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ABSTRACT
Influenza leads to regular losses of lives annually and requires
careful monitoring and control by health organizations. Annual
influenza forecasts help policymakers implement effective counter-
measures to control both seasonal and pandemic outbreaks. Existing
forecasting techniques suffer from problems such as poor forecast-
ing performance, lack of modeling flexibility, data sparsity, and/or
lack of intepretability.We propose EpiDeep, a novel deep neural net-
work approach for epidemic forecasting which tackles all of these
issues by learning meaningful representations of incidence curves
in a continuous feature space and accurately predicting future inci-
dences, peak intensity, peak time, and onset of the upcoming season.
We present extensive experiments on forecasting ILI (influenza-like
illnesses) in the United States, leveraging multiple metrics to quan-
tify success. Our results demonstrate that EpiDeep is successful
at learning meaningful embeddings and, more importantly, that
these embeddings evolve as the season progresses. Furthermore,
our approach outperforms non-trivial baselines by up to 40%.

CCS CONCEPTS
• Information systems→ Data streammining; • Computing
methodologies→Neural networks; •Applied computing→
Health informatics.
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1 INTRODUCTION
Seasonal influenza is a major health issue that affects many peo-
ple across the world. The US national Centers for Disease Control
and Prevention (CDC) reports that there were 30,453 laboratory-
confirmed influenza related hospitalizations in the 2017/18 influenza
season in the United States alone. According to the same estimate,
the 2017-18 season saw a larger number of deaths due to influenza
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Figure 1: Changing similarities: wILI incidence curve for
2012/13 season in HHS Region 4 (black curve in all three fig-
ures) is most similar to that of 2011/12 season in the begin-
ning of the season (red band), to 2003/04 in themiddle of the
season (green band), and finally to 2009/10 at the end of the
season (blue band). Note that EpiDeep automatically learns
to infer these closest seasons at various stages.
than in any of the past five seasons. These statistics reveal that de-
spite years of efforts, accurately predicting key indicators of the flu
season and employing counter-measures remain major challenges.
FluSight task. To encourage research into making more accurate
forecasts, the CDC has been hosting the ‘FluSight’ challenge for
seasonal influenza forecasting at the national and regional levels [1,
2]. It involves predicting on a weekly basis, multiple aspects of the
current influenza season, which is represented as a time series of the
weighted Influenza-like Illness (wILI) data. The wILI data released
by the CDC is collected by the Outpatient Influenza-like Illness
Surveillance Network (ILINet) which consists of more than 3,500
outpatient healthcare providers all over the United States. Each
week the healthcare providers voluntarily report the percentage
of patients visiting for Influenza-like Illness (ILI). ILI is defined as
“fever (temperature of 100◦F [37.8◦C] or greater) and a cough and/or
a sore throat without a known cause other than influenza”1. The
CDC compiles the ILI reports, weights the total percentage visits
by the state population and computes the resulting wILI values for
the national and local regions. It then releases this data typically
with a delay of two weeks (weekly wILI incidence curves for each
season since 1997/98 are publicly available2).

The FluSight challenge typically starts on week 40 of the cal-
endar year and lasts till week 20 of the following year when the
influenza activity is high [1, 2]. Given the wILI data, the forecasting
tasks include predicting the Future Incidences, Seasonal Peak In-
tensity, Seasonal Peak Time and Onset Week (we will discuss each
forecasting target in more detail in the next section).
1https://www.cdc.gov/flu/weekly/overview.htm
2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html



Prior work. There has been a surge of research interest in develop-
ing methods for the flu forecasting tasks in recent times. Statistical
methods for flu forecasting such as [4, 7] fit a predefined statistical
model on historical data and use it for forecasting. These meth-
ods typically are either too simple, or fail to incorporate domain
knowledge like the epidemiological dynamics, or require laborious
feature engineering or are not interpretable. They often act as a
“black-box” and fail in providing any interpretation or explanation
of the forecasts. Note that interpretability is very important, as it
provides an insight on how to fine tune the model for better predic-
tions and also as it guides decision makers. For example, knowing
that this season is similar to another one helps the policy experts to
focus efforts [21, 22]: these similarities may be due to similarities in
the environmental, geographical or biological (like similar strains
of the virus) or other factors.

On the other hand, mechanistic models [21, 26, 35] are motivated
by domain knowledge; they typically include various factors such
as the epidemiological and associated human mobility models and
make forecasts based on simulation and/or some simple aggrega-
tion. While insightful and usually interpretable, they require a lot
of calibration, and are also usually too rigid to generalize well and
accurately fit the data [22]. We can see our work in context of fore-
casting general time-series with sparse data as well. Prior works
typically rely on leveraging correlated time-series instances to over-
come sparsity [15, 23]. While useful in domains like e-commerce
and real estate, where there are a large number of sparse instances
(like sales for different items, housing price for each zip-code e.t.c),
they do not directly apply to influenza forecasting as there is spar-
sity in the number of instances as well. Hence, in this paper, inspired
by the above significant gaps in literature, we develop an end-to-
end neural learning model EpiDeep, which is flexible, does not
require any feature engineering, and aids in interpretation while
also maintaining an excellent forecasting performance.
Challenges. We focus on interpretability through finding similari-
ties between seasons (as discussed before, knowing similar seasons
is especially helpful for decision makers). This is challenging to
capture, as influenza seasons are highly dynamic [21], which can
be due to weather patterns, dominant virus types etc. For exam-
ple, consider the wILI incidence curve for season 2012/13 for HHS
Region 4 in Figure 1—the curve is similar to that of 2011/12 in the
beginning of the season. However as the season progresses, the
two curves start differing from each other. In the middle of the flu
season, we find that the 2012/13 wILI curve matches closely with
the 2003/04 season instead, and is closest to the much different
2009/10 season in the end. Hence traditional time-series forecasting
methods like ARIMA are unlikely to perform well, as they do not
have the flexibility to capture this dynamic nature without signifi-
cant modelling input [22]. Neural networks, on the other hand, can
overcome this issue as they can infer meaningful representations
from the data (historical seasons) itself. However, data sparsity is
also a major issue here (e.g. wILI data surveillance began only in
the late 1990s). Hence sequence prediction neural models such as
Long Short Term Memory (LSTM) [14], which typically require a
large amount of data, are not an straightforward fit here. Therefore,
we need an approach which can explicitly leverage the evolving
similarities between historical seasons and yet be able to make
accurate forecasts with the sparse data.

Approach and Contributions.Our main idea is that learning sea-
son similarities should help in both forecasting and interpretation.
To this end, we design EpiDeep (Figure 2 summarizes the overall
architecture). We feed the historical wILI incidence data to our
model. It then learns to embed the historical seasons in a feature
space and leverages the embeddings together with the current sea-
son’s wILI incidence curve to forecast all the CDC targets. Given
the embeddings of the seasons, we can easily answer questions
like which season was the closest to the current season at the time
of prediction, how does the similarity of the current season with
others evolve over time, and so on. These patterns are non-trivial
to find directly from the incidence curves as we may have to check
all possible snippets and combinations of the historical data. Note
in Figure 1, EpiDeep can automatically infer these closest seasons
at various stages.

Figure 2: A visual representation of our approach. We lever-
age historical surveillance data to learn meaningful repre-
sentations via evolving clustering and forecastmultiplemet-
rics of interest.

Our main contributions are as follows:
• A Novel Deep Learning Approach: We leverage recent devel-
opment in deep clustering to design an end-to-end time-series
embedding, clustering and forecasting approach. To the best of
our knowledge, we are the first to do so.

• Interpretability with Performance: Our learnt embeddings
help in determining the closest historical seasons to the current
season at the time of prediction, helping in both interpretability
and performance. To the best of our knowledge, we are the first to
propose a non-trivial deep learning model for epidemic forecast-
ing which ensures both interpretability and excellent forecasting
performance.

• Rigorous Empirical studies: We conduct extensive experi-
ments in multiple settings using real ILI data. Our results show
that EpiDeep outperforms non-trivial baselines by up to 40%,
consistently across multiple metrics, and is also interpretable.
Next, we discuss the CDC challenge in detail and formulate the

problems. We then describe EpiDeep in Section 3, discuss empiri-
cal studies in Section 4, related literature in Section 5 and finally
conclude in Section 6. We defer some additional experiments and
details to the supplementary for sake of space and readability.

2 PROBLEM STATEMENT
The CDC FluSight challenge provides a uniform prediction goal for
influenza forecasting and hence we model our problem based on
that task. As mentioned earlier, the historical wILI incidence reports



are available till week t − 1 while making predictions for week
t . There are four forecasting targets: Future Incidence, Seasonal
Peak Time, Seasonal Peak Intensity, and Onset Week. All the target
descriptions are based on the CDC FluSight 2018/2019 challenge3.
Future Incidence: This refers to short term future incidence pre-
dictions. This includes the prediction of wILI data one to four weeks
ahead of the latest wILI data release. Since the ILINet data is delayed
by two weeks, at week t in the season, the short term forecasts
correspond to predicting wILI values for week t − 1, t , t + 1, and
t + 2, given the data till week t − 2.
Seasonal Peak Intensity: The peak intensity measures the maxi-
mum intensity of the influenza in the given season (i.e. the highest
numerical value of wILI in the given season). Since the amount of
resources needed to influenza prevention is directly affected by the
peak intensity, it is an important task.
Seasonal Peak Week: The peak week is the time when the peak
intensity is observed. The CDC defines the seasonal peak week as
the surveillance week when the wILI value rounded to one decimal
point is the highest. The peak week prediction is an important
problem as it allows for planning ahead and strategic resource
allocation.
Onset Week: The onset week represents the week when the flu
season ‘takes-off’. The CDC defines it as the surveillance week
when percentage of visits for influenza-like illness (ILI) reaches or
exceeds a pre-defined baseline value for three consecutive weeks.
The onset week is the first week of such three weeks. The baseline
value may vary from year to year and from region to region. The
onset week prediction is important as the start of the flu season
determines when many precautionary and preventive measures are
deployed. It also gives healthcare providers an early notification
that a rise in ILI cases is impending.

At week t +2, we are given the time-seriesYc = {y1
c ,y

2
c , . . . ,y

t
c }

representing initial stage of the current season c till week t . The
valuesyic represent the wILI values for the week i . Our goal is, given
Yc , predict all four targets for the season c: short term forecasts,
peak intensity, peak week, and onset. Formally:

Problem 1. EpidemicPrediction
Given: a time-series Yc = {y1

c ,y
2
c , . . . ,y

t
c } representing the current

season c till week t and a CDC baseline bc
Predict:
• Task 1: Future Incidence Prediction: ∀t+4

i=t+1y
i
c

• Task 2: Peak Intensity Prediction: maxyic∀Ti=1, where T is the last

week of the season.

• Task 3: Peak Time Prediction: arg maxi yic∀Ti=1, whereT is the last

week of the season.

• Task 4: Onset Prediction: Week j such that ∀j+3
i=j ,y

i
c ≥ bc

3 OUR APPROACH
Overview. We first give an overview of EpiDeep. Here, we are
given historical wILI time-series (the ‘training set’), using which we
propose a learning based approach to solve Problem 1. Specifically,
we design a deep neural network to encode various aspects of our
data. At a high level, our model tries to leverage similarities between
the observed stage of the current season with the past seasons to

3https://predict.cdc.gov/post/5ba1504e5619f003acb7e18f

make accurate future predictions (using the future observed trends
of the past seasons). We train the deep model by leveraging a set
of historical wILI incidence Y = {Y1,Y2,Y3, . . . ,Yc−1}. Once the
model is trained, we use it to predict various metrics of interest
for the current season Yc . Following literature [4], we define each
season Yi to begin at week 20 of the calendar year.

The main challenge in implementing our idea of ‘evolving simi-
larities for prediction’ is that the current seasonYc is observed only
till week t , whereas the historical seasons in Y are fully observed.
Hence, naïve ideas like computing distance between the curves are
not suitable here. We resolve this issue in two steps. First, we learn
the embeddings to capture similarities between the current season
and historical seasons restricted till time t . However, this is not
enough as the entire season-length historical data will have useful
information to aid in forecasting of the current season. Hence after
that, we also find embeddings to capture similarities between the
full length historical seasons without the current season. We finally
learn a mapping function to map between these representations
and then further leverage the embeddings for the forecasting tasks.
Figure 3 (a) shows the overall architecture of EpiDeep. Next, we
discuss these steps in detail.

Our first step is accomplished by the ‘Query Length Data Clus-
tering’ module, which leverages deep clustering techniques to learn
feature representations. Here, we treat the observed part of the
current season Yc (for which we need to forecast) as a ‘query’ to
the historical fully observed season-length incidence curves. We
refer to the snippets of the historical season till the observed week t
as query length historical wILI data. This module learns the feature
representation of query length historical wILI data with the current
season Yc . To capture the similarity between the current season
and historical seasons, this module learns embeddings for each
season in Y in conjunction withYc and clusters them by leveraging
a deep clustering method.

Similarly for the second step, the ‘Full length Data clustering’
component embeds the full length historical data in a continuous
space, such that the clustering of the embeddings are meaningful.
Since, we do not have access to the complete incidence curve for
the current season Yc , we learn a mapping function to convert the
embeddings from the query length space to the space representing
complete seasons. This allows us to learn embeddings of the current
season in the space of fully observed historical wILI data.

We also have the ‘Input Encoder’ module, which provides a suc-
cinct representation of the current season Yc . The input encoder
is designed in a way such that it can extract important information
from any snippets in Yc . Finally, the ‘Decoder’ module combines
outputs from the clustering layers and the encoder to make predic-
tion for the final forecasting targets. In the following, we describe
the various components of our model.

3.1 Encoding the Input
Here we adopt a recurrent neural network (RNN) to capture tem-
poral dynamics of of the time-series Yc = {y1

c ,y
2
c , . . . ,y

t
c }. RNN

processes variable length input sequence by maintaining a hidden
state hj ∈ RK and continuously updating it as hj = f (y jc ,hj−1),
where f is a non-linear activation function. Here, we leverage
Long short-term memory networks (LSTM network) [11], a spe-
cial type of RNN designed to work better with long sequences of



(a) (b) (c)

Figure 3: (a) The overall architecture of EpiDeep. It consists of clustering/embedding, encoder, and decoder modules. (b) The
architecture of the encoder module. (c) The architecture of the deep clustering module.

data. Given a sequence, Yc = {y1
c ,y

2
c , . . . ,y

t
c }, we first convert it

to a matrix Y ∈ Rl×(t−l+1), such that jth column of Y consists of
[y jc ,y j+1

c , . . . ,y
j+l−1
c ]. Now, the jth input to our LSTM network is

the jth column of the matrix Y, i.e. Y[: j]. Now, the LSTM equations
for jth input are as follows:

i j = σ (WiY[: j] + Uihi−1 + bi) (1)
fj = σ (Wf Y[: j] + Uf hi−1 + bf ) (2)
Cj = i j ⊙ tanh(WcY[: j] + Uchi−1 + bc) + fj ⊙ Cj−1 (3)
oj = σ (WoY[: j] + Uohi−1 + bo) (4)
hj = oj ⊙ tanh(Cj ) (5)

Here, the matricesW ∈ Rh×l andU ∈ Rh×h are the weight matrices
and h represents the size of hidden units.

Typically, only the last output of the LSTM is leveraged for the
prediction. For our query series Yc = {y1

c ,y
2
c , . . . ,y

t
c }, this would

mean only ot would be leveraged for prediction. However, such
an approach has a clear disadvantage. It is known that the official
estimates for ILI surveillance data are often delayed and revised
multiple times before they stabilize [7]. In such scenario, the data
pertaining to the final time-stamp ytc is most vulnerable to revision.
Therefore, over reliance on the last time-stamp could harm the
predictive power of the model. To overcome this issue, we require
a mechanism to assign varying degree of importance to the earlier
states of the model.

A mechanism typically used in NLP to give partial importance to
each state of the RNN is known as the attention mechanism [19]. The
main idea here is to produce the output of the RNN as a weighted
sum of all previous hidden states. The context vector h̄j , for jth
input then is computed as h̄j =

∑
z α

a
jzhjz , where

αajs =
exp(uTjxuα )∑
z exp(uTzxua )

(6)

ujs = tanh(WT
a hjs + ba ) (7)

Since, the context vector h̄j is the weighted sum of previous hidden
states, the model can infer variable weights for each hidden state

and has the flexibility to put more/less attention to each input. The
context vector h̄j can now be fed into the decoder network to make
predictions.

The complete encoder module is shown in Figure 3 (b). As men-
tioned earlier, the input time series Yc is converted to the matrix Y .
Each column of thematrix is fed into the LSTM network. The output
of the LSTM network is combined using the attention mechanism
to learn a single context vector h̄j .

3.2 Closest Season based on Deep Clustering
A simple way to train ourmodel is to feed the context vector h̄j from
the attention model to the decoder. The assumption here is that
the deep model would be able to infer relevant information from
the historical incidence time-series Y and leverage it for correct
prediction. However, due to the sparsity of the data available, a more
explicit model to extract similarities between season is warranted.
Our main idea is to learn the embedding zc of the partially observed
current seasonYc in the latent space such that the distance between
zc and other ‘similar’ historical season is minimized. To this end,
we develop an embedding layer with multiple deep components.
Clustering Query Length Data: Here we are concerned with
embedding the similar seasons such that seasons which are closer
to each other are embedded together. Recall that in the current
season Yc = {y1

c ,y
2
c , . . . ,y

t
c }, we have only observed incidence till

time t . Hence, we leverage deep clustering [33] of the set Yt =
{Yi [0 : t]|∀c−1

i=1 }∪{Yc } to learn meaningful embedding ofYc . Here
we adopt the Improved Deep Embedded clustering (IDEC) [13]
method to cluster Yt and to learn embeddings. IDEC clusters given
input by augmenting clustering loss to the reconstruction loss.

Let, the vector zti be the encoding of the the season Yi given
by the encoder. Let, µ j be the cluster center for cluster j. Now, our
clustering objective is Ltc = KL(P | |Q) = ∑

i
∑
j pi j log

(
pi j
qi j

)
, where

qi j is the similarity between the embedding zi and cluster center
µ j as given the the Student’s t-distribution, i.e.

qi j =
(1 + | |zti − µ j | |2)−1∑
j (1 + | |zti − µ j | |2)−1

(8)



and pi j is the target distribution given by

pi j =
q2
i j /

∑
i qi j∑

j (q2
i j /

∑
i qi j )

(9)

In addition to the clustering loss Ltc parameterized by the target
distribution, we also minimizes the reconstruction loss Ltr , as a
regular auto-encoder, to preserve the local structure of the data.

The embedding ztc generated by the deep clustering network
only tries to capture the similarities between the historical season
Y and the current season Yc only till time t , as the current season
is observed only till time t .
Clustering Full Length Data: Once trained, the vectors zt give
us meaningful embedding of the set Yt . However, our main goal is
to infer how similar the seasons would look like at the end of the
season rather than at the prediction time t . In other words, given
the current season Yc at time t , can we learn embedding of the Yc
in the space of Y rather than Yt . Since we have not observed YC
entirely, we are unable to embed it together with Y.

To avert this issue, our idea is to cluster and embed the histor-
ical seasons in Y which are all observed entirely till time T using
the same architecture as earlier. To this end, we optimize for the
clustering loss LTc and the reconstruction loss LTr for the historical
seasons Y (in the same manner as above). Hence, for each season
yi ∈ Y, we obtain a full-length embedding zTi .
Mapping the Embeddings: Now, our problem reduces to trans-
lating the embedding learned from query length data to the space
of full length data, i.e, mapping ztc to zTc . To this end, we learn the
mapping function femd to map zti to z

T
i . Our idea is to leverage zti

and zTi for each historical season in Y to learn the function femd . To
this end, we optimize the objective Lemd =

∑
i | |zTi − femd (zti )| |22

Here, femd (zti ) is the translation of zti to the space of zTi . We
represent the function femd as a feed-forward neural network.
Once the complete network is trained, we obtain zTc = femd (ztc ) as
our embedding for the current season Yc .

3.3 Prediction
The next component of our deep model EpiDeep, leverages the
encoding h̄j of the input Yc and the embedding zTc to predict the
metrics of interest. As explained earlier, we focus on four types
of predictions, namely future incidence, peak time, peak intensity,
and onset. We train our model for both point and binning-based
probabilistic predictions. Let us first focus on the point predictions.
Task 1: Future Incidence Prediction: Here, given the current
season Yc = {y1

c ,y
2
c , . . . ,y

t
c }, the goal is to predict yic for i ∈ {t +

1, t + 2, t + 3, t + 4}. For simplicity we explain the training process
for yt+1

c . Our goal here is to learn function fnext that maps the
encoding learned to the output ŷ ∈ R, i.e. ŷ = fnext (h̄j , zTc ).

We represent fnext as a feed-forward neural network. We train
the network by leveraging the historical data Y. Hence, our objective
function becomes Lpred =

∑
k ∈Y | |yt+1

k − ŷ | |22 .
Task 2: Peak Intensity Prediction: Here the approach is similar
to future incidence intensity prediction. Instead of training to pre-
dict the next incidence, we train the network to directly predict the
peak intensity.

Task 3: Peak Time Prediction: As in previous metrics, the goal
here is to leverage the encoding to predict peak time (in weeks).
Here, the prediction process is slightly different. We have xt =

Wfnext (h̄j , zTc ) and P(t |xt ) = exp(xt )∑
i exp(xi ) whereW is a weight ma-

trix and fnext (·) is represented as a feed-forward neural network.
The term P(t |xt ) represents the probability that the peak occurs at
time t . As shown above, we use the softmax function to compute the
probability. Finally the peak time is given by t̂ = arg max P(t |xt ).
As above, historical data Y is leveraged for the training. Here we
adopt the cross-entropy as the objective function Lpred .
Task 4: Onset Prediction: We adopt similar approach as Peak
Time prediction for the onset prediction.

The overall objective is given by:

θ∗ = arg min
θ

[
Lemd + L

t
c + L

t
r + L

T
c + L

T
r + Lpred

]
Note that the prediction loss Lpred is different for each task

as mentioned above. We train separate networks for each task.
We start by pre-training the clustering and mapping layers first
and then jointly training the entire model. The adaptive moment
estimation (Adam) optimization algorithm [16] was used to infer
the model parameters. The model was coded using the automated
differentiation package in PyTorch4.
Note: We train for the CDC binning-based probabilistic predictions
in a similar fashion. Instead of predicting point estimates, we assign
probabilities to each bin pre-defined by the CDC.

4 EMPIRICAL STUDY
4.1 Setup
We describe our experimental setup in the appendix.
Data: Data is described briefly in Section 1 and in more detail in
the appendix.
Baselines: While several methods exist for influenza epidemic
forecasting, most of them require additional data such as twitter
feeds, weather data, and so on. In contrast, EpiDeep forecasts given
only the historical wILI data. Hence, we compare our performance
against many non-trivial baselines which can forecast given only
the wILI data.
• Hist: It is inspired by the traditional approach for flu forecasting.
Here, we compute historical average of all previous seasons and
make predictions using the average.

• ARIMA is a popular auto-regressive method typically used for
prediction on time-series data. Here we leveraged ARIMA (7,0,1)
as it performed the best.

• KNN: Here, we select the top k closest historical seasons to the
current season and make predictions based on the average. Many
model based approaches for flu forecasting [21] leverage a similar
strategy of utilizing the closest historical season.

• LSTM: We leverage Long Short Term Memory network for fore-
casting. Note that it is a version of [31] without climate and
geographical data and can be considered a simpler version of
EpiDeep without the embeddings and attention.

• EB is an empirical bayes framework for epidemic prediction [4].
In this approach, translation of a historical season is fitted to the
observed part of the current season to make a prediction. It is

4https://pytorch.org/docs/stable/autograd.html



Table 1: EpiDeep consistently performs well across all the tasks, outperforming all the methods in majority of the scenarios.
Comparison of performance of all the methods for all the four tasks for seasons starting from 2010/11 till 2016/17. R is RMSE,
M is MAPE and LS is the average Log-Score. A “–" means that the method can not be used for that prediction. For the 2011/12
season, the national wILI incidence curve did not cross the baseline, so there was no onset & we mark the cells with “×" signs.

10/11 11/12 12/13 13/14 14/15 15/16 16/17
Method R M LS R M LS R M LS R M LS R M LS R M LS R M LS

Task 1: Future Incidence Prediction
Hist 1.29 0.4 39.82 0.44 0.21 49.57 1.4 0.36 46.92 0.77 0.23 54.88 1.12 0.26 61.96 0.65 0.23 39.0 0.9 0.22 53.12
ARIMA 0.65 0.15 – 0.28 0.12 – 0.89 0.17 – 0.65 0.12 – 0.88 0.17 – 0.42 0.13 – 0.67 0.15 –
KNN 0.76 0.26 57.32 1.57 0.71 75.11 0.81 0.24 75.97 1.06 0.37 76.86 0.61 0.24 75.1 0.98 0.36 80.41 0.65 0.2 77.75
LSTM 0.92 0.36 40.12 0.72 0.32 58.41 0.93 0.32 54.46 1.25 0.40 79.76 0.82 0.19 64.45 0.78 0.33 56.97 0.98 0.31 72.06
EB 0.81 0.31 43.29 0.97 0.5 60.11 1.04 0.24 65.42 0.67 0.24 58.37 0.87 0.21 61.8 0.93 0.39 47.79 1.06 0.32 56.61

EpiDeep 0.59 0.17 26.61 0.36 0.16 32.2 0.68 0.17 29.89 0.45 0.12 36.03 0.73 0.15 41.01 0.41 0.13 29.75 0.58 0.15 35.15
Task 2: Peak Intensity Prediction

Hist 1.39 0.31 ∞ 1.0 0.42 ∞ 2.55 0.42 ∞ 0.78 0.17 1.18 1.94 0.32 1.2 0.78 0.22 0.93 0.54 0.11 ∞
ARIMA 2.47 0.52 – 0.64 0.25 – 4.01 0.65 – 2.76 0.6 – 3.93 0.65 – 1.55 0.41 – 2.82 0.54 –
KNN 1.31 0.28 ∞ 3.28 1.35 ∞ 0.61 0.1 ∞ 0.9 0.19 32.47 0.18 0.03 ∞ 1.49 0.4 53.73 0.58 0.09 ∞
LSTM 1.43 0.32 89.91 1.35 0.56 77.84 1.94 0.51 56.92 0.84 0.17 22.41 2.83 0.42 0.94 1.42 0.37 43.77 1.98 0.38 95.41
EB 0.96 0.21 60.73 1.21 0.48 82.16 2.48 0.41 42.86 1.1 0.24 0.46 2.3 0.38 0.45 0.24 0.06 11.24 1.41 0.28 64.29

EpiDeep 0.99 0.2 71.4 1.59 0.6 71.03 1.36 0.21 71.43 0.56 0.1 0.37 2.26 0.37 0.34 0.46 0.11 18.64 0.87 0.15 43.9
Task 3: Peak Time Prediction

Hist 17.0 0.3 ∞ 21.0 0.33 ∞ 8.0 0.15 0.67 6.0 0.12 0.57 5.0 0.1 0.51 13.0 0.21 ∞ 7.0 0.12 0.95
ARIMA 33.53 0.58 – 37.1 0.58 – 27.3 0.51 – 27.08 0.51 – 26.93 0.5 – 38.69 0.62 – 34.8 0.59 –
KNN 12.0 0.21 ∞ 5.9 0.09 ∞ 16.82 0.32 0.47 16.82 0.32 0.33 11.0 0.21 0.14 6.6 0.1 ∞ 10.17 0.17 ∞
LSTM 7.09 0.14 64.13 5.6 0.08 81.32 9.35 0.24 1.48 9.73 0.22 0.29 19.24 0.41 21.25 11.45 0.23 50.44 8.85 0.32 88.4
EB 1.09 0.02 60.7 4.5 0.07 78.6 5.4 0.1 0.3 1.0 0.02 0.2 1.4 0.02 0.2 8.04 0.11 75.0 6.3 0.1 64.2

EpiDeep 1.0 0.02 33.2 5.1 0.08 29.2 6.0 0.12 0.33 6.0 0.12 0.26 3.71 0.05 0.28 10.3 0.16 29.6 6.65 0.11 21.6
Task 4: Onset Prediction

Hist 23.0 0.43 ∞ × × × 15.0 0.29 ∞ 12.0 0.24 0.57 8.0 0.16 ∞ 14.0 0.25 ∞ 6.0 0.12 ∞
ARIMA 51.21 0.96 – × × × 48.66 0.94 – 49.18 0.98 – 47.96 0.97 – 55.89 0.97 – 51.5 0.98 –
KNN 17.19 0.32 60.9 × × × 21.63 0.42 ∞ 23.0 0.46 0.16 19.0 0.39 ∞ 15.13 0.26 ∞ 19.96 0.38 60.9
LSTM 6.71 0.28 92.4 × × × 5.41 0.64 58.43 17.40 0.33 21.48 11.22 0.24 56.58 9.56 0.15 56.6 8.28 0.29 63.79
EB 2.38 0.04 ∞ × × × 2.35 0.05 64.63 3.59 0.07 68.03 3.0 0.06 ∞ 8.04 0.13 47.01 3.67 0.07 61.15

EpiDeep 4.0 0.08 31.99 × × × 2.0 0.04 17.47 0.88 0.02 0.0 0.35 0.0 24.33 7.76 0.13 40.28 2.92 0.06 24.66

the publicly available version of the approach which has won
several of the past iterations of the FluSight challenge.

Evaluation Metrics: There has been much discussion on the cor-
rect metric for evaluating models for epidemic predictions [28].
Hence we utilize the following multiple metrics to evaluate the
predictive power of all the methods:
• RMSE: The root mean squared error is the square root of the

average squared error i.e. RMSE =
√∑N

i=1 e
2
i

N .
• MAPE: The mean absolute percentage error measures the aver-
age of absolute percentage error, i.e. MAPE = 1

N
∑N
i=1

��� eiyi ���.
• Log Score: For the probabilistic predictions, we leverage the
logarithmic scoring rule leveraged by the CDC [24]. The perfor-
mance ismeasured by the negative log score, defined as log(p, i) =
− log(pi ) for the probability assigned in the bin i (containing the
ground-truth).

4.2 National Predictions
Here, we compare the performance of all the methods for all four
tasks at the United States national level starting from 2010/11 till
2016/17. For the Future Incidence Prediction task, we ran all the
methods to predict future wILI values starting from epidemiological
week 40, when the flu season typically starts, till epidemiological
week 20, when the season ends. For Peak (Intensity and Time)
and Onset Prediction tasks, we predicted the metric starting from
week 40 until it was observed for each season. The results for each

method is summarized in Table 1. Since ARIMA does not produce
probabilistic predictions, we were unable to compute the log-score.

As shown in the table, EpiDeep outperforms all the baselines
in the majority of the settings. It actually outperforms non-trivial
baseline EB in three of the four tasks, namely Peak Intensity, Onset,
and Future wILI prediction by an impressive margin of 16%, 14%,
and 40% on average in terms of RMSE. This is partly due to the fact
that EB is constrained by a rigid base function, whereas EpiDeep
is not. Overall, EpiDeep outperforms all the baselines in 17 out of
21 measures for Future wILI prediction, in 10 out of 21 measures
for Peak Intensity Prediction, in 7 of 21 measures for Peak Time
Prediction, and in 16 of the 21 measurements for Onset Prediction.
It is a close second/third in the rest. Simpler baselines such as Hist,
ARIMA, and KNN have reasonably satisfactory and stable performance
for the Future Incidence Prediction task. However, the performance
of these methods are at two different extremes for all other tasks. On
the other hand, LSTM, EB, and EpiDeep have a stable performance
across all tasks. Note that, EpiDeep outperforms LSTM in almost
all measurements. This is due to the fact that EpiDeep has the
flexibility of LSTM in addition to the meaningful embeddings which
it can exploit for accurate forecasting.

4.3 Delayed Data Arrival
As mentioned in Section 1, the ILINet data has a delay of about 2
weeks. An interesting question is how the performance of EpiDeep
varies with the delay. Will the performance of EpiDeep vastly vary
if the delay is increased significantly? Will it remain stable?



To answer these questions, we performed experiments with sim-
ulated larger delays. Specifically, we leveraged EpiDeep to forecast
future wILI incidence with delay of 2, 4, 6, and 8 weeks. We repeated
the experiments for three seasons, namely 2014/15, 2015/16, and
2016/17. Since peak (time/intensity) predictions and onset predic-
tion already have a large gap between the time when prediction is
made and the time when the data is observed, we conducted this
study only for future incidence prediction for the national data.

(a) RMSE (b) MAPE

Figure 4: RMSE and MAPE for future wILI incidence pre-
dictions for delayed data arrival. EpiDeep’s performance re-
mains stable even when data is delayed by up to 8 weeks.

The result is summarized in Figure 4. As shown in figure, there is
minimal change in performance of EpiDeep even when the data is
delayed by up to 8 weeks. It highlights the fact that EpiDeepmakes
stable predictions even in scenarios where there is a bigger delay
in data arrival.

4.4 Regional Forecasting

(a) Future Incidence Prediction (d) Onset Prediction

Figure 5: RMSE for regional predictions of two of the tasks
for 2016/17 season. EpiDeep consistently performs well. The
figure is best viewed in colour.

The US Department of Health and Human Services has divided
the country into 10 regions, commonly referred to as the HHS re-
gions. The CDC reports ILINet wILI values for each of these regions
individually as well. Here we leverage all methods for influenza
forecasting for different regions. For different regions the influenza
pattern can be different. We want to see if EpiDeep and other meth-
ods can detect these differences and perform well in each regions.
Hence, here we leveraged all the methods for all four tasks in all
the regions.

In summary, we observe that EpiDeep consistently performs
well in all predictions. For space, we report RMSE results for the
2016/17 season only for HHS regions 1, 2 and 3 for Future Incidence
and Onset prediction tasks. We observe similar results in all other
tasks across other metrics. See Figure 5: EpiDeep outperforms all
the baselines in future incidence prediction in all three HHS re-
gions. Similarly, we observe that the all the methods except ARIMA
perform well in onset prediction for all three regions. EpiDeep’s
performance is competitive in all three regions.

4.5 Interpretability

(a)wa = 40 (b)wb = 52 (c) Whole Season

Figure 6: (c)-bottom row shows full season lengthwILI curve
for all historical seasons. Bottom row (a) and (b) shows snip-
pets of the historical seasons till week wa and wb respec-
tively. The top row shows 2-d projection of learnt embed-
dings of corresponding snippets.

An important advantage of EpiDeep is that its embedding/clustering
components help in interpretability of the forecasts. Herewe demon-
strate how to leverage the embeddings learnt by EpiDeep for in-
terpreting the influenza forecasting. Our experiments are designed
to answer questions that epidemiologists and authorities like the
CDC have. We focus on the following questions:
• Question 1: Can we infer ‘clusters’ of historical seasons based on
their incidence curve even when partially observed?

• Question 2: What relationship can we infer between different
HHS regions across multiple seasons?

• Question 3: Which historical season is closest to the current
‘query’ season at the time of forecasting? Does the closest season
evolve over time as more data is observed?

4.5.1 Question 1: Qualitative Evaluation of the Embeddings and
Inferred Clustering. We can leverage EpiDeep to learn the embed-
dings of the historical seasons. Figure 6 shows the 2-d projection of
the embeddings generated by EpiDeep at various weeksw (when
partial data is observed) in the top row and corresponding incidence
curves in the bottom row. The colors of the markers in the top plot
represent the cluster memberships. For each cluster, the same color
is used to draw the incident curves in the bottom row. The top row
in Fig 6 (c) shows the embeddings generated when the complete
data is observed. From the figure, we can make the following key
observations.



Observation 1. Season Clusters: EpiDeep embeddings show-

case different meaningful clusters of wILI trends.

The first cluster (in black) has only one member, the 2009/10
H1N1 pandemic season. Clearly from the incidence curves (bottom
row Fig 6 (c)), it is obvious that the 2009/10 seasonwas very different
than the rest [5]. The cluster in green, representing seasons such
as seasons 2011/22, 2005/06, 2015-14, and so on, have a distinct
characteristics: they all have a low peak (green curves in (bottom
row Fig 6 (c)). As reported by the CDC thesewere the only seasons to
peak in March [6]. The defining characteristic of the blue cluster is
that the seasons peak relatively early (late December/early January)
and have high intensity. Finally, we observe that the seasons in the
red clusters have a late peak and a high intensity. These intuitive
clustering of the seasons shows that EpiDeep learns meaningful
embeddings of the historical seasons.

Figure 7: 2-d projections of embeddings of 2016/17 and
2017/18 seasons’ wILI curves for all 10 HHS regions (inset).

4.5.2 Question 2: Regional and Seasonal Embeddings. In the pre-
vious question, we explored the quality of embeddings and their
evolution. Here, we study the embeddings generated by EpiDeep
for each HHS region over two seasons (2016/17 and 2017/18). We
are interested in questions like does EpiDeep capture meaningful
geographical relationship between HHS regions?Which regions are
similar to each other and so on. The 2-d projections of the embed-
dings learnt by EpiDeep is shown in Figure 7. The first observation
we make from the figure is as follows.

Observation 2. Neighbor Similarities: Learnt embeddings

reveal neighboring HHS regions have very similar incidence curves.

The neighboring regions 4, 6, and 7 witnessed a very similar
influenza season in 2017/18. It turns out all three of these regions
peaked at week 4 and had a very high peak intensity. Similar ob-
servations were made by prior works [20] for multiple diseases.
Geographical correlation between HHS regions are leveraged for
forecasting as well [20, 31]. Another nontrivial observation from
the embeddings is that the incidence curve for some of the non-
neighboring seasons are similar to each other.

Observation 3. Long Distance Similarities: EpiDeep embed-

dings discover geographically distant regions having similar influenza

incidence curves for multiple seasons.

We observe that regions 1, 3, and 5 are embedded close to each
other for both seasons. Their similarity is explained by the fact
that all three seasons saw the influenza intensity peak at week 6
and 7 for 2016/17 season and peak at week 6 for 2017/18 season.
Similarly, all three regions saw significant rise in the peak intensity
in 2017/18 season as compared to that of 2016/17 season.

4.5.3 Additional Observations: We make the following interesting
observations additional to the ones discussed. Observation 4 is with
respect to Question 1, Observation 5 is with respect to Question 2,
and Observation 6 is with respect to Question 3. Due to the lack
of space, we omit detailed discussion on the significance of these
observations.

Observation 4. Intensity Separation: EpiDeep embeddings

distinguish seasons with higher intensities from the ones with lower

intensities.

Observation 5. Temporal Similarities: The learnt embeddings

reveal temporal similarities between different seasons in the same

region.

Observation 6. Evolution of Season Similarity: The similar-

ity/distances between the seasons evolve as more data is observed and

EpiDeep is able to capture this phenomenon.

Note that all the observations, from 1 to 6, are made directly
from the embeddings learned by EpiDeep. It is quite challenging
to extract all these patterns from the raw incidence curves as it is
hard to compare all possible snippets of all the historical curves in
each region.

5 RELATEDWORK
Epidemic Forecasting: In addition to the closely related works
discussed earlier, there are other statistical [9, 30] and modelling
based approaches [27, 35] for flu forecasting, which suffer from
the challenges discussed before. Additionally, orthogonal to this
paper, there has also been much interest in leveraging signals from
external data sources such as search engine [12, 34], social media [8,
17], environmental and weather reports [26, 29], and a combination
of heterogeneous data [7]. Deep learning for flu forecasting has
barely been explored except for [31] which basically uses a simple
LSTM with geographical and climate constraints and [32] which
uses LSTM to predict influenza activities specifically in the military
population by incorporating twitter data. As we saw in Section 4,
LSTM does not perform well as it requires a large amount of data.
In contrast, we give a novel architecture which ensures excellent
performance even with sparse data.
Time Series Analysis: Time-series prediction is a well-studied
area with several methods from different perspectives including
auto-regression, kalman-filters and groups/panels [3, 15, 25]. Re-
cently recurrent neural architectures [10, 14] have also become
popular. However these prediction methods are ill suited for flu
forecasting as they are too specialized or usually not flexible enough
to capture the seasonal inconsistency in wILI activity [22]. In con-
trast, we design an end-to-end approach which automatically em-
beds, clusters, and forecasts giving it the flexibility to capture the
seasonal inconsistency in the data.



6 DISCUSSIONS AND CONCLUSIONS
Here we proposed a novel deep learningmodel EpiDeep to learn fea-
ture representations of historical epidemic seasons in conjunction
with the observed current season and leveraged it for four epidemic
forecasting tasks.We compared the performance of EpiDeep against
multiple baselines on extensive historical data and showed that it
outperforms non-trivial baselines by up to 40%. It also promises
gains in interpretability. The embeddings learnt by EpiDeep are
meaningful and non-trivial. We also observed that these embed-
dings evolve as the season progresses to capture the most meaning-
ful relationship between the historical seasons.

Our method was designed to overcome specific challenges in in-
fluenza forecasting like the data sparsity issue and leveraging some
domain knowledge for interpretability, but it also flexible and exten-
sible. Due to its modular neural structure, as future work, we believe
it has the potential to be useful in overcoming other challenges in
a systematic manner as well. For example, since EpiDeep uses an
end-to-end representation learning based framework, we can try
to learn to jointly embed multiple heterogeneous data sources in
addition to ILINet (say social media, weather data etc) and leverage
these embeddings for prediction. We can also try to directly take
data from epidemiological models as inputs into our model. Further,
usually ILI data has geographical structure (e.g. flu incidence in
nearby states would be expected to be similar [18]). These types
of constraints can also be explicitly codified in the loss functions
of the predictor module of EpiDeep (though notably, as we saw, it
discovers many of these relationships automatically). We believe
our techniques of using embedded clustering for forecasting can
help with other sparse time-series data as well.
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1 EXPERIMENTAL SETUP
All experiments are conducted using a 4 Xeon E7-4850 CPU with
512GB of 1066 Mhz main memory.

1.1 Data and Code
�e code, implemented in PyTorch, is publicly available1. We used
wILI surveillance data collected and released by the CDC.�e data is
publicly available2. For each prediction reported, only the historical
data observed prior to the time of prediction is leveraged. No other
source of data are used in our experiments.

1.2 Setup Details
Note thatwe use historical wILI incidence Y = {Y1,Y2,Y3, . . . ,Yc−1}
to train EpiDeep and use it predict various metrics of interest for
the current season Yc . In our se�ings, Yc is observed till week
t whereas the historical seasons in Y are fully observed. All the
experiments in the paper follow the setup described here unless
mentioned otherwise.
�e following setup was used for experiments for all the methods
including EpiDeep:
• While forecasting for season Yi , only the historical incidence

data till season i − 1 were leveraged for training.
• For each season Yi , all the methods were leveraged to forecast

various metrics starting from week 40.
• For onset, peak, and peak-time prediction tasks, predictions were

made till they were observed. Future incidence prediction was
made till week 20 of the following year.

• For EpiDeep, hyper-parameter search was done before the �nal
model was selected.

1.3 Delayed Data Arrival
Experiments on delayed data arrival was conducted on the Future
Incidence Prediction task only. We use EpiDeep to forecast with
simulated delay of 2, 4, 6, and 8 weeks. For each season yi , the
experiment began on week 40 and ended on week 20 the following
year.

1.4 Regional Forecasting
For each region’s prediction, we used the historical data from that
particular region only, instead of using the data from all regions for
EpiDeep. �e same approach was used for other baselines as well.

1h�ps://github.com/epideep/source
2h�ps://gis.cdc.gov/grasp/�uview/�uportaldashboard.html

1.5 Interpretability
�e embeddings presented in the paper were obtained using the
query length data Yt = {Yi [0 : t]|∀ci=1} ∪ {Yc }. Once EpiDeep is
trained, we feed Yt to the�ery Length Data Clustering module
and then feed the encoded representations of Yt to the embed-
ding mapper. �e output of the embedding mapper is the �nal
embedding.

2 PROJECTWEBSITE

(a) Incidence in various (b) Various seasons in
regions in 2014/15 season Region 6

Figure 1: One of the features of the project website is that
it enables users to compare incidence curves across regions
and seasons.

�e project website3 is under construction. �e website allows
users to explore the historical wILI data, compare di�erent incidence
curves (see Figure 1), and to follow EpiDeep’s live forecasts.

3h�ps://epideep.github.io


