , ρG,Mi (x) ≤ ζG,Mi (x).

Proof In the appendix. �	
We use ζG,Mi (x) to estimate ρG,Mi (x). Hence, we formally define the following problem

for Problem 3.2.

Problem 4.2 Given a contact network G(V , E), a set of cascades M, and budget m, find a
vaccine allocation vector x∗:

x∗ = argmax
x

1

|M|
∑

Mi∈M
ζG,Mi (x), s.t.|x|1 = m. (5)

ζG,Mi (x) has interesting properties (as shown in the following Lemma 4.10), which can
lead us to a near-optimal solution for Problem 4.2 (Lemma 4.11).

Lemma 4.10 ζG,Mi (x) has the following properties:

(P1) ζG,Mi (x) ≥ 0 and ζG,Mi (0) = 0.
(P2) (Non-decreasing) ζG,Mi (x) ≤ ζG,Mi (x + ei ) for i .
(P3) (Diminishing returns) For any x′ ≥ x, we have ζG,Mi (x+ei )−ζG,Mi (x) ≥ ζG,Mi (x

′ +
ei ) − ζG,Mi (x

′).

Proof (P1) is trivially true because CG,Mi (S) ≥ 0 and when x = 0, S = ∅. For (P2), when
we add ei , it means that we add one more vaccine toMi . Note that when we add {u} to a node
set S, clearly CG,Mi (S∪{u}) ≥ CG,Mi (S). Let us assume CG,Mi (S∪{u}) = CG,Mi (S)+ δu
where δu ≥ 0.When the allocation is x+ei , we can think the process as follows:wefirst give x
vaccines, then we allocate the last vaccine ei . Hence, ζG,Mi (x+ei ) = ∑

S Pr(S)[CG,Mi (S)+∑
{u} Pr({u})δu) ≥ ζG,Mi (x). For (P3), it follows the proof of Lemma 1 in [4]. �	
Given the properties of ζG,Mi (x) in Lemma 4.10, we propose a greedy algorithm, Immu-

NaiveGreedy for Problem 4.2: each time we give one vaccine to location L�∗ , such that

�∗ = argmax
L�

∑

Mi∈M
ζG,Mi (x + e�) − ζG,Mi (x),

until m vaccines are allocated.

Lemma 4.11 ImmuNaiveGreedy gives a (1 − 1/e)-approximate solution to Problem 4.2.

Proof In the appendix. �	
In ImmuNaiveGreedy, since we distribute vaccines uniformly at random, we can apply

theSampleAverageApproximation (SAA) framework, i.e., ζG,Mi (x) ≈ 1
|S|

∑
S∈S CG,Mi (S),

where S is a set of samples taken from the vaccine allocation process. This approach takes
O(|S|(|V | + |E |)) to estimate ζG,Mi (x), and we need to look into |M| cascades to pick
the best location L�∗ for one iteration. We have |L| locations and m vaccines. Hence, the
total time complexity of ImmuNaiveGreedy is O(m|L||M||S|(|V | + |E |)), which is not
practical for large networks. However, we can speed up this naive greedy algorithm.

Speeding up IMMUNAIVEGREEDY We propose a faster algorithm, ImmuConGreedy
(Contribution-based Greedy Immunization) in Algorithm 4, which takes only O(m|M|
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(|V | + |E |)) time. The idea is that we can compute the contribution function efficiently
when the budget m = 1, i.e., all values of ζG,Mi (e�) inMi can be obtained in O(|V | + |E |)
time. This is because ζG,Mi (e�) = ∑

u∈V�

1
|L�|CG,Mi ({u}), and we can get CG,Mi ({u})

for all u ∈ V by traversing Mi once. For simplicity, let din(v) = |I NMi ({v})|. We
have CG,Mi ({u}) = 1 + ∑

v∈OUTMi ({u}) 1
din(v)

CG,Mi ({v}). If u does not have any chil-

dren (OUTMi ({u}) = ∅), CG,Mi ({u}) = 1. Since Mi is a DAG, we can iteratively obtain
CG,Mi ({u}) for all u ∈ V froma reversed order of a topological sort, which takes O(|V |+|E |)
time.

In Algorithm 4, we compute contribution function CG,Mi ({u}) for allMi (Line 4), which
takes O(|M|(|V | + |E |)) time. Then, we obtain

∑
Mi∈M ζG,Mi (e�) for each location L� by

summing up the contribution for each u ∈ V� (Line 5), which takes O(|M||V |) time. Once
we allocate one vaccine to the best location L�∗ , we update eachMi by uniformly at random
removing one node in L�∗ (Line 7). This waywe can just compute

∑
Mi∈M ζG,Mi (e�) instead

of
∑

Mi∈M ζG,Mi (x + e�) after the next iteration.

Algorithm 4 ImmuConGreedy
Require: graph G(V , E), propagation log R, and budget m
1: M =MappingGeneration (G, R) {Section 4.1}
2: x = 0
3: for j = 1 to m do
4: ∀Mi ∈ M: compute CG,Mi ({u}) for each node u
5: ∀ location L� ∈ L: compute

∑
Mi∈M ζG,Mi (e�)

6: �∗ = argmaxL�

∑
Mi∈M ζG,Mi (e�)

7: ∀Mi ∈ M: updateMi by uniformly at random removing one node at location L�∗
8: x = x + e�∗
9: end for
10: return x

Lemma 4.12 ImmuConGreedy takes O(m|M|(|V | + |E |)) time.
Proof First, for simplicity, let din(v) = |I NMi ({v})|. Since CG,Mi ({u}) = 1 +∑

v∈OUTMi ({u}) 1
din(v)

CG,Mi ({v}), if u does not have any children (OUTMi ({u}) = ∅), clearly
CG,Mi ({u}) = 1. Note that Mi is a DAG, we can iteratively obtain CG,Mi ({u}) from a
reversed order of a topological sort, which takes O(|V | + |E |) time. Hence, Line 4 takes
O(|M|(|V | + |E |)) time.

Second, ζG,Mi (el) = ∑
{v}∈|L�| Pr({v})CG,Mi ({v}). Since we uniformly at random give

vaccines to locations, Pr({v}) = 1
|L�| . Hence, ζG,Mi (el) = ∑

v∈Lk
1

|Lk |CG,Mi ({v}). Hence,
Line 5 takes O(M|V |) time.

Third, Lines 6 and 7 take |L| and O(|M|) time, respectively. Hence, the overall running
time is O(m|M|(|V | + |E |)). �	

5 Experiments

We conducted the experiments using a 4 Xeon E7-4850 CPUwith 512GB of 1066MHzmain
memory.1

1 Code in Python: https://goo.gl/tsMueB.
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Table 2 Network datasets Dataset Nodes Edges Locations

WorkPlace 92 757 5

HighSchool 182 2221 5

SBM 1000 5000 20

Portland 1.5 million 41 million 72

Miami 2.2 million 50 million 74

Houston 2.7 million 59 million 98

5.1 Experimental setup

Networks We do experiments on multiple datasets (Table 2). Stochastic Block Model
(SBM) [18] is a well-known graph model to generate synthetic graphs with groups.
WorkPlace and HighSchool are social-contact networks.2 Nodes in HighSchool
are students from five different sections and edges represent two students who are in vicinity
of each other. Nodes in WorkPlace are employees of a company with five departments and
edges indicate two people are in proximity of each other. We treat each section/department
as a location. Miami and Houston are million-node social-contact graphs from city-scale
activity-based synthetic populations as described in Sect. 2. We divided people by their
residential zipcodes.

Propagation logsWe have the billion-record eHRC data (described in Sect. 2) as the propa-
gation log R for Miami and Houston. The Miami and Houston have 118K and 132K
patients, respectively. For SBM, HighSchool, and WorkPlace, we run the well-known
SIR model (infection rate as 0.4, and recovery rate as 0.6) to generate the propagation log R:
We first uniformly at random pick 5% nodes at each location as seeds at t0, then run a SIR
simulation to get other infected nodes.

SettingsWe set the number of samples |M| = 1000 forMappingGeneration, and number
of bitmasks as 32 for computingF(·) in SampleGreedy (similar to theANF algorithm [16]).

BaselinesAs we are not aware of any direct competitor tackling our problem, we use several
baselines to better judge our performance. These baselines have been regularly used for
immunization studies. However, none of them take into account both propagation log and
contact networks.
(1) Random: uniformly randomly assign vaccines to locations.
(2) PropPopulation: a data-based approach: assign vaccines to locations in proportion to
population in locations.
(3) PropInfection: a data-based approach: assign vaccines in proportion to total number of
infections in locations.
(4) Degree: a graph-based approach: calculate the average degree dLi of each location Li ,
and independently assign vaccines to Li with probability dLi /

∑
Lk∈L dLk .

(5) ImmuModel: a model-based approach: apply the model-driven group immunization
algorithm (the QP version) in [4]. ImmuModel aims to minimize the spectral radius of a
contact graph. Spectral radius is the first eigenvalue of the graph, which has been proven to
be the threshold of an epidemic in the graph [11]. We set edge weights to be 0.24 according
to [8].

2 http://www.sociopatterns.org.
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Fig. 3 Effectiveness of ImmuConGreedy on thewhole R. Infection ratio r versus vaccine budgetm. Infection

ratio r =
∑

Mi∈M σG,Mi
(x)

∑
Mi∈M σG,Mi

(0) . Lower is better. ImmuConGreedy consistently outperforms other baselines over

all datasets

5.2 Results

In short, we demonstrate that our immunization algorithm ImmuConGreedy outperforms
other baselines on all datasets. We also show our approach is robust as the size of the prop-
agation log R varies. In addition, we show that our sampling algorithm SampleGreedy
provides accurate results for generating cascade samples. Finally, we study the scalability of
our approach.

Effectiveness of IMMUCONGREEDY Figure 3 shows results of minimizing the spread on
cascades for the whole log R. In all datasets, ImmuConGreedy consistently outperforms
others. WorkPlace and HighSchool have < 200 nodes; hence, we variedm till 10. SBM
has 1K nodes, sowevariedm till 20.However, evenwith the small budget, ImmuConGreedy
can reduce 45%of the infection,which is about 10%better than the second best ImmuModel.
For Miami, Houston and Portlandwith upto 2.7million nodes, ImmuConGreedy can
reduce about 50% of the infection on the cascades generated by SocialContact with only
50K vaccines. Model-based ImmuModel and data-based PropInfection perform better
than Random and Degree as they take into account either epidemic threshold in the contact
graph or theeHRC data. However, ImmuConGreedy easily outperforms them, as it leverages
both contact networks and the eHRC data.

We also study how to leverage the rich log data to develop vaccine interventions in the
future. To do so,we split theeHRC data into training parts and testing parts:We get the vaccine
allocations from the training parts (the fall regime of flu from August 2009 to October 2009),
and apply the allocations to the testing parts (the winter regime of flu from November 2009
to February 2010) to examine how effective our approach ImmuConGreedy is. Figure 4
shows the results of infection reductions on the cascades generating from the testing data.
ImmuConGreedy consistently outperforms others in both Miami and Houston: It can
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Fig. 4 Effectiveness of ImmuConGreedy for the testing data. Infection ratio r versus vaccine budget m.
Lower is better. ImmuConGreedy consistently outperforms other baselines for both Miami and Houston

reduce about 25% of the infection with only 5K vaccines, compared to other baselines such
as ImmuModel and PropInfection.

We use simulations of the SIR model to evaluate the performance of ImmuConGreedy
on the activity-based urban social-contact networks (described in Sect. 2). These were first
calibrated to get the same outbreak size as in the eHRC data for these cities. We then choose
a random subset of individuals in each zipcode to be vaccinated, based on the allocation by
ImmuConGreedy. We find the reduction in the number of infections is quite substantial in
many cases. For instance, for Miami, for a budget of 50K vaccines, the ImmuConGreedy
allocation leads tomore than50%reduction, compared to a randomallocation. ForHouston,
when the budget is 50K , ImmuConGreedy can lead to more than 38% reduction in the
infection compared to ImmuModel and PropInfection.

Robustness of IMMUCONGREEDY We study how sensitive ImmuConGreedy is, as the
size of the propagation log R varies next. To do so, we first generate synthetic propagation
log R from the SIR model, then manually change the size of R as the input of our data.
Finally, we compare ImmuConGreedy to the model-based approach ImmuModel. For
each dataset, we generate R by running a SIR simulation (with the infection rate 0.4 and
the recovery rate 0.6 for WorkPlace, HighSchool and SBM, and the infection rate 0.24
and timesteps to recovery 7 for Miami according to [8]). Once R is generated, we change
the size of R by extracting a portion [N(t0), . . . ,N(tmax)] as the input (p% of R). For
example, suppose tmax = 20 and p = 50, we use [N(t0), . . . ,N(t10)] as the propagation
log. Since we know all configurations come from the SIR model, we expect the model-
based approach ImmuModel to do better than ImmuConGreedy. However, as p increases,
as more data are used, ImmuConGreedy should approach ImmuModel. Figure 5 shows
the results: as expected, for all datasets, clearly as p increases, ImmuConGreedy becomes
better. Interestingly for smaller datasets such as WorkPlace, HighSchool, SBM, even
with only 25% of data, we can get upto 85% of the performance. For large networks such as
Miami, we need more data; however, when all the data are used, compared to ImmuModel,
ImmuConGreedy can achieve 90% of the savings.

Number of cascades in IMMUCONGREEDYWe study how ImmuConGreedy performs as
the number of samples change. To do so, we first generate different number of cascades from
the SIR model, then directly run ImmuConGreedy without MappingGeneration (Line
2–10 in Algorithm 4). Note that since the SIR simulation can generate true cascade, we skip
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Fig. 5 Robustness of ImmuConGreedy as data size varies. Ratio of saved nodes RS versus percentage of used

log data p%. RS = SData
SModel

. SData (SModel): the number of nodes we can save when vaccines are allocated

according to ImmuConGreedy (ImmuModel). Percentage of used log data p: [N(t0), . . . , p%N(tmax)].
Higher: ImmuConGreedy is closer to ImmuModel

Fig. 6 Similarity of vaccine allocations as the number of simulations varies. The allocation vector of Immu-
ConGreedy is closer to ImmuModel as the simulation number increases

the process of generating cascades from the log R. Finally, we compare the cosine similarity
of vaccine allocation vector to the one from the model-based approach ImmuModel. The
intuition is that since our cascades are generated from simulations of the SIR model, as the
number of cascades increases, vaccine allocated from ImmuConGreedy should be more
similar to ImmuModel. Figure 6 shows the results for Miami and Houston: as expected,
clearly the allocation vector from ImmuConGreedy is closer to the allocation from Immu-
Model, as the number of the SIR simulations increases. When we generate 5K simulations,
the cosine similarity is more than 50%.
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Table 3 MappingGeneration.
α̂M: average of αM over all
M ∈ M; α∗: optimal value of
αM; N = ∑tmax

t=t1
|N(t)|1

Dataset α̂M α∗ N

WorkPlace 79.2 83.0 83

HighSchool 165.2 170.0 170

SBM 107.9 109.0 109

Fig. 7 Scalability. a Total running time of MappingGeneration and ImmuConGreedy versus vaccine
budget m; b total running time of MappingGeneration and ImmuConGreedy versus number of cascade
samples k

Effectiveness of MAPPINGGENERATION We also study the performance of Map-
pingGeneration by comparing αM to the optimal value α∗ (Problem 3.1). We obtain α∗
using the brute-force algorithm. See Table 3: α̂M, the average value of αM over all sampled
cascades, is almost the same as α∗ for all datasets. For example, in SBM, α̂M is 107.9, a
difference of only 1.1 from α∗. In addition, we found that α∗ is exactly the same as the
number of nodes that are infected after the first timestep t0, which suggests the best scenario
for SocialContact is that only nodes which are infected at the earliest time are not caused
by social contact.

Scalability Figure 7 shows the running time of MappingGeneration and ImmuCon-
Greedy w.r.t. the vaccine budget m and the number of cascades k on SBM. For Fig. 7a,
we set k = 100, while for Fig. 7b we set m = 20. We observe that as m increases and k
increases, the running time scales linearly. (Figures also show the linear fit with R2 values.)
Consistent with the time complexity bounds for our algorithms in Sect. 4, large datasets need
fairly extensive time. For example, Miami takes about 2 days to get 5K vaccines. This is still
reasonable: importantly, note that we expect to run immunization algorithms for infectious
epidemics, so the solution quality is much more critical than the fastest running time.

5.3 Case studies

We conduct case studies to analyze vaccine allocations per zipcode for both Houston and
Miami. Figure 8 shows the total population, the total #patients in the eHRC data, the total
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Fig. 8 Case studies for Houston and Miami per location. Houston: a–e; Miami: f–j; Portland: k–
o. Heatmap of a, f and k: total population; b, g and l: patients in eHRC; c, h and m: number of vaccines
actually taken in eHRC; d, i and n: vaccine allocations from ImmuModel; e, j and o: vaccine allocations from
ImmuConGreedy

#vaccines taken in the eHRC data,3 the total #vaccines from ImmuModel, and the total
#vaccines from ImmuConGreedy, respectively.

Figure 8a–e shows the case study for Houston. First, the areas with zipcode 77030 and
77024 in Fig. 8b have the largest number of patients, and vaccine allocations from both eHRC
(Fig. 8c), and ImmuConGreedy (Fig. 8e) also prefer these areas. Second, vaccines taken in
the eHRC data do not follow the total population (Fig. 8a), but roughly follow the distribution
of #patients in eHRC. This may suggest the immunization strategy in practice is to give vac-
cines based on the proportion of reported patients. Third, ImmuModel distributes 38% of
vaccines to three areas (77002, 77008 and 77056), which are the center ofHoustonMetropoli-
tan Area (such as downtown and uptown) with a large number of interactions in the contact
network. However, both data-based and model-based approaches do not perform well (see
Fig. 3). Ourmethod, ImmuConGreedy, gives 43%of vaccines to the areas 77030, 77024 and
77002. The first two areas have the highest infections in eHRC, while the last one is essential
for minimizing the epidemic threshold as ImmuModel suggests. Hence, ImmuConGreedy
considers both eHRC and contact networks. It is interesting that the Texas Medical Center
(one of the largest medical centers in the world) is in 77030, and Houston downtown is in
77002. Hence, ImmuConGreedy targets regions with high risk of influenza outbreak.

Figure 8f–j shows the case study for Miami. First, vaccines taken in eHRC (Fig. 8h)
follow the distribution of #patients as well (Fig. 8g). Second, ImmuModel distributes 31%
of vaccines in one area with zipcode 33165 (Fig. 8i). We believe this area with large number
of households is critical to minimize the spectral radius of the contact network in Miami.

3 We extract vaccine reports based on ICD-9 codes V04.81. These are actual vaccine allocations as given in
the eHRC data.
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However, both data-based and model-based approaches do not perform well in Miami as
well (as shown in Fig. 3). Interestingly, as shown in Fig. 8j, our approach, ImmuConGreedy,
gives most of the vaccines (29%, 18% ) to areas with the largest number of patients (33140
and 33176, respectively). We observe that different from Houston, in Miami ImmuCon-
Greedy tend to prefer data-based approaches. However, the areas adjacent to 33165, which
ImmuModel targets, also get higher vaccine allocations than others—this means Immu-
ConGreedy also takes into account information in the contact network. In fact, the areas
ImmuConGreedy targets indeed have high risk of an influenza outbreak: They are either
tourist attractions (33140) or residential areas (33176). For example, 33140 belongs toMiami
Beach, which is a famous place with large transient population.

Figure 8k–o shows the case study for Miami. First, similarly to Houston and Miami,
the distribution of vaccine allocation in eHRC (Fig. 8m) is very similar to the distribution of
patients (Fig. 8i). Second, ImmuModel gives 18% of vaccines to the area with the zipcode
97124. We believe this region has many households, which is important to the spectral
radius of the contact network in Portland. However, only considering the contact network
does not give us a better performance (as shown in Fig. 3). Our method, ImmuConGreedy
in Fig. 8o, gives most vaccines to three areas with the zipcodes 97124, 97123 and 97216.
Interestingly, different from Houston and Miami, in Portland, the vaccines distribution
in Portland tends to slightly prefer network-based approaches. The area 97124 is given
the most number of vaccines. However, this area also has a relatively high number of patients
according to Fig. 8l.

6 Translation to practice

Our approach shows that combining partial incidence data with a detailed activity-based pop-
ulation model can help in developing more effective interventions for controlling the spread
of an outbreak, compared to current baselines. Incidence data can be obtained in different
ways: (1) eHRC data, as we assume here, (2) incidence from previous year’s outbreaks,
provided it is at a high spatiotemporal resolution, or (3) other proxies, such as surveys, and
even non-traditional sources such as tweets and online media, so long as they give some
indication of the incidence at a geographic level. Therefore, we believe our approach can be
operationalized by public-health agencies, such as the CDC.

7 Related work

We review closely related work next. Remotely, related work includes those on blogs and
propagations [19], and viral marketing [20] (e.g., Goyal et al. [21] studied the influence
maximization problem using a data-based approach).

Epidemiology The early canonical textbooks and surveys include [13,22], which describe
the fundamental epidemiological models such as the so-called SIS and SIR models. Epi-
demic thresholds (minimum virulence of a virus that causes an epidemic) for various models
have been extensively studied [11,23]. In practice, viruses are always changing, and hence
assuming a prior model may be suboptimal.

Immunization There has been a lot of work on developing optimal strategies to control
propagation over graphs. Cohen et al. [24] proposed the popular acquaintance immunization
policy, while Aspnes et al. [25] developed inoculation policies for victims of viruses using
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game theory. Tong et al. [3,12], Van Miegham et al. [26], and Prakash et al. [27] studied the
problem of minimizing the spectral radius (epidemic threshold) of the graph for a variety
of models. In addition, other immunization work in the literature has been proposed based
on differential equation methods [1,28]. The most related work includes Zhang et al. [4]
who studied the immunization at the group scale, while Zhang and Prakash [5] and Khalil
et al. [29] developed several model-based efficient algorithms for immunization given par-
tial information of infections. All past work proposed either model-based or graph-based
approaches for immunization. Instead, we leverage rich surveillance healthcare data together
with the network information for the problem of controlling disease spread.
eHRC. There has been a lot of work in using eHRC data for inferring patient conditions [30].
Previous studies have also pointed to the utility of eHRC data to identify trends in epidemic
incidence across the USA [31,32]. Leveraging eHRC, the spatial and temporal patterns of
flu incidence during 2009–2010 pandemic flu season have been discovered [7]. In addition,
Malhotra et al. [33] used sequential pattern mining techniques to reveal common sequences
of clinical procedures administered to patients for a variety ofmedical conditions from eHRC.
In sum, none studied the immunization problem with the eHRC data.

8 Conclusions

This paper addresses the novel problem of controlling epidemics in the presence of
coarse-grained health surveillance data and population contact networks. We formulate the
data-driven immunization problem, which first aims to align the propagation log with contact
networks, and then allocate vaccines to minimize spread in the data. We develop an efficient
approach MappingGeneration to obtain high-quality cascades, and then give an approxi-
mation algorithm ImmuConGreedy with provable solutions for immunization on sampled
cascades. We demonstrate the effectiveness of our method through extensive experiments on
multiple datasets including nation-wide real electronic Health Reimbursement Claims data.
Finally, case studies in Miami and Houston metropolitan regions show that our allocation
strategies take both the network and surveillance data into account to effectively distribute
vaccines.

Future work can include investigating other sampling strategies, incorporating more data
sources, and studying vaccine allocations to other groups, such as demographics like age.
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Appendix

Proof of Lemma 4.4 When αM,� is optimal, αM,� = α∗
M,�.

Second, letβS�
be the number of nodeswithout any parents.MaximizingαM,� for Problem3.1
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is equivalent to minimizing βS�
at location L�. Suppose β∗

S�
is maximum number of nodes

without any parents in the sample at location L�. It is obvious β∗
S�

= CN (L�, t0) = |SL |.
For each timestep ti , if CFi (S�) < CN (L�, ti ), then CN (L�, ti )−CFi (S�) is the number of
nodes that cannot be mapped to the cascade generated by S� at timestep ti . Hence, θ(S�) is
the number of nodes that cannot be mapped to the cascade generated by S�. If there exists any
ti that CFi (S�) < CN (L�, ti ), we can always generate a cascade by mapping all CFi (S�)

nodes into the cascade, then uniformly at random map other θ(S�) nodes into cascade. This
way, the number of nodes without any parents, βS�

≤ β∗
L�

+ θ(S�) as θ(S�) nodes can have
connection within themselves. Since βS�

+αS�
= ∑

ti N (Li , ti ), then αM,� ≥ α∗
M,� − θ(S�).

Hence, α∗
M,� − θ(S�) ≤ αM,� ≤ α∗

M,�. When αM,� = α∗
M,�, θ(S�) = 0. �	

Proof of Lemma 4.5 First, it is clear that g(∅) = 0.
Second, to prove g(S) is monotonic increasing, we need to prove θ(S) is a monotonic

decreasing function. To do that, we first show that CFi (S�) is monotone non-decreasing and
submodular functions for any i and L�. First, let us define fi (S�) as the number of nodes in
L� that S� can reach in i-hops; hence, fi (S�) ≤ fi (Sk)when S� ⊆ Sk . Second, given S� ⊆ Sk
and a node u, fi (S� ∪ {u}) − fi (S�) is marginal gain of a set union. Since the function in the
set union problem is submodular [14], fi (S�) is also submodular. Since fi (S�) is monotone
non-decreasing and submodular, the cumulative functionCFi (S�) is also non-decreasing and
submodular.

Let Xi = [1CFi (A∪B)<CNi (CNi − CFi (A ∪ B))], Yi = [1CFi (A)<CNi (CNi − CFi (A))].
For any set A and B,

θ(A ∪ B) − θ(A) =
T∑

i=1

(Xi − Yi ) (6)

For any i , let us consider the following two cases:
(1) If 1CFi (A)<CNi = 0, it means CFi (A) ≥ CNi , then CFi (A ∪ B) ≥ CNi ; hence,

1CFi (A∪B)<CNi = 0. We have Xi − Yi = 0.
(2) If 1CFi (A)<CNi = 1, we have two cases:
(2a) 1CFi (A∪B)<CNi = 0, then Xi − Yi = −Yi = −(CNi − CFi (A)) < 0;
(2b) 1CFi (A∪B)<CNi = 1, then Xi − Yi = (CNi − CFi (A ∪ B)) − (CNi − CFi (A))

= CFi (A) − CFi (A ∪ B) ≤ 0 (using Claim 2).
Putting together, we have θ(A ∪ B) ≤ θ(A). Hence, θ(S) is monotonic decreasing, and

hence g(S) is monotonic increasing.
Third, to prove g(S) is submodular, For any location l, we need to prove that, given

S ⊆ T , g(S ∪ {a})− g(S) ≥ g(T ∪ {a})− g(T ), which is equivalent to θ(S)− θ(S ∪ {a}) ≤
θ(T ) − θ(T ∪ {a}) (supermodularity). Let us write

δ(S, a, i) = [1CFi (S∪{a})<CNi (CNi − CFi (S ∪ {a}))] − [1CFi (S)<CNi (CNi −CFi (S))],
and
δ(T , a, i) = [1CFi (T∪{a})<CNi (CNi − CFi (T ∪ {a}))] − [1CFi (T )<CNi (CNi − CFi (T ))],
then,
θ(S) − θ(S ∪ {a}) = ∑t

i=1 δ(S, a, i), and θ(T ) − θ(T ∪ {a}) = ∑t
i=1 δ(T , a, i).

For any i , let us consider the following two cases:
(1) If 1CFi (S)<CNi = 0, then 1CFi (S∪{a})<CNi = 1CFi (T )<CNi = 1CFi (T∪{a})<CNi = 0.

Hence, δ(S, a, i) = δ(T , a, i) = 0.
(2) If 1CFi (S)<CNi = 1, we have the following cases:
(2a) If 1CFi (T )<CNi = 0, then we have 1CFi (T∪{a})<CNi = 0. Let us consider the value of

1CFi (S∪{a})<CNi :
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If 1CFi (S∪{a})<CNi = 0, then δ(S, a, i) = (CNi − CFi (S ∪ {a})) < 0 = δ(T , a, i).
If 1CFi (S∪{a})<CNi = 1, then δ(S, a, i) = CFi (S) − CFi (S ∪ {a}) < 0 = δ(T , a, i).
(2b) If 1CFi (T )<CNi = 1, let us consider the value of 1CFi (S∪{a})<CNi :
If 1CFi (S∪{a})<CNi = 0, then 1CFi (T∪{a})<CNi = 0, and then δ(S, a, i) = −(CNi −

CFi (S)) ≤ −(CNi − CFi (T )) = δ(T , a, i) (using Claim 2).
If 1CFi (S∪{a})<CNi = 1, then for 1CFi (T∪{a})<CNi :
If 1CFi (T∪{a})<CNi = 1, then δ(S, a, i) = CFi (S)−CFi (S∪{a})) ≤ CFi (T )−CFi (T ∪

{a})) = δ(T , a, i) (using Claim 2 that CFi (S) is a submodular function).
Otherwise, 1CFi (T∪{a})<CNi = 0, and then since we have CFi (T ∪ {a}) ≥ CNi ,

δ(S, a, i) = CFi (S) − CFi (S ∪ {a})) ≤ CFi (T ) − CFi (T ∪ {a})) ≤ CFi (T ) − CNi =
δ(T , a, i) (using Claim 2).

Putting all cases together, we have θ(S) − θ(S ∪ {a}) ≤ θ(T ) − θ(T ∪ {a}). Hence,
g(S ∪ {a}) − g(S) ≥ g(T ∪ {a}) − g(T ).

g(S) is a submodular function. �	
Proof of Lemma 4.9 Since we uniformly randomly allocate x, ρG,Mi (x) can be written as
ρG,Mi (x) = ∑

S Pr(S)rG,Mi (S), where S is a node set sampled from the random process
of distributing x (|S| = ||x||1), and rG,Mi (S) is the number of nodes SIMi can reach after
removing S.

Since ζG,Mi (x) = ∑
S Pr(S)CG,Mi (S) and ρG,Mi (x) = ∑

S Pr(S)rG,Mi (S), we need to
show that rG,Mi (S) ≤ CG,Mi (S). rG,Mi (S) is the number of nodes S can save inMi , we can
show that given any node u that SIM can save, the credit u given to SIM must be 1. This is
because if we can save u, it means every path from SIM to u has been removed when S is
removed. Hence, all nodes within the paths from SIM have been removed. These nodes are
all nodes that propagate u’s credit to SIM, so all credits of u can be contributed to CG,Mi (S).
Hence, CG,Mi (S) is at least equal to rG,Mi (S). On the other hand, other nodes that S cannot
save also make contributions to the credit ofCG,Mi (S). Hence,CG,Mi (S) ≥ rG,Mi (S), which
leads to ρG,Mi (x) ≤ ζG,Mi (x). �	
Proof of Lemma 4.11 We use a similar technique as in [4] given the properties of P1, P2 and
P3 of ζG,Mi (x). For brevity, we write ζG,Mi (x) as ζ(x).

First, we show that if y = (yi , . . . , yn)T where
∑

j y j = m, then ζ(x + y) − ζ(x) ≤∑
j y j (ζ(x + e j ) − ζ(x)).
Let y can be recursively obtained from a sequence e(1), . . . , e(m) (e(i) ∈ {e1, . . . , en})

such that y = y(m) = y(m−1) + e(m), y(i) = y(i−1) + e(i) (i ≤ m) and y0 = 0.
Obviously,

∑m
i=1 e

(i) = ∑
j y je j = y. Then,

ζ(x + y) − ζ(x)

=
m∑

i=1

ζ(x + y(i)) − ζ(x + y(i−1))

=
m∑

i=1

ζ(x + y(i−1) + e(i)) − ζ(x + y(i−1))

≤
m∑

i=1

ζ(x + e(i)) − ζ(x) (Diminishing Return)

=
n∑

j=1

y j (ζ(x + e j ) − ζ(x))
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Now, let us prove that ImmuNaiveGreedy gives a (1− 1/e)-approximate solution. Sup-
pose x is the solution from ImmuNaiveGreedy, and x∗ is the optimal solution. Clearly, we
have

∑
j x j = ∑

j x
∗
j = m. Let us define x(i) as the solution got from the i th iteration of the

greedy algorithm; hence, x = x(m). And x∗ can be represented as
∑

j x
∗
j e j . We have

ζ(x∗) ≤ ζ(x∗ + x(i))

= ζ(x(i)) + (ζ(x∗ + x(i)) − ζ(x(i)))

≤ ζ(x(i)) +
∑

j

x∗
j (ζ(x(i) + e j ) − ζ(x(i)))

≤ ζ(x(i)) +
∑

j

x∗
j (ζ(x(i+1)) − ζ(x(i)))

= ζ(x(i)) + m(ζ(x(i+1)) − ζ(x(i)))

Hence, ζ(x(i+1)) ≥ (1 − 1
m )ζ(x(i)) + 1

m ζ(x∗). Recursively, we can get ζ(x(i)) ≥ (1 −
(1 − 1

m )i )ζ(x∗). Therefore, ζ(x) = ζ(x(m)) ≥ (1 − (1 − 1
m )m)ζ(x∗) ≥ (1 − 1/e)ζ(x∗). �	
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