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Abstract—Given a network of who-contacts-whom or who-
links-to-whom, will a contagious virus/product/meme spread
and ‘take-over’ (cause an epidemic) or die-out quickly? What
will change if nodes have partial, temporary or permanent
immunity? The epidemic threshold is the minimum level of
virulence to prevent a viral contagion from dying out quickly
and determining it is a fundamental question in epidemiology
and related areas. Most earlier work focuses either on special
types of graphs or on specific epidemiological/cascade models.
We are the first to show the G2-threshold (twice generalized)
theorem, which nicely de-couples the effect of the topology
and the virus model. Our result unifies and includes as
special case older results and shows that the threshold depends
on the first eigenvalue of the connectivity matrix, (a) for
any graph and (b) for all propagation models in standard
literature (more than 25, including H.I.V.) [20], [12]. Our
discovery has broad implications for the vulnerability of real,
complex networks, and numerous applications, including viral
marketing, blog dynamics, influence propagation, easy answers
to ‘what-if’ questions, and simplified design and evaluation of
immunization policies. We also demonstrate our result using
extensive simulations on one of the biggest available social-
contact graphs containing more than 31 million interactions
among more than 1 million people representing the city of
Portland, Oregon, USA.

I. INTRODUCTION

Given a social or computer network, where the links
represent who has the potential to infect whom, what can we
say about its epidemic threshold? That is, can we determine
whether a small infection can ‘take-off’ and create an epi-
demic? What will change if the nodes have permanent, tem-
porary or no immunity? Both the underlying contact-network
(or the population structure) and the particular cascade
(propagation) model should intuitively play an important
role in the spread of contagions (viruses/memes/products).
Finding the epidemic threshold for an arbitrary network is
an important and fundamental question in epidemiology and
related areas. For instance, Figure 1 shows the simulation
output after running the SIRS model (Susceptible-Infectious-
Recovered-Susceptible which models diseases with tempo-
rary immunity like pertussis) on a large contact-network for
different values of the virulence of the virus (achieved by
tuning the parameters of the model). We can clearly see
two different regimes - the fast die-out green regime and
the steady-state epidemic red regime. Our paper deals with
finding the condition which separates these two regimes in
SIRS, as well as in all other virus propagation models in
standard literature [20], [12], on arbitrary contact-networks.

Figure 1. Qualitatively different infection time-series curves (Fraction of
Infected population vs Time) for the SIRS model (temporary immunity, like
pertussis) on a large contact-network. What is the condition that separates
the two regimes - red (epidemic) vs green (extinction)?

Much of previous work focuses on either special types of
graphs (typically cliques [25], block-structure and hierarchi-
cal graphs [21] and random power-law graphs [34]) or on
specific epidemiological models [8]. We unify and include
as special-case older results in two orthogonal directions and
show:
• De-coupling: the threshold condition separates the ef-

fect of topology and the virus model,
• Arbitrary Topology: the threshold depends on the first

eigenvalue of the connectivity matrix,
• Arbitrary VPM: the threshold depends on one constant

that completely characterizes the virus propagation
model (VPM)

Our result has numerous applications and immediate impli-
cations (see § VIII) including easy answers to ‘what-if’ ques-
tions and simplified design and evaluation of immunization
policies. Moreover, a variety of dynamic processes on graphs
are modeled like epidemic spreading and hence our result
applies to many of them. For example, the linear-cascade
model [24] is essentially the SIR model (Susceptible-
Infected-Recovered, models chicken pox, see Figure 2 (left
inset) for state diagram); also, so-called threshold models
(like Granovetter’s model [17]) in sociology are similar in
reality to cascade models [11]. In contrast to harmful viruses,
the propagation of some contagions may in fact be desirable
e.g. dissemination of a product or an idea in a network of
individuals. For example, the Bass model [5] fits product
adoption data using parameters for pricing and marketing
effects. However it ignores topology; it simply assumes
that all adopters have equal probability of influencing non-
adopters. Instead, using our result, a more refined picture can
be constructed of when a product gains massive adoption on
a social network (equivalent to an “epidemic”).



Several VPMs have direct applications in modeling com-
puter and email viruses [26], [19]. In these cases, more
so than the biological ones, it is easier to get the entire
underlying network. Hence our threshold results can be used
to make the network more robust by “immunizing” a few
carefully chosen computers in the network (like installing
a firewall on them). Another application is the efficient
spreading of software patches over a computer network.
The patches behave like computer worms [39] and can help
defend against other malicious worms. Given full knowledge
of the router-network involved, we can then estimate how
“infectious” the patch-worm has to be (say by increasing the
number of probes for possible hosts before dying out) to at
least initiate an “epidemic” w.r.t. the patch. Additionally, we
can help determine the vulnerability and consequently the
cost of not patching parts of the network. Various epidemic
models have also been used to model blog cascades which
can now be applied to arbitrary graphs e.g. to study the
propagation of memes through blogs [29].

The rest of the paper is organized as follows: we first give
the related work in § II, then formulate the problem (§ III)
and state our main result (§ IV), give a proof roadmap and
example (§ V) and then show simulation experiments (§ VI)
to demonstrate the result. We discuss the broad implications
and many applications of the result in § VII and § VIII. We
then conclude (§ IX) and finally give a detailed example
proof in the Appendix.

II. RELATED WORK

We review related work here, which can be categorized
into two parts: epidemic thresholds, and information diffu-
sion. None of these works generalize in two directions: for
arbitrary propagation models and arbitrary networks.
Epidemic Thresholds Canonical texts for epidemiology
include [2], [20]. The most widely-studied epidemiological
models include the so-called homogeneous models [30],
which assume that every individual has equal contact to
others in the population and that the rate of infection
is determined by the density of the infected population.
Kephart and White [25] were among the first to propose
epidemiology-based models (the KW model) to analyze the
propagation of computer viruses on homogeneous networks.
However, there is overwhelming evidence that real networks
including social networks, router and AS networks [14] etc.
follow a power law structure instead. Pastor-Satorras and
Vespignani [34] studied viral propagation for random power-
law networks, and showed low or non-existent epidemic
thresholds, meaning that even an agent with extremely low
infectivity could propagate and persist in the network. They
use the “mean-field” approach, where all graphs with a
given degree distribution are considered equal. There is
no particular reason why all such graphs should behave
similarly in terms of viral propagation. In a recent work,
Castellano and Pastor-Satorras [7] empirically argue that

some special family of random power-law graphs have a
non-vanishing threshold under the SIR model in the limit of
infinite size, but provide no theoretical justification.

Newman [33], [32] mapped the SIR model to a per-
colation problem on a network and studied thresholds for
multiple competing viruses on special random graphs. Fi-
nally, Chakrabarti et.al. [8] and Ganesh et.al [15] gave
the threshold for the SIS model on arbitrary undirected
networks. Hence, none of the earlier work focuses on
epidemic thresholds for arbitrary virus propagation models
on arbitrary, real graphs.
Information diffusion There is a lot of research interest
in studying dynamic processes on large graphs, (a) blogs
and propagations [18], [27], [24], [37], (b) information
cascades [6], [16], [17] and (c) marketing and product
penetration [38], [28]. These dynamic processes are all
closely related to virus propagation, with many directly
based on epidemiological models [5], [24] e.g. the award-
winning linear-cascade model [24] is a special case of our
model : specifically it is essentially a SIR model with δ = 1
and all our results carry through.

III. PROBLEM FORMULATION

Table I and Table II list common terminology and describe
some of the epidemic models we will be using in the paper.
We use the term ’cascade model’ and ’virus propagation
model’ interchangeably in the paper. We next state formally
the problem we address in the paper:
Epidemic Threshold Problem Given: A undirected un-
weighted graph G, and a virus propagation model (VPM)
and its parameters (e.g. β and δ for SIR)
Find: A condition under which will an infection will die out
and not cause an epidemic on the graph

Table I
COMMON TERMINOLOGY

VPM virus-propagation model
NLDS non-linear discrete-time dynamical system
β attack/transmission probability over a contact-link
δ healing probability once infected
γ immunization-loss probability once recovered (in

SIRS) or vigilant (in SIV, SEIV)
ε virus-maturation probability once exposed hence,

1− ε is the virus-incubation probability
θ direct-immunization probability when susceptible
A adjacency matrix of the underlying undirected

contact-network
N number of nodes in the network
λ1 largest (in magnitude) eigenvalue of A
s effective strength of a epidemic model on a graph

with adjacency matrix A

IV. RESULTS

The epidemic threshold is usually defined as the minimum
level of virulence to prevent a viral contagion from dying



Table II
SOME VIRUS PROPAGATION MODELS (VPMS)

SIS ‘susceptible, infected, susceptible’ VPM - no im-
munity, like flu

SIR ‘susceptible, infected, recovered’ VPM - life-time
immunity, like mumps

SIRS VPM with temporary immunity
SIV ‘susceptible, infected, vigilant’ VPM - immuniza-

tion/vigilance with temporary immunity
SEIR ‘susceptible, exposed, infected, recovered’ VPM

- life-time immunity and virus incubation
SEIV VPM with vigilance/immunization with tempo-

rary immunity and virus incubation

out quickly [2], [20], [3], [26]. In order to standardize the
discussion of threshold results, we express the threshold in
terms of the normalized effective strength, s, of a virus
which is a function of the particular propagation model
and the particular underlying contact-network. So we are
‘above threshold’ when s > 1, ‘under threshold’ when
s < 1 and the threshold or the tipping point is reached
when s = 1. The effective strength s can be thought of
as the basic reproduction number R0 frequently used in
epidemiology [20], [2]. It (s) is then very roughly, the “net”
generalized R0 for the virus model and an arbitrary graph
and is the quantity which determines the tipping point of an
infection over a contact-network. Our main result is:

Theorem 1 (G2-threshold theorem). For any virus propaga-
tion model (satisfying our general initial assumptions; see
Section V for details) operating on an arbitrary undirected
graph with adjacency matrix A and largest eigenvalue λ1,
the virus will get wiped out if:

s < 1 (1)

where, s (the effective strength) is:

s = λ1 · CVPM (2)

and CVPM is an explicit constant dependent on the virus
propagation model. Hence, the tipping point is reached when
s = 1.

Proof. Full proof in our extended version [35]. We give
a roadmap in the next section and a detailed example proof
in the Appendix.

Firstly, note that our result separates out the effect of the
network and the VPM. Secondly, our result subsumes older
results on (a) contact-networks, and (b) VPMs as special
cases. Results on contact-networks like cliques (everybody
contacts everybody else: λ1 = N − 1, N is the number
of nodes in the graph), random Erdős-Rényi graphs with
expected degree d (λ1 = d), ‘homogeneous’ graphs [25],
power-law/scale-free graphs [34], structured hierarchical
(near-block-diagonal) topologies [21] (people within a com-
munity contact all others in this community, with a few
cross-community contacts) etc. are special cases. Likewise,

all standard virus propagation models [20], [12] are specific
instantiations of the generalized model used in our theorem
(see Figure 2; more later). Table III lists a few of our thresh-
old expressions after applying our result on some standard
epidemic models. The popular models listed include SIS (no
immunity, like flu, Susceptible-Infected-Susceptible), SIR
(permanent immunity, like mumps, Susceptible-Infected-
Recovered), SIRS (temporary immunity, like pertussis),
SEIR (virus incubation in addition to permanent immunity)
etc. Note that models like SI inherently don’t have an
epidemic threshold as all nodes will eventually get infected
on any graph - hence our work doesn’t apply to them. We
discuss our terminology and general model next.

V. PROOF OVERVIEW

We first construct a generalized model (S*I2V*- arbitrary
number of susceptible and vigilant states, two infectious
states) that is powerful enough to generalize all the practical
VPMs (and more) and satisfies our very general assump-
tions, while still being mathematically tractable (Figure 2).
We then approximate our general model using a discrete time
non-linear dynamical system and transform the tipping point
question into a stability problem of the dynamical system
at an appropriate equilibrium point. We give the overview
and roadmap here. As an illustration, we then discuss the
result on the SEIV model. Finally, we give a more detailed
example proof for the SEIV model in the Appendix: we
believe it exemplifies the key aspects of our general proof.
As mentioned before, the full proof can be found in our
extended version [35].

A. Our Terminology

Note that any VPM has some states and the choice of
which states to include in a model depends on the partic-
ular contagion characteristics. Yet, we can think of every
model as having states essentially in any of the following
fundamental broad classes:

1) Susceptible Class: Nodes in such a state can get
infected by any neighboring node (in the contact-
network) who is infectious.

2) Infected Class: In a state of this class, the node is
infectious in the sense that it is capable of transmitting
the infection to its neighbors. Note that each such
state will have a transmissibility parameter (e.g. β in
the SIR model for the infectious state I). Thus this
can include models with transmissibility parameter =
0 i.e. they are ‘exposed’ but not infectious (e.g. the
E state in the SEIR model is a state which is in the
Infected class in the sense that it can potentially cause
infections but is not by itself infectious).

3) Vigilant/Vaccinated Class: Nodes in any of the states
in this class cannot get infected nor can they po-
tentially cause infections. States like R in SIR (the
recovered/died state where the node gets permanent



Table III

Models Effective Strength (s) Threshold (tipping point)

SIS, SIR, SIRS, SEIR s = λ1·
(
β
δ

)
s = 1

SIV, SEIV s = λ1·
(

βγ
δ(γ+θ)

)
SI1I2V1V2 (∼ H.I.V.) s = λ1·

(
β1v2+β2ε
v2(ε+v1)

)
Threshold results for some models. SIS (susceptible/infected/susceptible) has no immunity (like flu), SIR (susceptible/infected/recovered) has permanent
immunity (like mumps), SIRS has temporary immunity (like pertussis) while SEIR (susceptible/exposed/infected/recovered) has additional virus incubation
and SI1I2V1V2 has been used to model some H.I.V. infections [2]. SEIV and SIV are two useful generalizations. β is the attack/transmission probability
over a contact link, δ is the healing probability, γ is the immunization-loss probability, (1 − ε) is the virus incubation probability and θ is the direct-
immunization probability when susceptible (see Figure 2). Our result is a general one and these models just highlight its ready applicability to standard
VPMs in use.

immunity/dies and hence does not participate in the
epidemic further), M in MSIR (the passive immune
state), etc. are conceptually of the Vigilant type.

B. Our General Model

Using our terminology above, we can now describe the
generalized model we used in Theorem 1: S*I2V* (arbitrary
number of susceptible and vigilant states, two infectious
states). As our general characterization, S*I2V*is powerful
enough to seamlessly capture all the practical models (and
more) like SIS, SIR, SIRS, SEIR, SERIS, MSIR, MSEIR
etc. [20], [12], including H.I.V. [2], while being tractable
enough to yield simple threshold equations. Figure 2 shows
the state diagram under S*I2V*for a node in the contact-
network together with the assumptions on the transitions.
The red-curvy arrow indicates exogenous (graph-based)
transition caused by infectious neighboring nodes while all
other transitions are endogenous, caused by the node itself
with some probability. We have shown only cross-class
transitions and their types. We make two assumptions:

1) Infection through Neighbors: The only way to get
infected is through your neighbors i.e. there is no
path to a state in the Infected class from a state in
the Susceptible class composed solely of endogenous
transitions.

2) Starting Infected State: For the few models that have
more than one infectious state, any exogenous (graph-
based) transition always results in a transition from a
state in the Susceptible class to the I1 state. Note that
this assumption is trivially obeyed for a vast majority
of models (with only one infected state).

Figure 2 (Left Inset) shows the popular SIR model as an
instantiation of our general model S*I2V*. Also, Figure 2
(Right Inset) shows an instantiation in the form of our SEIV
model (Susceptible-Exposed-Infected-Vigilant) which itself
generalizes many known models (SIS with ε = 1, γ = 1, θ =
0; SIR with ε = 1, γ = 0, θ = 0; SIRS with ε = 1, θ = 0
and so on).

C. Proof Sketch

We define the vector P̃t such that it specifies the state
of the system at time t; the exact definition will differ from
model to model but it effectively encodes the probability of
each node in the graph of being in any given state at time t.
Suppose the virus-propagation model has m (s1, s2, . . . , sm)
states (e.g. m = 3 for the SIR model with states s1 = S,
s2 = I and s3 = R) and it operates on a graph of N
nodes. Consider then a column vector P̃t ∈ <m·N×1, which
captures the probability of each node being in any of m
states at a given time t. Specifically:

P̃t = [Ps1,1,t, Ps1,2,t, . . . , Ps1,N,t, Ps2,1,t, . . . , Psm,N,t]
T

(3)
where, Psi,j,t is the probability that node j is in state si
at time t. A Non-Linear Dynamical System (NLDS) can
be represented by P̃t+1 = g(P̃t) where g is some non-
linear function operating on a vector. The function g in
our case is large and complicated. The NLDS equation
essentially tracks the evolution of the vector P̃t over time.
An equilibrium point (also called a fixed point) of the system
is the state vector (i.e. some particular P̃) which does not
change. Thus at the equilibrium point P̃t+1 = P̃t = x̃.
Intuitively, the tipping point for any model then deals with
analyzing the stability of the corresponding NLDS at the
point when none of the nodes in the graph are infected,
because otherwise the infection can still spread. If the
equilibrium is unstable, a small “perturbation” (physically
in the form of a few initial nodes getting infected) will push
the system further away (which physically means more and
more nodes will get infected leading to an epidemic). But
if the equilibrium is stable, the system will try to come
back to the fixed point without going “too-far” away, in
effect, “controlling the damage”. At threshold, the tendencies
to go further away and come-back will be the same. In
other words, the equilibrium is stable below the threshold
and is neutral at the tipping point. From dynamical-system
literature, we know how to relate the stability of the system
at the equilibrium point to the spectrum of the Jacobian
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Figure 2. State Diagram for a node in the graph in our generalized model S*I2V*- it is not a simple Markov chain. There are three classes (types) of
states - Susceptible (healthy but can get infected), Infected (capable of transmission) and Vigilant (healthy and can’t get infected). Within-class transitions
not shown for clarity. Red-curvy arrow indicates exogenous i.e. graph-based transition affected only by the neighbors of the node, all other transitions are
endogenous (caused by the node itself with some probability at every time step). (Left Inset) Special case: Transition diagram for the SIR (Susceptible-
Infected-Recovered) model. (Right Inset) Another special case: Transition diagram for the SEIV (E stands for exposed but not infectious) model. SEIV
itself generalizes almost all models from [20] (SIS with ε = 1, γ = 1, θ = 0; SIR with ε = 1, γ = 0, θ = 0; SIRS with ε = 1, θ = 0 and so on).

matrix at that point (i.e. 5g(x̃)). We eventually reduced
the requirement on the eigenvalues of 5g(x̃) for any virus
propagation model to a simple condition on the eigenvalue
of the adjacency matrix. This condition translates into the
effective strength of the virus under the model. The reason
we can reduce the condition to one on the adjacency matrix
is due to the special structure of the virus models, which
was captured by the S*I2V*model described before.

D. Proof Example: SEIV

We give a detailed example proof for the SEIV model in
the Appendix as we believe it exemplifies the key aspects
of our general proof. We can check that SEIV is a special
case of our general S*I2V* model satisfying the assumptions.
Using our proof, we get that the effective strength for SEIV
is s = λ1 · βγ

δ(θ+γ) (as before the virus dies out if s < 1). Note
that this implies that increasing β (the attack probability)
strengthens the virus. At the same time, decreasing the
healing probability δ also strengthens the virus. Finally,
decreasing θ (the direct immunization probability) and in-
creasing γ (the immunization loss probability) also makes
the virus stronger. All of these fit with intuition - in fact,
the usefulness of our result is partly in enabling us to see
these complex effects on the virus strength very clearly. We
discuss some subtler implications later in Section VII.

VI. EXPERIMENTS

We used one of the biggest available physical contact
graphs, PORTLAND, representing a synthetic population of
the city of Portland, Oregon, USA [31] for our experiments.
It is a social-contact graph containing more than 31 million
links (interactions) among about 1.6 million nodes (people).
The data set is based on detailed microscopic simulation-
based modeling and integration techniques and has been

used in modeling studies on smallpox outbreaks as well as
policy making at the national level [13].

Figure 3 illustrates our result via computer simulation ex-
periments on PORTLAND. Above threshold, note the steady
state behavior in SEIV and the initial explosive phase and
eventual decay in SIR and SEIR (because the number of
susceptible nodes decrease monotonically). Also notice the
initial “silent” period for above threshold because of virus-
incubation (presence of the Exposed state) in SEIV and
SEIR. In contrast, under threshold, the number of infections
aggressively go down to zero in all the models. In addition,
as our result predicts, the precise point when the footprint
of infection suddenly jumps in all models is at s = 1.
The footprint measures the extent of infection: For models
with a steady-state behavior (SIS/SIRS) it is defined as
the maximum number of infections at any instant till we
reach steady-state. For models with monotonous decrease
of susceptibles (and hence without a steady-state, SIR/SEIR)
footprint is the final number of cured/removed nodes from
the network at the end of the infection. Figures 3 (d-f) also
demonstrate the simplicity and power of our result - the only
variable we need for determining the epidemic threshold of
the whole system consisting of multiple parameters is the
effective strength (s = λ1 ∗ CV PM ), nothing else.

VII. IMPLICATIONS

We first discuss some direct implications of the G2-
threshold theorem: the vulnerability of graphs to epidemics
and some unexpected results in specific models.
Vulnerability of networks - focus on eigenvalues: What
exactly does the result mean w.r.t. the graph? Intuitively,
λ1 (also known as the spectral radius) of a graph captures
the connectivity of the graph. More connected the graph



(a) (b) (c)

(d) (e) (f)

Figure 3. Simulation Results on the PORTLAND graph, all values averages over 100 runs. (a),(b),(c) Plot of Infective Fraction of Population vs Time
(log-log) for SIR, SEIR, and SEIV models. Note the qualitative difference in behavior- two curves under (green) the threshold and two curves above (red)
the threshold. (d),(e),(f) “Take-off” plots, Footprint (see Section VI) vs Effective Strength (lin-log) for SIR, SEIR, and SEIV models. The tipping point
exactly matches our prediction (s = 1) in all cases.

(a)Chain(λ1 = 1.73) (b)Star(λ1 = 2) (c)Clique(λ1 = 4)

Increasing λ1

Figure 4. Why λ1 matters more than number of edges E: changing
connectivity and vulnerability of graphs with changing λ1. The clique
(largest λ1) is the most vulnerable. Note that E is not enough: star and
chain have the same number of edges (E = 4) but the star is intuitively
more vulnerable, as our result also says (it has a higher λ1).

is, more vulnerable it is to an epidemic by a virus (see
Figure 4). Our threshold results suggest that an arbitrary
graph behaves in the same way to a λ1-regular graph
(both will have the same λ1). The entire dynamics of the
epidemic may not be captured by λ1 completely, but the
threshold is solely dependent on λ1 (apart from parameters
of the VPM). By making the relation between the graph
and threshold explicit, our result has many consequences
for the vulnerability of real, complex networks as well.
For example, our result explains the observed vulnerability
of ‘small-world’ networks [40]: their λ1 is relatively high
compared to a regular graph with the same number of
nodes and edges, due to the presence of shortcuts. Also,
previous results have shown that the epidemic threshold for
the SIS model in case of random scale-free networks like the

Internet is vanishingly small as the size N of the network
increases [34], [1]. This is a corollary of our result: When
a power-law graph grows (N →∞), the largest eigenvalue
grows with the maximum degree [9], which also grows to
infinity, and thus the threshold approaches zero.
Counter-intuitive results: Apart from the dependence of the
threshold on λ1, it is instructive to note unexpected results
in some specific models. The SEIR, SIRS and SEIV models
serve well to demonstrate the effect of virus-incubation
and direct-immunization. See Figure 5. The threshold in
SEIR surprisingly does not depend on the virus-incubation
probability: the parameter ε, in effect, only delays/speeds-
up the achievement of the threshold, not what the threshold
itself is. Similarly, the threshold in SIRS does not depend
on γ. Also, from the threshold equation of SEIV (Table III),
we can infer that lowering the rate of loss of immunity i.e.
having a smaller γ (say due to better hygiene) decreases the
effective strength s (and makes it harder for the virus to
cause an epidemic) only so long as there is a mechanism to
give a node direct immunity i.e. having a non-zero θ (say
by using a vaccine) before an infection (in the Susceptible
state) instead of after (in the Recovered state). Satisfyingly,
this fits well with the old adage ‘Prevention is better than
Cure’.

VIII. IMPACT

Our results can be fundamental to a wide-range of ap-
plications. We mentioned broader impact in § I before.
Here we briefly discuss some immediate applications in



(a) (b)

Figure 5. Counter-intuitive results - neither Incubation rate ε or Immunity-loss rate affects the threshold. (a) ‘Take-off’ plot for the SEIR model (a special
case of SEIV) on the PORTLAND graph (lin-log scale). All three curves are on top of each other. (b) ‘Take-off’ plot for the SIRS model (a special case of
SEIV) on the PORTLAND graph (lin-log scale) - higher means more infections (increasing with the loss of immunization γ). Note that in both the cases
it does not affect the threshold (the tipping point is still at effective strength s = 1). All values are averages over 100 runs.

epidemiology.
Effective Immunization: Given the linear dependence on
λ1 of our threshold, we can propose a simple immunization
goal. For any virus, remove (immunize) those nodes whose
removal will decrease the λ1 value the most (so that the
resultant infection falls below threshold and dies out) e.g.
immunize teachers and kindergarten children first to control
the epidemic. A lot of work targets immunizing high-degree
nodes in scale-free networks [10] which, while a good idea,
is not optimal: just concentrating on high-degree nodes will
miss those low-degree nodes which are good “bridges” and
can have an important influence on decreasing λ1 when
immunized. For example, intuitively, the sole common friend
between two disparate yet internally well-connected groups
(like say between scientists and movie celebrities) can have
a huge impact in the outbreak of a disease even if (s)he
knows only a few people in each community.
Evaluating ‘What-if’ scenarios: Our result can also help
quickly determine the result of plausible situations e.g. is
there a danger of an epidemic if the virus is twice (or half) as
infectious (virulent)? This can then feed into policy decisions
for controlling epidemics, like imposing restrictions on travel
so as to not increase the λ1. Policy makers can assume any
graph model which best captures the contact behavior of
the population and still use our threshold result to guide
immunization policies.
Accelerating simulations: Similarly, we can considerably
simplify expensive epidemiological simulations as well. For
example, running a typical simulation with one set of
parameters of a flu epidemic on a population of size 33
million (∼ size of the state of California) takes about 2
days on a cluster of 50 machines [4]. Using our result, we
can eliminate parameters which do not affect the effective
strength of the contagion and also quickly identify param-
eter spaces where simulations would be useful (i.e. above
threshold). Clearly, the main task of such a testing will be
eigenvalue computations. For this purpose, there are already
very efficient algorithms like Lanczos for sparse graphs
which take 2-5 mins for networks of millions. Moreover,

structured topologies like cliques, block-diagonal matrices
lend themselves to even faster eigenvalue computations,
making it very easy to apply our result to real world
simulations.

IX. CONCLUSION

In summary, we studied the problem of determining
the epidemic threshold given the virus propagation model
and an underlying arbitrary undirected unweighted graph.
Intuitively, the answer should depend both on the graph and
the propagation model. Earlier results have focused on either
special cases of graphs or special models. In this paper, we
give a formula for the epidemic threshold which shows:

1) De-coupling: The effect of the topology and the prop-
agation model on the threshold is clearly de-coupled,

2) Arbitrary Topology: The effect of the undirected un-
derlying topology is determined only by λ1 (the largest
eigenvalue of the adjacency matrix),

3) Arbitrary VPM: The effect of the virus propagation
model is determined by a model dependent constant.

Thus, all previous epidemic threshold results are specific
instantiations of our G2-threshold theorem. Our results
can be used for forecasting and estimations in ‘what-if’
scenarios, for control and manipulation of propagation
and related dynamical processes (immunization, marketing
policies etc.). Moreover, our result can be easily extended to
handle even more elaborate settings such as (a) time-varying
topologies (extending the SIS-only results of [4], [36]),
and (b) multiple competing diseases (extending the random
power-law-graphs-only results of [33]).
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APPENDIX

We give a detailed example proof for the SEIV model as
an illustration here. As noted before, we can check that SEIV
is a special case of our general S*I2V* model satisfying
the assumptions. To demonstrate generality in the proof, we
assume that a node in the E state infects its neighbors with
probability β1 while a node in the I state infects a neighbor
with β2 probability (in SEIV, β1 = 0 and β2 = β). Due to
this, much of the sample proof carries over without major
changes to our general model. For sake of standard notation,
we refer to the constant and given probability of transition
from any state K to any state U as αKU (hence, αSV = θ,
αV S = γ etc.).
System Equations We can develop the system equations i.e.
explicitly specify the non-linear function g for the NLDS
based on the transition diagram of the model. As stated
earlier we assume that infections are received only from
infected neighbors i.e. those in states E and I , the Infected
class of states. Firstly, let’s calculate the probability that a
node i does not receive any infections in the next time step
(call it ζi,t(E, I), E, I denotes that an infection is passed
only from a neighbor in the E or I states). No infections
are transmitted if: either (a) a neighbor is not in any of
the infected states E and I; or (b) it is in state E and the
transmission fails with probability 1−β1; or (c) it is in state
I and the transmission fails with probability 1−β2. Since we
assume infinitesimally small time steps (∆t → 0), multiple
events can be ignored for first-order effects in the time step.
Also, assuming the neighbors are independent, we get:

ζi,t(E, I) =
∏

j∈NE(i)

(PE,j,t(1− β1) + PI,j,t(1− β2) +

(1− PE,j,t − PI,j,t))
=

∏
j∈{1..N}

(1−Ai,j(β1PE,j,t + β2PI,j,t))(4)

where NE(i) is the set of neighbors of node i in the graph.
A node i will be in S at time t + 1 if: either (a) it was in
S at time t and it did not receive any infections from its
neighbors and it did not change state internally from S to
V ; or (b) it was in V and changed state internally from V
to S. Hence, the probability of node i being in S at time
t+ 1 is:

PS,i,t+1 = αV SPV,i,t + PS,i,t (ζi,t(E, I)− αSV ) (5)

Similarly, for the E and I states:

PE,i,t+1 = PS,i,t (1− ζi,t(E, I)) (6)
PI,i,t+1 = αEIPE,i,t + PS,i,t (1− ζi,t(I)) (7)

Also, we can compute PV,i,t using the relation ∀i,t PS,i,t +
PE,i,t+PI,i,t+PV,i,t = 1. As discussed earlier (Equation 3),
we can now define a probability vector P̃t by “stacking”
all these probabilities which will completely describe the
system at any time t and evolve according to the above
equations. Note that the above equations are non-linear and
naturally define the function g for the NLDS P̃t+1 = g(P̃t).
We have the following theorem about NLDS stability at a
fixed point:

Theorem 2 (Asymptotic Stability, e.g. see [22]). The system
given by P̃t+1 = g(P̃t) is asymptotically stable at an equi-
librium point P̃ = x̃, if the eigenvalues of J = 5g(x̃) are
less than 1 in absolute value, where, Ji,j = [5g(x̃)]i,j =
∂gi

∂pj
|P̃=x̃.

Hence, next we compute the fixed point we are interested
in and the Jacobian of our NLDS at that point.
Fixed point We are interested in the equilibrium point (i.e.

S V
θ

γ

Figure 6. State Diagram at the fixed point for SEIV, when no node is
present in E or I . Note that it is now a simple Markov chain with a unique
steady state probability.

where P̃t+1 = P̃t(= x̃)) of the NLDS which corresponds to
when no one is infected. Just the transition from S towards
E is graph-based and can happen only when at least one
of the nodes is in either E or I , so the state-diagram for
each node will be a simple Markov chain consisting of
S and V (call it MCSV , see Figure 6). As there are no
graph-based effects, each node is independent of others and
will converge to the same steady state probabilities. The
steady state vector π∗ can be computed using Markov chain
analysis: it will be a probability vector such that it is the
left eigenvector corresponding to eigenvalue 1 of the MCSV
transition matrix:

π∗T
[
1− θ θ
γ 1− γ

]
= π∗ &

2∑
i=1

π∗i = 1

⇒ π∗T = [
γ

θ + γ
,

θ

θ + γ
]T (8)

Hence, the probability of being present in S and V for any
node at the the fixed point is xS = γ

θ+γ , xI = θ
θ+γ . Fixed

point x̃ of the global original NLDS can be constructed
appropriately now.
The Jacobian We know from Theorem 2 that x̃ is stable if
the eigenvalues of J = 5g(x̃) are less than 1 in absolute
value. From the definition of J we can see that it is a 4 ·



N×4·N matrix with 4 (for each state) square blocks of size
N×N each (corresponding to every node in the graph). We
can calculate J as below (I is the identity matrix of size
N ×N , 0N,N is a N ×N matrix with all zeros):

(1− αSV )I αV SI −xSβ1A −xSβ2A
αSV I 1− αV SI 0N,N αIV I
0N,N 0N,N αEEI + xSβ1A xSβ2A
0N,N 0N,N αEII αIII


(9)

Eigenvalues of the Jacobian Note that J is very structured
and can be written as:

J =
[

B1 B2

02N,2N B3

]
, (10)

with B1 = T ⊗ I =
[
1− αSV αV S
αSV 1− αV S

]
⊗ I (11)

B3 =
[
αEEI + xSβ1A xSβ2A

αEII αIII

]
where ⊗ is the Kronecker product and B2 is defined
similarly. Consider any eigenvector ṽ (size 4N × 1) and
corresponding eigenvalue λJ of J . We can write ṽ as being
composed of vectors ṽ1 and ṽ2 of sizes 2N × 1 each i.e:
ṽT = [ṽT1 , ṽ

T
2 ]. From J ṽ = λJ ṽ we get:[

B1 B2

0 B3

] [
ṽ1

ṽ2

]
= λJ

[
ṽ1

ṽ2

]
(12)

Equation 12 implies the following two relations:

B1ṽ1 + B2ṽ2 = λJ ṽ1 (13)
B3ṽ2 = λJ ṽ2 (14)

From Equation 14 we can infer that precisely one of the
following holds: (a) ṽ2 = 0̃; or (b) ṽ2 is the eigenvector
of B3 (and consequently λJ is the matching eigenvalue of
B3). If ṽ2 = 0̃, Equation 13 reduces to B1ṽ1 = λJ ṽ1

wherein again, either ṽ1 = 0̃ or λJ is an eigenvalue of B1.
The condition ṽ1 = 0̃ is not meaningful as then ṽ = 0̃ (ṽ
is an eigenvector of J implies ṽ is non-zero). Therefore the
eigenvalues of J are given by the eigenvalues of B1 (with
ṽ2 = 0̃) and the eigenvalues of B3 (note that B2 doesn’t
matter). We know from matrix algebra [23] that if C =
D⊗E then Cλ = Dλ ⊗Eλ, where Cλ denotes a diagonal
matrix with eigenvalues of the matrix C on the diagonal. But
Iλ = I, hence from Equation 11 the eigenvalues of B1 are
the same as the eigenvalues of T (although with repetition).
In other words, eigenvalues of T are eigenvalues of J as
well.

Let ũT = [ũT1 , ũ
T
2 ] be a corresponding eigenvector of B3

(ũ1 and ũ2 are of size N ×1 each and as the eigenvalues of
B3 are also eigenvalues of J , we use λJ for an eigenvalue
of B3). Hence, the standard eigenvalue relation B3ũ = λJ ũ
requires the following equations to be satisfied:

(αEEI + xSβ1A)ũ1 + (αIEI + xSβ2A)ũ2 = λJ ũ1

αEI ũ1 + αII ũ2 = λJ ũ2

Eliminating ũ1, we get:

Aũ2 =
(
λ2
J − (αII + αEE)λJ + αIIαEE

xSβ1(λJ − αII) + xSβ2αEI

)
ũ2 (15)

Again, Equation 15 tells us that either ũ2 = 0̃ or it is an
eigenvector for A. But ũ2 = 0̃⇒ ũ1 = 0̃⇒ ũ = 0̃ which
is not possible. Thus Equation 15 is an eigenvalue equation
for the adjacency matrix A and we are looking for solutions
λJ and ũ2 such that they satisfy it. Hence,

λA =
λ2
J − (αII + αEE)λJ + αIIαEE

xSβ1(λJ − αII) + xSβ2αEI

where λA is an eigenvalue of A. This finally gives:

λ2
J − λJ (αEE + αII + xSβ1λA)+

(αIIαEE + xSλA(β1αII − β2αEI)) = 0 (16)

Thus we have a different quadratic equation (Q.E.) for each
eigenvalue λA of A. Each Q.E. gives us two eigenvalues
(possibly repeated) of J . So, finally, we can conclude the
following lemma:

Lemma 1 (Eigenvalues of J ). Eigenvalues of J are given
by the eigenvalues of T (Equation 11) and the roots of the
Q.Es given by Equation 16 for each eigenvalue λA of A.

Stability We require that all the eigenvalues of J to be
less than 1 in absolute value (according to Theorem 2).
From Lemma 1, we need to handle two cases. We state the
following lemmas without proof (omitted for lack of space).

Lemma 2 (Stability Case 1). All eigenvalues of the matrix
T (given by Equation 11) are less than 1 in absolute value.

Lemma 3 (Stability Case 2). All the roots of all the Q.Es
given by Equation 16 for each eigenvalue λA of A are less
than 1 in absolute value if:

λ1xS

(
β1(1− αII) + β2αEI
(1− αII)(1− αEE)

)
< 1 (17)

Effective Strength for SEIV Lemma 2 and Lemma 3
together with Lemma 1 imply that the eigenvalues of the
Jacobian J of our NLDS computed at the fixed point x̃
are less than 1 in magnitude if Equation 17 is true. From
Theorem 2, our NLDS is stable at its fixed point x̃ if
Equation 17 holds. Recall that x̃ is the point when there are
no infected nodes in the system and that this is the fixed
point whose stability conditions determine the epidemic
threshold. Thus, we get:

s = λ1 · xS
(
β1(1− αII) + β2αEI
(1− αII)(1− αEE)

)
= λ1 ·

βγ

δ(θ + γ)

where we used the actual parameters of the SEIV model.


