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Abstract Given a network of who-contacts-whom or who-links-to-whom,
will a contagious virus/product/meme spread and ‘take-over’ (cause an epi-
demic) or die-out quickly? What will change if nodes have partial, temporary
or permanent immunity? The epidemic threshold is the minimum level of vir-
ulence to prevent a viral contagion from dying out quickly and determining
it is a fundamental question in epidemiology and related areas. Most earlier
work focuses either on special types of graphs or on specific epidemiologi-
cal/cascade models. We are the first to show the G2-threshold (twice general-
ized) theorem, which nicely de-couples the effect of the topology and the virus
model. Our result unifies and includes as special case older results and shows
that the threshold depends on the first eigenvalue of the connectivity matrix,
(a) for any graph and (b) for all propagation models in standard literature
(more than 25, including H.I.V.). Our discovery has broad implications for
the vulnerability of real, complex networks, and numerous applications, in-
cluding viral marketing, blog dynamics, influence propagation, easy answers
to ‘what-if’ questions, and simplified design and evaluation of immunization
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Fig. 1 Qualitatively different infection time-series curves (Fraction of Infected
population vs Time) for the SIRS model (temporary immunity, like pertussis) on a
large contact-network. What is the condition that separates the two regimes - red
(epidemic) vs green (extinction)?

policies. We also demonstrate our result using extensive simulations on real
networks, including on one of the biggest available social-contact graphs con-
taining more than 31 million interactions among more than 1 million people
representing the city of Portland, Oregon, USA.

Keywords Epidemics · Cascades · Virus Propagation Models · Arbitrary
graphs · Tipping points

1 Introduction

Given a social or computer network, where the links represent who has the
potential to infect whom, what can we say about its epidemic threshold?
That is, can we determine whether a small infection can ‘take-off’ and create
an epidemic? What will change if the nodes have permanent, temporary or
no immunity? Both the underlying contact-network (or the population struc-
ture) and the particular cascade (propagation) model should intuitively play
an important role in the spread of contagions (viruses/memes/products).
Finding the epidemic threshold for an arbitrary network is an important and
fundamental question in epidemiology and related areas. For instance, Fig-
ure 1 shows the simulation output after running the SIRS model (Susceptible-
Infectious-Recovered-Susceptible which models diseases with temporary im-
munity like pertussis) on a large contact-network for different values of the
virulence of the virus (achieved by tuning the parameters of the model). We
can clearly see two different regimes - the fast die-out green regime and the
steady-state epidemic red regime. Our paper deals with finding the condition
which separates these two regimes in SIRS, as well as in all other virus propa-
gation models in standard literature [25; 16], on arbitrary contact-networks.

Much of previous work focuses on either special types of graphs (typically
cliques [30], block-structure and hierarchical graphs [26] and random power-
law graphs [44]) or on specific epidemiological models [10]. We unify and
include as special-case older results in two orthogonal directions and show:

– De-coupling : the threshold condition separates the effect of topology and
the virus model,
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– Arbitrary Topology : the threshold depends on the first eigenvalue of the
connectivity matrix,

– Arbitrary VPM : the threshold depends on one constant that completely
characterizes the virus propagation model (VPM)

Our result has numerous applications and immediate implications (see § 8)
including easy answers to ‘what-if’ questions and simplified design and eval-
uation of immunization policies. Moreover, a variety of dynamic processes
on graphs are modeled like epidemic spreading and hence our result applies
to many of them. For example, the linear-cascade model [29] is essentially
the SIR model (Susceptible-Infected-Recovered, models chicken pox, see Fig-
ure 2 (left inset) for state diagram); also, so-called threshold models (like
Granovetter’s model [22]) in sociology are similar in reality to cascade mod-
els [15]. In contrast to harmful viruses, the propagation of some contagions
may in fact be desirable e.g. dissemination of a product or an idea in a net-
work of individuals. For example, the Bass model [5] fits product adoption
data using parameters for pricing and marketing effects. However it ignores
topology; it simply assumes that all adopters have equal probability of influ-
encing non-adopters. Instead, using our result, a more refined picture can be
constructed of when a product gains massive adoption on a social network
(equivalent to an “epidemic”).

Several VPMs have direct applications in modeling computer and email
viruses [31; 24]. In these cases, more so than the biological ones, it is easier
to get the entire underlying network. Hence our threshold results can be
used to make the network more robust by “immunizing” a few carefully
chosen computers in the network (like installing a firewall on them). Another
application is the efficient spreading of software patches over a computer
network. The patches behave like computer worms [51] and can help defend
against other malicious worms. Given full knowledge of the router-network
involved, we can then estimate how “infectious” the patch-worm has to be
(say by increasing the number of probes for possible hosts before dying out)
to at least initiate an “epidemic” w.r.t. the patch. Additionally, we can help
determine the vulnerability and consequently the cost of not patching parts
of the network. Various epidemic models have also been used to model blog
cascades which can now be applied to arbitrary graphs e.g. to study the
propagation of memes through blogs [36].

The rest of the paper is organized as follows: we first give the related work
in § 2, then formulate the problem (§ 3) and state our main result (§ 4), give
a proof roadmap and example (§ 5) and then show simulation experiments
(§ 6) to demonstrate the result. We discuss the broad implications and many
applications of the result in § 7 and § 8. We then conclude (§ 9) and finally
give a detailed proof in the Appendix.

2 Related Work

We review related work here, which can be categorized into three parts:
epidemic thresholds, information diffusion and cyber-physical infrastructures.
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None of these works generalize in two directions: for arbitrary propagation
models and arbitrary networks.

2.1 Epidemic Thresholds

Canonical texts for epidemiology include [2; 25]. The most widely-studied
epidemiological models include the so-called homogeneous models [39], which
assume that every individual has equal contact to others in the popula-
tion and that the rate of infection is determined by the density of the in-
fected population. Kephart and White [30] were among the first to propose
epidemiology-based models (the KW model) to analyze the propagation of
computer viruses on homogeneous networks. However, there is overwhelm-
ing evidence that real networks including social networks, router and AS
networks [18] etc. follow a power law structure instead. Pastor-Satorras and
Vespignani [44] studied viral propagation for random power-law networks,
and showed low or non-existent epidemic thresholds, meaning that even an
agent with extremely low infectivity could propagate and persist in the net-
work. They use the “mean-field” approach, where all graphs with a given
degree distribution are considered equal. There is no particular reason why
all such graphs should behave similarly in terms of viral propagation. In a
recent work, Castellano and Pastor-Satorras [8] empirically argue that some
special family of random power-law graphs have a non-vanishing threshold
under the SIR model in the limit of infinite size, but provide no theoretical
justification.

Newman [43; 42] mapped the SIR model to a percolation problem on
a network and studied thresholds for multiple competing viruses on special
random graphs. Finally, Chakrabarti et.al. [10] and Ganesh et.al [19] gave
the threshold for the SIS model on arbitrary undirected networks. Hence,
none of the earlier work focuses on epidemic thresholds for arbitrary virus
propagation models on arbitrary, real graphs.

2.2 Information Diffusion

There is a lot of research interest in studying dynamic processes on large
graphs, (a) blogs and propagations [23; 32; 29; 48], (b) information cas-
cades [6; 20; 22; 21; 54] and (c) marketing and product penetration [49; 35].
Competitive cascades have been studied in [45; 47]. Various optimization
problems have also been studied on such processes like influence maximiza-
tion [29; 12; 50] and finding effectors [34]. These dynamic processes are all
closely related to virus propagation, with many directly based on epidemi-
ological models [5; 29] e.g. the award-winning linear-cascade model [29] is a
special case of our model : specifically it is essentially a SIR model with δ = 1
and all our results carry through.
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Table 1 Common Terminology

Term Definition

VPM virus-propagation model
NLDS non-linear discrete-time dynamical system
β attack/transmission probability over a contact-link
δ healing probability once infected
γ immunization-loss probability once recovered (in SIRS)

or vigilant (in SIV, SEIV)
ε virus-maturation probability once exposed hence, 1− ε is

the virus-incubation probability
θ direct-immunization probability when susceptible
A adjacency matrix of the underlying undirected contact-

network
N number of nodes in the network
λ1 largest (in magnitude) eigenvalue of A
s effective strength of a epidemic model on a graph with

adjacency matrix A

2.3 Cyber-physical infrastructures

Cascade models have also been applied to real-world networks to understand
network robustness in cyber-physical infrastructures, i.e., the ability of a net-
work to continue it’s function in light of failures. The exact nature of a net-
work’s “function” varies from network-to-network and is typically determined
during their design phase. Models related to the spread of disease–similar to
those modeled herein–have been used to analyze the robustness of networks
against node failures, for instance, see Chakrabarti et al. [9]. Another such
work is Buldyrev et al. [7], which explores cascading failures in coupled power
and data networks. Their model is based on a percolation model common in
statistical physics, and can be shown equivalent to the SIR model we describe
later in the paper.

3 Problem Formulation

Table 1 and Table 2 list common terminology and describe some of the epi-
demic models we will be using in the paper. We use the term ‘cascade model’
and ‘virus propagation model’ interchangeably in the paper. We next state
formally the problem we address in the paper:

Problem 1 Epidemic Threshold

Given: A undirected unweighted graph G, and a virus propagation model
(VPM) and its parameters (e.g. β and δ for SIR).

Find : A condition under which will an infection will die out and not cause
an epidemic on the graph.
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Table 2 Some Virus Propagation Models (VPMs)

Model Description

SIS ‘susceptible, infected, susceptible’ VPM - no immunity,
like flu

SIR ‘susceptible, infected, recovered’ VPM - life-time immu-
nity, like mumps

SIRS VPM with temporary immunity
SIV ‘susceptible, infected, vigilant’ VPM - immuniza-

tion/vigilance with temporary immunity
SEIR ‘susceptible, exposed, infected, recovered’ VPM - life-

time immunity and virus incubation
SEIV VPM with vigilance/immunization with temporary im-

munity and virus incubation

4 Results

The epidemic threshold is usually defined as the minimum level of virulence
to prevent a viral contagion from dying out quickly [2; 25; 3; 31]. In order to
standardize the discussion of threshold results, we express the threshold in
terms of the normalized effective strength, s, of a virus which is a function
of the particular propagation model and the particular underlying contact-
network. So we are ‘above threshold’ when s > 1, ‘under threshold’ when
s < 1 and the threshold or the tipping point is reached when s = 1. The
effective strength s can be thought of as the basic reproduction number R0

frequently used in epidemiology [25; 2]. It (s) is then very roughly, the “net”
generalized R0 for the virus model and an arbitrary graph and is the quantity
which determines the tipping point of an infection over a contact-network.
Our main result is:

Theorem 1 (G2-threshold theorem) For any virus propagation model
(satisfying our general initial assumptions; see Section 5 for details) oper-
ating on an arbitrary undirected graph with adjacency matrix A and largest
eigenvalue λ1, the virus will get wiped out if:

s < 1 (1)

where, s (the effective strength) is:

s = λ1 · CVPM (2)

and CVPM is an explicit constant dependent on the virus propagation model.
Hence, the tipping point is reached when s = 1.

Proof We give a roadmap in the next section and a detailed proof in the
Appendix. ut

Firstly, note that our result separates out the effect of the network and the
VPM. Secondly, our result subsumes older results on (a) contact-networks,
and (b) VPMs as special cases. Results on contact-networks like cliques (ev-
erybody contacts everybody else: λ1 = N − 1, N is the number of nodes in
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Table 3 Threshold Results for Some Models.

Models Effective Strength (s) Threshold
(tipping
point)

SIS, SIR, SIRS, SEIR s = λ1·
(
β
δ

)
s = 1SIV, SEIV s = λ1·

(
βγ

δ(γ+θ)

)
SI1I2V1V2 (∼ H.I.V.) s = λ1·

(
β1v2+β2ε
v2(ε+v1)

)
SIS (susceptible/infected/susceptible) has no immunity (like flu), SIR (suscepti-
ble/infected/recovered) has permanent immunity (like mumps), SIRS has tempo-
rary immunity (like pertussis) while SEIR (susceptible/exposed/infected/recovered)
has additional virus incubation and SI1I2V1V2 has been used to model some
H.I.V. infections [2]. SEIV and SIV are two useful generalizations. β is the at-
tack/transmission probability over a contact link, δ is the healing probability, γ is
the immunization-loss probability, (1− ε) is the virus incubation probability and θ
is the direct-immunization probability when susceptible (see Figure 2). Our result
is a general one and these models just highlight its ready applicability to standard
VPMs in use.

the graph), random Erdős-Rényi graphs with expected degree d (λ1 = d),
‘homogeneous’ graphs [30], power-law/scale-free graphs [44], structured hi-
erarchical (near-block-diagonal) topologies [26] (people within a community
contact all others in this community, with a few cross-community contacts)
etc. are special cases. Likewise, all standard virus propagation models [25; 16]
are specific instantiations of the generalized model used in our theorem (see
Figure 2; more later).

Table 3 lists a few of our threshold expressions after applying our result
on some standard epidemic models. The popular models listed include SIS
(no immunity, like flu, Susceptible-Infected-Susceptible), SIR (permanent im-
munity, like mumps, Susceptible-Infected-Recovered), SIRS (temporary im-
munity, like pertussis), SEIR (virus incubation in addition to permanent
immunity) etc. (note that models like SI inherently don’t have an epidemic
threshold as all nodes will eventually get infected on any graph - hence our
work doesn’t apply to them).

Table 3 also lists our SEIV model (Susceptible-Exposed-Infected-Vigilant)
which itself generalizes almost all models from [25] (SIS with ε = 1, γ = 1, θ =
0; SIR with ε = 1, γ = 0, θ = 0; SIRS with ε = 1, θ = 0 and so on). Using

our proof, we get that the effective strength for SEIV is s = λ1 · βγ
δ(θ+γ) (as

before the virus dies out if s < 1). Note that this implies that increasing β
(the attack probability) strengthens the virus. At the same time, decreasing
the healing probability δ also strengthens the virus. Finally, decreasing θ
(the direct immunization probability) and increasing γ (the immunization
loss probability) also makes the virus stronger. All of these fit with intuition
- in fact, the usefulness of our result is partly in enabling us to see these
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complex effects on the virus strength very clearly. We discuss some subtler
implications later in Section 7. We discuss our terminology, general model
and proof sketch next.

5 Proof Overview

We first construct a generalized model (S*I2V*- arbitrary number of suscep-
tible and vigilant states, two infectious states) that is powerful enough to
generalize all the practical VPMs (and more) and satisfies our very general
assumptions, while still being mathematically tractable (Figure 2). We then
approximate our general model using a discrete time non-linear dynamical
system and transform the tipping point question into a stability problem
of the dynamical system at an appropriate equilibrium point. We give the
overview and roadmap here. As mentioned before, the full proof can be found
in the Appendix.

5.1 Our Terminology

Note that any VPM has some states and the choice of which states to include
in a model depends on the particular contagion characteristics. Yet, we can
think of every model as having states essentially in any of the following
fundamental broad classes:

1. Susceptible Class: Nodes in such a state can get infected by any neigh-
boring node (in the contact-network) who is infectious.

2. Infected Class: In a state of this class, the node is infectious in the sense
that it is capable of transmitting the infection to its neighbors. Note
that each such state will have a transmissibility parameter (e.g. β in the
SIR model for the infectious state I). Thus this can include models with
transmissibility parameter = 0 i.e. they are ‘exposed’ but not infectious
(e.g. the E state in the SEIR model is a state which is in the Infected
class in the sense that it can potentially cause infections but is not by
itself infectious).

3. Vigilant/Vaccinated Class: Nodes in any of the states in this class cannot
get infected nor can they potentially cause infections. States like R in SIR
(the recovered/died state where the node gets permanent immunity/dies
and hence does not participate in the epidemic further), M in MSIR (the
passive immune state), etc. are conceptually of the Vigilant type.

5.2 Our General Model

Using our terminology above, we can now describe the generalized model
we used in Theorem 1: S*I2V* (arbitrary number of susceptible and vigi-
lant states, two infectious states). As our general characterization, S*I2V*is
powerful enough to seamlessly capture all the practical models (and more)
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S1 S2 . . .

‘Susceptible’

I1 I2

‘Infected’

V1 V2 . . .

‘Vigilant’
S E

I

V

β

θγ

ε

δ

S I

R

β

δ

Endogenous
Transitions

Exogenous Transitions
(depends on neighbors)

Endogenous
Transitions

Endogenous
Transitions

Fig. 2 State Diagram for a node in the graph in our generalized model S*I2V*- it
is not a simple Markov chain. There are three classes (types) of states - Susceptible
(healthy but can get infected), Infected (capable of transmission) and Vigilant
(healthy and can’t get infected). Within-class transitions not shown for clarity.
Red-curvy arrow indicates exogenous i.e. graph-based transition affected only by
the neighbors of the node, all other transitions are endogenous (caused by the
node itself with some probability at every time step). (Left Inset) Special case:
Transition diagram for the SIR (Susceptible-Infected-Recovered) model. (Right
Inset) Another special case: Transition diagram for the SEIV (E stands for exposed
but not infectious) model. SEIV itself generalizes almost all models from [25] (SIS
with ε = 1, γ = 1, θ = 0; SIR with ε = 1, γ = 0, θ = 0; SIRS with ε = 1, θ = 0 and
so on).

like SIS, SIR, SIRS, SEIR, SERIS, MSIR, MSEIR etc. [25; 16], including
H.I.V. [2], while being tractable enough to yield simple threshold equations.
Figure 2 shows the state diagram under S*I2V*for a node in the contact-
network together with the assumptions on the transitions. The red-curvy ar-
row indicates exogenous (graph-based) transition caused by infectious neigh-
boring nodes while all other transitions are endogenous, caused by the node
itself with some probability. We have shown only cross-class transitions and
their types. We make two assumptions:

1. Infection through Neighbors: The only way to get infected is through your
neighbors i.e. there is no path to a state in the Infected class from a state
in the Susceptible class composed solely of endogenous transitions.

2. Starting Infected State: For the few models that have more than one
infectious state, any exogenous (graph-based) transition always results in
a transition from a state in the Susceptible class to the I1 state. Note
that this assumption is trivially obeyed for a vast majority of models
(with only one infected state).

Figure 2 (Left Inset) shows the popular SIR model as an instantiation of our
general model S*I2V*. Also, Figure 2 (Right Inset) shows an instantiation in
the form of our SEIV model (Susceptible-Exposed-Infected-Vigilant).Figure 3
shows the generalization hierarchy for some common epidemic models and
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S*I2V*

. . . . . .

MSEIV

MSEIR

SEIV

SEIR

SIV

SIRS

SIR SIS

SEIS

MSEIS

. . . . . .

Fig. 3 Virus Propagation model hierarchy (actually, lattice) for some standard
models including SIRS (temporary immunity), SIV (vigilance, i.e., pro-active vac-
cination); SEIV (includes the ‘exposed but not infectious’ state, and temporary
vigilance); MSEIR (with the passive immune state M); and our main generaliza-

tion S*I2V*. The brown colored nodes denote standard VPMs found in literature
while the blue colored nodes denote our generalizations. Each VPM is a general-
ization of all the models below it.

our main generalization S*I2V*. The brown colored nodes denote standard
VPMs found in literature while the blue colored nodes denote our general-
izations. Each VPM is a generalization of all the models below it e.g. SIV is
a generalization of SIRS, SIR and SIS.
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5.3 Proof Sketch

We define the vector Pt such that it specifies the state of the system at
time t; the exact definition will differ from model to model but it effectively
encodes the probability of each node in the graph of being in any given state
at time t. Suppose the virus-propagation model has m (s1, s2, . . . , sm) states
(e.g. m = 3 for the SIR model with states s1 = S, s2 = I and s3 = R) and it
operates on a graph of N nodes. Consider then a column vector Pt ∈ <m·N×1,
which captures the probability of each node being in any of m states at a
given time t. Specifically:

Pt = [Ps1,1,t, Ps1,2,t, . . . , Ps1,N,t, Ps2,1,t, . . . , Psm,N,t]
T

(3)

where, Psi,j,t is the probability that node j is in state si at time t. A Non-
Linear Dynamical System (NLDS) can be represented by Pt+1 = g(Pt) where
g is some non-linear function operating on a vector. The function g in our
case is large and complicated. The NLDS equation essentially tracks the
evolution of the vector Pt over time. An equilibrium point (also called a
fixed point) of the system is the state vector (i.e. some particular P) which
does not change. Thus at the equilibrium point Pt+1 = Pt = x. Intuitively,
the tipping point for any model then deals with analyzing the stability of the
corresponding NLDS at the point when none of the nodes in the graph are
infected, because otherwise the infection can still spread. If the equilibrium
is unstable, a small “perturbation” (physically in the form of a few initial
nodes getting infected) will push the system further away (which physically
means more and more nodes will get infected leading to an epidemic). But
if the equilibrium is stable, the system will try to come back to the fixed
point without going “too-far” away, in effect, “controlling the damage”. At
threshold, the tendencies to go further away and come-back will be the same.
In other words, the equilibrium is stable below the threshold and is neutral
at the tipping point. From dynamical-system literature, we know how to
relate the stability of the system at the equilibrium point to the spectrum of
the Jacobian matrix at that point (i.e. 5g(x)). We eventually reduced the
requirement on the eigenvalues of 5g(x) for any virus propagation model to
a simple condition on the eigenvalue of the adjacency matrix. This condition
translates into the effective strength of the virus under the model. The reason
we can reduce the condition to one on the adjacency matrix is due to the
special structure of the virus models, which was captured by the S*I2V*model
described before. See the Appendix for the full proof.

6 Experiments

We performed computer simulation experiments on two large networks topolo-
gies, to demonstrate our result. All the different virus propagation models
were implemented as a discrete event simulation in C++. We ran each sim-
ulation for 1000 time ticks and took the average of 100 runs. Initially, 10
nodes were infected with the virus and we then let the propagation take over
according to the particular model. The datasets we used were:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4 Simulation Results on the PORTLAND graph, all values averages over 100
runs. (a),(b),(c) Plot of Infective Fraction of Population vs Time (log-log) for
SIR, SEIR, SIRS and SEIV models. Note the qualitative difference in behavior-
two curves under (green) the threshold and two curves above (red) the threshold.
(d),(e),(f) “Take-off” plots, Footprint (see Section 6) vs Effective Strength (lin-
log) for SIR, SEIR, SIRS and SEIV models. The tipping point exactly matches our
prediction (s = 1) in all cases.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 Simulation Results on the AS-OREGON graph, all values averages over 100
runs. (a),(b),(c) Plot of Infective Fraction of Population vs Time (log-log) for
SIR, SEIR, SIRS and SEIV models. Note the qualitative difference in behavior-
two curves under (green) the threshold and two curves above (red) the threshold.
(d),(e),(f) “Take-off” plots, Footprint (see Section 6) vs Effective Strength (lin-
log) for SIR, SEIR, SIRS and SEIV models. The tipping point exactly matches our
prediction (s = 1) in all cases.
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1. AS-OREGON: This network represents the Internet’s Autonomous System
(AS) connectivity derived from public data sets collected by the Ore-
gon Route Views project [11]. It contains 15,420 links among 3,995 AS
peers. The Oregon graph is relevant to studying the robustness of router
networks to worm attacks [33]. More information can be found from
http://topology.eecs.umich.edu/data.html.

2. PORTLAND: It is one of the biggest available physical contact graphs, repre-
senting a synthetic population of the city of Portland, Oregon, USA [41].It
is a social-contact graph containing more than 31 mil. links (interactions)
among about 1.6 mil. nodes (people). The data set is based on detailed
microscopic simulation-based modeling and integration techniques and
has been used in modeling studies on smallpox outbreaks as well as pol-
icy making at the national level [17].

Figure 4 illustrates our result via simulation experiments on PORTLAND. Above
threshold, note the steady state behavior in SEIV and the initial explosive
phase and eventual decay in SIR and SEIR (because the number of suscepti-
ble nodes decrease monotonically). Also note the initial “flat” period in the
time plots for above threshold for the models having the Exposed (E) state,
SEIR and SEIV. This is due to the virus-incubation period because of which
there is an initial delay in number of infected nodes. This then results in
an initial “silent” period after which the epidemic takes-off. As there is no
such incubation period in SIR and SIRS, their plots do not show such silent
periods.

In contrast, under threshold, the number of infections aggressively go
down to zero in all the models. In addition, as our result predicts, the precise
point when the footprint of infection suddenly jumps in all models is at s = 1.
The footprint measures the extent of infection: For models with a steady-state
behavior (SIS/SIRS) it is defined as the maximum number of infections at
any instant till we reach steady-state. For models with monotonous decrease
of susceptibles (and hence without a steady-state, SIR/SEIR) footprint is
the final number of cured/removed nodes from the network at the end of the
infection. Figures 4 (d-f) also demonstrate the simplicity and power of our
result - the only variable we need for determining the epidemic threshold of
the whole system consisting of multiple parameters is the effective strength
(s = λ1 ∗ CV PM ), nothing else.

7 Implications

We first discuss some direct implications of the G2-threshold theorem: the
vulnerability of graphs to epidemics and some unexpected results in specific
models.

7.1 Vulnerability of Networks–focus on eigenvalues

What exactly does the result mean w.r.t. the graph? Intuitively, λ1 (also
known as the spectral radius) of a graph captures the connectivity of the
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(a)Chain(λ1 = 1.73) (b)Star(λ1 = 2) (c)Clique(λ1 = 4)

Increasing λ1

Fig. 6 Why λ1 matters more than number of edges E: changing connectivity
and vulnerability of graphs with changing λ1. The clique (largest λ1) is the most
vulnerable. Note that E is not enough: star and chain have the same number of
edges (E = 4) but the star is intuitively more vulnerable, as our result also says (it
has a higher λ1).

(a) (b)

Fig. 7 Counter-intuitive results - neither Incubation rate ε or Immunity-loss rate
affects the threshold. (a) ‘Take-off’ plot for the SEIR model (a special case of SEIV)
on the PORTLAND graph (lin-log scale). All three curves are on top of each other.
(b) ‘Take-off’ plot for the SIRS model (a special case of SEIV) on the PORTLAND
graph (lin-log scale) - higher means more infections (increasing with the loss of
immunization γ). Note that in both the cases it does not affect the threshold (the
tipping point is still at effective strength s = 1). All values are averages over 100
runs.

graph. More connected the graph is, more vulnerable it is to an epidemic by
a virus (see Figure 6). Our threshold results suggest that an arbitrary graph
behaves in the same way to a λ1-regular graph (both will have the same λ1).
The entire dynamics of the epidemic may not be captured by λ1 completely,
but the threshold is solely dependent on λ1 (apart from parameters of the
VPM). By making the relation between the graph and threshold explicit, our
result has many consequences for the vulnerability of real, complex networks
as well. For example, our result explains the observed vulnerability of ‘small-
world’ networks [52]: their λ1 is relatively high compared to a regular graph
with the same number of nodes and edges, due to the presence of shortcuts.
Also, previous results have shown that the epidemic threshold for the SIS
model in case of random scale-free networks like the Internet is vanishingly
small as the size N of the network increases [44; 1]. This is a corollary of
our result: When a power-law graph grows (N →∞), the largest eigenvalue
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grows with the maximum degree [13], which also grows to infinity, and thus
the threshold approaches zero.

7.2 Counter-intuitive Results

Apart from the dependence of the threshold on λ1, it is instructive to note un-
expected results in some specific models. The SEIR, SIRS and SEIV models
serve well to demonstrate the effect of virus-incubation and direct-immunization.
See Figure 7. The threshold in SEIR surprisingly does not depend on the
virus-incubation probability: the parameter ε, in effect, only delays/speeds-
up the achievement of the threshold, not what the threshold itself is. Simi-
larly, the threshold in SIRS does not depend on γ. Also, from the threshold
equation of SEIV (Table 3), we can infer that lowering the rate of loss of
immunity i.e. having a smaller γ (say due to better hygiene) decreases the
effective strength s (and makes it harder for the virus to cause an epidemic)
only so long as there is a mechanism to give a node direct immunity i.e.
having a non-zero θ (say by using a vaccine) before an infection (in the Sus-
ceptible state) instead of after (in the Recovered state). Satisfyingly, this fits
well with the old adage ‘Prevention is better than Cure’.

8 Impact

Our results can be fundamental to a wide-range of applications. We men-
tioned broader impact in § 1 before. Here we briefly discuss some immediate
applications in epidemiology and cyber-physical infrastructures.

8.1 Effective Immunization

Given the linear dependence on λ1 of our threshold, we can propose a sim-
ple immunization goal. For any virus, remove (immunize) those nodes whose
removal will decrease the λ1 value the most (so that the resultant infection
falls below threshold and dies out) e.g. immunize teachers and kindergarten
children first to control the epidemic. A lot of work targets immunizing high-
degree nodes in scale-free networks [14] which, while a good idea, is not
optimal: just concentrating on high-degree nodes will miss those low-degree
nodes which are good “bridges” and can have an important influence on
decreasing λ1 when immunized. For example, intuitively, the sole common
friend between two disparate yet internally well-connected groups (like say
between scientists and movie celebrities) can have a huge impact in the out-
break of a disease even if (s)he knows only a few people in each community.

8.2 Evaluating ‘What-if’ Scenarios

Our result can also help quickly determine the result of plausible situations
e.g. is there a danger of an epidemic if the virus is twice (or half) as infectious
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(virulent)? This can then feed into policy decisions for controlling epidemics,
like imposing restrictions on travel so as to not increase the λ1. Policy makers
can assume any graph model which best captures the contact behavior of the
population and still use our threshold result to guide immunization policies.

8.3 Accelerating Simulations

Similarly, we can considerably simplify expensive epidemiological simulations
as well. For example, running a typical simulation with one set of parameters
of a flu epidemic on a population of size 33 million (∼ size of the state of
California) takes about 2 days on a cluster of 50 machines [4]. Using our
result, we can eliminate parameters which do not affect the effective strength
of the contagion and also quickly identify parameter spaces where simula-
tions would be useful (i.e. above threshold). Clearly, the main task of such a
testing will be eigenvalue computations. For this purpose, there are already
very efficient algorithms like Lanczos for sparse graphs which take 2-5 mins
for networks of millions. Moreover, structured topologies like cliques, block-
diagonal matrices lend themselves to even faster eigenvalue computations,
making it very easy to apply our result to real world simulations.

8.4 Applications to Computer Networking

As mentioned in Section 2, the epidemic threshold can be applied to a num-
ber of network robustness scenarios in cyber-physical infrastructures. For
example, the Kademlia DHT [37] is used in a number of P2P networks–such
as BitTorrent–to form a decentralized P2P overlay and lookup table. In par-
ticular, Mainline BitTorrent [53] implements a version of Kademlia as an
alternative to the typical centralized tracker.When a BitTorrent user queries
the system for a particular torrent file, it is the DHT’s responsibility to re-
turn the torrent file (i.e., BitTorrent swarm bootstrap information). Hence,
using our result, the network overlay structure of the DHT–in particular,
it’s eigenvalue–may be used to evaluate the data replication necessary to
guarantee the torrent file is reachable.

9 Conclusion

In summary, we studied the problem of determining the epidemic threshold
given the virus propagation model and an underlying arbitrary undirected
unweighted graph. Intuitively, the answer should depend both on the graph
and the propagation model. Earlier results have focused on either special
cases of graphs or special models. In this paper, we give a formula for the
epidemic threshold which shows:

1. De-coupling : The effect of the topology and the propagation model on
the threshold is clearly de-coupled,

2. Arbitrary Topology : The effect of the undirected underlying topology is
determined only by λ1 (the largest eigenvalue of the adjacency matrix),
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3. Arbitrary VPM : The effect of the virus propagation model is determined
by a model dependent constant.

Thus, all previous epidemic threshold results are specific instantiations of our
G2-threshold theorem. Our results can be used for forecasting and estima-
tions in ‘what-if’ scenarios, for control and manipulation of propagation and
related dynamical processes (immunization, marketing policies etc.). More-
over, our result can be easily extended to handle even more elaborate set-
tings such as (a) time-varying topologies (extending the SIS-only results of
[4; 46]), and (b) multiple competing diseases (extending the random power-
law-graphs-only results of [43]).

APPENDIX

We give the full proof of Theorem 1 here.

A Notation

Recall that we are dealing with the S*I2V* generalized model - it has two states
I1 and I2 in the Infected class. To simplify notation, we refer to state I1 as E (the
‘infection entrance state’) and I2 as the I state in the proofs. The state E has a
transmission probability of β1 and the state I has a transmission probability of β2.
The states E and I here should be thought as to mean general infected states of
our model and not in the sense of the specific E and I states in epidemic models
like SEIR, SEIV etc. We also refer to the exogenous transitions as graph-based
and endogenous transitions as internal interchangeably. Table 4 gives some of the
additional notation we will be using in our description of the proof.

Table 4 Additional Notation and Symbols used in the proofs

Symbol Definition

m total number of states in the model
q total number of states in the Susceptible and Vigilant classes

of the model; hence m = q + 2
w total number of states in the Susceptible class of the model
S1, S2, . . . , Sw general states in the Susceptible class
E, I general states in the Infected class
αKU probability (constant and given) of transition from state K to

state U
β1 transmission probability for state E
β2 transmission probability for state I
ζi,t(E, I) probability that a node i does not receive any infections from

E and I at time t
x the fixed point vector our NLDS corresponding to when no node

is in any of the Infected class states
p∗Sy

(same for each node) probability of being present in the Sy state
at x

J Jacobian matrix of the NLDS computed at x
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B System Equations

We can develop the system equations i.e. explicitly specify the non-linear function
g for the NLDS based on the transition diagram of the model. As stated earlier
in Section 5.2 we assume that infections are received only from infected neighbors
i.e. those in states E and I the Infected class of states. Firstly, let’s calculate the
probability that a node i does not receive any infections in the next time step (call
it ζi,t(E, I), E, I denotes that an infection is passed only from a neighbor in the E
or I states). No infections are transmitted if:

– Either a neighbor is not any of the infected states E and I
– Or it is in state E and the transmission fails with probability 1− β1
– Or it is in state I and the transmission fails with probability 1− β2

Since we assume infinitesimally small time steps (∆t→ 0), multiple events can be
ignored for first-order effects in the time step. Also, assuming the neighbors are
independent, we get:

ζi,t(E, I) =
∏

j∈NE(i)

(PE,j,t(1− β1) + PI,j,t(1− β2) + (1− PE,j,t − PI,j,t))

=
∏

j∈{1..N}

(1−Ai,j(β1PE,j,t + β2PI,j,t)) (4)

where NE(i) is the set of neighbors of node i in the graph.
Also, the sum of probabilities of being in all the possible states for each node i

should equal 1. Hence,

∀i,t
∑
K

PK,i,t = 1 (5)

We can now write down the system equations as follows. A node i will be in
any particular state Sy of the Susceptible class at time t+ 1 if:

– Either it was in Sy at time t and stayed in state Sy i.e. it did not receive any
infections from its neighbors and it did not change state internally from Sy to
any other state

– Or it was in some other state U and changed state internally from U to Sy

Hence, the probability of node i being in Sy where Sy is any state in the
Susceptible class at time t+ 1 is:

∀y = 1, 2, . . . , w PSy,i,t+1 =
∑
K 6=Sy

αKSyPK,i,t+PSy,i,t

ζi,t(E, I)−
∑

K 6=E,Sy,I

αSyK


(6)

Similarly, for the E state:

PE,i,t+1 =
∑

K 6=S1,S2,...,Sw

αKEPK,i,t +
w∑
y=1

PSy,i,t (1− ζi,t(E, I)) (7)

and for any other state U 6= {S1, S2, . . . , Sw, E}:

PU,i,t+1 =
∑
K

αKUPK,i,t (8)

As discussed earlier (Equation 3), we can now define a probability vector Pt by
“stacking” all these probabilities which will completely describe the system at any
time t and evolve according to the above equations. Note that the above equations
are non-linear and naturally define the function g for the NLDS Pt+1 = g(Pt).

We have the following theorem about NLDS stability at a fixed point:
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Theorem 2 (Asymptotic Stability, e.g. see [27]) The system given by Pt+1 =
g(Pt) is asymptotically stable at an equilibrium point P = x, if the eigenvalues of
J = 5g(x) are less than 1 in absolute value, where,

Ji,j = [5g(x)]i,j =
∂gi
∂gj
|P=x

Hence, next we compute the fixed point we are interested in and the Jacobian
of our NLDS at that point.

C Fixed point

S1 S2
. . .

‘Susceptible’

V1 V2
. . .

‘Vigilant’

Endogenous Transitions

Fig. 8 State Diagram for any node in the graph at the fixed point when
no node is present in a state in the Infected class. Only cross-class edges
are shown. Note that it is now a simple Markov chain with a unique
steady state probability.

We are interested in the stability of the equilibrium point (i.e. where Pt+1 =
Pt(= x)) of the NLDS which corresponds to when no one is infected. Only the
transition from the Susceptible class states towards the Infected class states are
graph-based (and can happen only when at least one of the nodes is in any of the
Infected states), so the state-diagram for each node will be a simple Markov chain
(call it MCSV ) consisting of the Susceptible and Vigilant states (see Figure 8). Note
now there are no graph-based effects, hence each node is independent of others and
will converge to steady state probabilities corresponding to the Markov chain. The
steady state vector π∗ (size q×1, where q is the number of states in the Susceptible
and Vigilant classes) which will be the same for each node can be computed from
the following equations from standard Markov chain analysis:

π∗T TranMCSV = π∗ &

q∑
i=1

π∗i = 1 (9)

Hence π∗ is a probability vector and is the left eigenvector corresponding to
eigenvalue 1 of the stochastic matrix TranMCSV of the Markov chain MCSV . The
full (m × 1) probability vector p∗ for each node at this steady state will have the
entries in π∗ for states in the Susceptible and Vigilant classes and 0 for all states
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in the Infected class. The fixed point of the global original NLDS x can be finally
represented as:

x =


p∗

p∗

...
p∗

 (10)

where p∗ is repeated N times (once for each node in the graph). Let p∗Sy
be the

steady state probability value in the vector p∗ corresponding to the Sy state. In
other words, each node will have a probability of p∗S of being present in the Sy state
at the fixed point. Also define,

p∗S =
w∑
y=1

p∗Sy
(11)

i.e. p∗S is the total probability of each node at the fixed point of being present in
any of the states of the Susceptible class.

D The Jacobian

We know from Theorem 2 that x is stable if the eigenvalues of J = 5g(x) are less
than 1 in absolute value. From the definition of J we can see that it is a m·N×m·N
matrix with m (for each state) square blocks of size N ×N each (corresponding to
every node in the graph). We can calculate J to be (states have been mentioned on
the top and side for ease of exposition and I is the identity matrix of size N ×N):

Sy K . . . E I

Sy (1−
∑
K 6=Sy,E

αSyK)I αKSy I . . . αESy I− p∗Sy
β1A αISy I− p∗Sβ2A

...
. . .

U αSyU I αKU I . . . αEU I αIU I
...

. . .

E αSyEI αKEI . . . αEEI + p∗Sβ1A αIEI + p∗Sβ2A

I αSyII αKII . . . αEII αIII

where K is any state 6= {E, I} and U is any state 6= {S1, S2, . . . , Sw, E, I}.
Recall the properties we are assuming for the epidemic models discussed in Sec-

tion 5.2 (also see Figure 2). Crucially, they imply ∀K 6=E,I αKE = 0 and ∀K 6=E,I αKI =
0. Hence J reduces to:

Sy K . . . E I

Sy (1−
∑
K 6=Sy,E

αSyK)I αKSy I . . . αESy I− p∗Sy
β1A αISy I− p∗Sβ2A

...
. . .

U αSyU I αKU I . . . αEU I αIU I
...

. . .

E 0N,N 0N,N . . . αEEI + p∗Sβ1A αIEI + p∗Sβ2A

I 0N,N 0N,N . . . αEII αIII

where 0N,N is a N ×N matrix with all zeros.
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E Eigenvalues of the Jacobian

Note that J is very structured and can be written as:

J =

[
B1 B2

02N,(m−2)N B3

]
(12)

where B1, B2 and B3 are matrices of size (m− 2)N × (m− 2)N , (m− 2)N × 2N
and 2N × 2N respectively. B3 corresponds to the E and I rows and columns of J
i.e.:

B3 =

[
αEEI + p∗Sβ1A αIEI + p∗Sβ2A

αEII αIII

]
(13)

B1 and B2 are defined similarly. Consider any eigenvector v (size mN × 1) and
corresponding eigenvalue λJ of J . We can write v as being composed of vector v1

of size (m− 2)N × 1 and vector v2 of size 2N × 1 i.e:

v =

[
v1

v2

]
(14)

Also x and λJ satisfy the eigenvalue equation:

Jv = λJv (15)

Substituting from Equations 12 and 14 we get:[
B1 B2

0 B3

] [
v1

v2

]
= λJ

[
v1

v2

]
(16)

Equation 16 implies the following the two relations:

B1v1 + B2v2 = λJv1 (17)

B3v2 = λJv2 (18)

From Equation 18 we can infer that precisely one of the following holds:

1. v2 = 0
2. v2 is the eigenvector of B3 (and consequently λJ is the matching eigenvalue of

B3)

If v2 = 0, Equation 17 reduces to

B1v1 = λJv1

wherein again, either v1 = 0 or λJ is an eigenvalue of B1. The condition v1 = 0
is not meaningful as then v = 0 (v is an eigenvector of J implies v is non-zero).
Therefore the eigenvalues of J are given by the eigenvalues of B1 (with v2 = 0)
and the eigenvalues of B3.

E.1 Eigenvalues of B1

From the expression for J derived in Section D, note that:

B1 = T⊗ I (19)

where ⊗ is the Kronecker product of two matrices and

T =


(1−

∑
K 6=Sy,E

αSyK) αKSy . . .

...
...

...
αSyU αKU . . .

...
. . .

...

 (20)
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We know from matrix algebra [28] that if C = D⊗E then Cλ = Dλ⊗Eλ, where Cλ

denotes a diagonal matrix with eigenvalues of the matrix C on the diagonal. But
Iλ = I, hence the eigenvalues of B1 are the same as the eigenvalues of T (although
with repetition). In other words, eigenvalues of T are eigenvalues of J as well.

E.2 Eigenvalues of B3

Let u =

[
u1

u2

]
be a corresponding eigenvector of B3 (u1 and u2 are of size N × 1

each and as the eigenvalues of B3 are also eigenvalues of J , we use λJ for an
eigenvalue of B3). Hence, the standard eigenvalue relation B3u = λJu requires
the following equations to be satisfied:

(αEEI + p∗Sβ1A)u1 + (αIEI + p∗Sβ2A)u2 = λJu1 (21)

αEIu1 + αIIu2 = λJu2 (22)

Using Equation 22, we can compute u1 in terms of u2 as:

u1 =

(
λJ − αII
αEI

)
u2 (23)

Substituting it back into Equation 21 we get:(
(αEEI + p∗Sβ1A)

(
λJ − αII
αEI

)
+ αIEI + p∗Sβ2A

)
u2 = λJ

(
λJ − αII
αEI

)
u2

⇒ (αEE(λJ − αII)I + αIEαEII + (p∗Sβ1(λJ − αII) + p∗Sβ2αEI)A) u2 = λJ (λJ − αII)u2

which finally gives,

Au2 =

(
λ2
J − (αII + αEE)λJ + αIIαEE − αIEαEI

p∗Sβ1(λJ − αII) + p∗Sβ2αEI

)
u2 (24)

Again, Equation 24 tells us that either u2 = 0 or it is an eigenvector for A.
But u2 = 0 ⇒ u1 = 0 ⇒ u = 0 which is not possible. Thus Equation 24 is an
eigenvalue equation for the adjacency matrix A and we are looking for solutions
λJ and u2 such that they satisfy it. Hence,

λA =
λ2
J − (αII + αEE)λJ + αIIαEE − αIEαEI

p∗Sβ1(λJ − αII) + p∗Sβ2αEI

where λA is an eigenvalue of A. This finally gives

λ2
J −λJ (αEE +αII + p∗Sβ1λA) + (αIIαEE −αIEαEI + p∗SλA(β1αII −β2αEI)) = 0

(25)
Thus we have a different quadratic equation (Q.E.) for each eigenvalue λA of A.
Each Q.E. gives us two eigenvalues (possibly repeated) of J .

So, finally, we can conclude the following lemma:

Lemma 1 (Eigenvalues of J ) Eigenvalues of J are given by the eigenvalues of
T (Equations 19 and 20) and the roots of the Q.Es given by Equation 25 for each
eigenvalue λA of A.
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F Stability

We require that all the eigenvalues of J to be less than 1 in absolute value (ac-
cording to Theorem 2). From Lemma 1, we have two cases to handle in enforcing
this:

(C1) All the eigenvalues of T should be less than 1 in absolute value
(C2) All the roots of the Q.Es given by Equation 25 for each eigenvalue λA of A

should be less than 1 in absolute value

F.1 Case C1

Note that this case depends only on the model as the matrix T is independent of
the adjacency matrix A. But T is a stochastic matrix i.e. all the column sums are
equal to 1 - consequently all its eigenvalues are less than 1 in absolute value.

Lemma 2 (Stability C1) All eigenvalues of the matrix T (given by Equation 20)
are less than 1 in absolute value.

F.2 Case C2

As C1 is always true, we need to only ensure case C2. We can prove here the
following:

Lemma 3 (Stability C2) All the roots of the Q.Es given by Equation 25 for each
eigenvalue λA of A are less than 1 in absolute value if:

λ1p
∗
S

(
β1(1− αII) + β2αEI

(1− αII)(1− αEE)− αIEαEI

)
< 1

Proof Let r1 and r2 be the roots of Equation 25 (r1 and r2 can be real or complex
depending on λA). Then we want

|r1| < 1 and |r2| < 1

r1 and r2 are real As the roots are real, λA is such that the discriminant D of
the quadratic equation is greater than zero. In this situation:

|r1| < 1 and |r2| < 1⇒ r1 ∈ (−1, 1) and r2 ∈ (−1, 1) (26)

From the theory of quadratic equations, it is well known (see e.g. [40]) that for
real roots x1 and x2 of a Q.E. f(x) = ax2 +bx+c (with a > 0) to lie in the interval
(−1, 1) the following conditions must be true:

a− c > 0,

a− b+ c > 0,

a+ b+ c > 0.

Intuitively, the first condition forces the product of the roots to be less than 1 while
the last two conditions state that value of f(x) at −1 and 1 should not be “too
small”. In our case, these then translate into:

αIIαEE − αIEαEI + p∗SλA(β1αII − β2αEI) < 1
(27a)

1 + αEE + αII + p∗Sβ1λA + αIIαEE − αIEαEI + p∗SλA(β1αII − β2αEI) > 0
(27b)

1− αEE − αII − p∗Sβ1λA + αIIαEE − αIEαEI + p∗SλA(β1αII − β2αEI) > 0
(27c)
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Equations 27b and 27c can be written as:

λAp
∗
S

(
−β1(1 + αII) + β2αEI

(1 + αII)(1 + αEE)− αIEαEI

)
< 1 (28a)

λAp
∗
S

(
β1(1− αII) + β2αEI

(1− αII)(1− αEE)− αIEαEI

)
< 1 (28b)

respectively. The above equations should be true for any eigenvalue λA of A which
makes D > 0. Recall that we are considering only undirected graphs, hence A is a
symmetric binary (0/1) square irreducible matrix. As a result firstly, all its eigen-
values are real. Secondly, from the Perron-Frobenius theorem [38] the algebraically
largest eigenvalue λ1 of A is a positive real number and also has the largest mag-
nitude among all eigenvalues. Hence if the above equations are true for λA = λ1

we are done. Now note that

(1 + αII)(1 + αEE)− αIEαEI > (1− αII)(1− αEE)− αIEαEI

and that
β1(1− αII) + β2αEI > −β1(1 + αII) + β2αEI

In addition the L.H.S in both equations is positive under λA = λ1. So Equation 28a
is always true if Equation 28b holds (under λA = λ1) i.e.

λ1p
∗
S

(
β1(1− αII) + β2αEI

(1− αII)(1− αEE)− αIEαEI

)
< 1 (29)

As λ1 is the largest eigenvalue both algebraically and in magnitude, under
Equation 29,

1− αIIαEE + αIEαEI − p∗SλA(β1αII − β2αEI)

> 1− αIIαEE + αIEαEI −
(

(1− αII)(1− αEE)− αIEαEI
β1(1− αII) + β2αEI

)
(β1αII − β2αEI)

=

(
(1− αII)2 + αIEαEI

)
β1 + αEI(2− αII − αEE)β2

(1− αII)β1 + αEIβ2
> 0

∴ Equation 27a is also true if Equation 29 holds. Thus the condition for the roots
to be in (−1, 1) when they are real is given simply by Equation 29.

r1 and r2 are complex In this case λA is such that D < 0. Also as Equation 25
has real co-efficients, r1 and r2 are complex conjugate of each other and so |r1| =
|r2| =

√
r1 · r2. But the product of roots x1 and x2 of the equation ax2 + bx+ c = 0

is equal to c/a. Hence we want to enforce c/a < 1. In our case it is

αIIαEE − αIEαEI + p∗SλA(β1αII − β2αEI) < 1

which is exactly Equation 27a. From the above analysis, we already know that it
is true if Equation 29 holds. So, for any eigenvalue λA for which D < 0, the roots
have magnitude less than 1 given Equation 29 is true.

Thus in both cases, whether roots are real or complex, Equation 29 is a sufficient
condition for the roots to have magnitude less than 1. ut

To re-cap we state our result and then give its proof:

Theorem 3 (G2 theorem) For virus propagation models which satisfy our gen-
eral initial assumptions and for any arbitrary undirected graph with adjacency ma-
trix A and largest eigenvalue λ1, the sufficient condition for stability is given by:

s < 1
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where, s (the effective strength) is:

s = λ1 · C

and C is a constant dependent on the model (given by Equation 30). Hence, the
tipping point is reached when s = 1.

Proof Lemma 2 and Lemma 3 ensure cases C1 and C2 and hence together with
Lemma 1 imply that the eigenvalues of the Jacobian J of our general NLDS com-
puted at the fixed point x are less than 1 in magnitude if Equation 29 is true.

∴ using Theorem 2, our general NLDS is stable at its fixed point x if Equa-
tion 29 holds. Recall that x is the point when there no infected nodes in the system
(Appendix C) and that this is the fixed point whose stability conditions determine
the epidemic threshold (Section 5).

∴ finally we can conclude the theorem with

CVPM = p∗S

(
β1(1− αII) + β2αEI

(1− αII)(1− αEE)− αIEαEI

)
(30)

and the effective strength s = λ1 · CVPM. The parameter CVPM is a constant for
a given propagation model while the only parameter involved from the underlying
contact-network is λ1, the first eigenvalue of the adjacency matrix. ut
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