
MeiKe: Influence-based Communities in Networks

Yao Zhang∗ Bijaya Adhikari∗ Steve T. K. Jan∗ B. Aditya Prakash∗

Abstract

Given a social network, how to find communities of nodes
based on their diffusive characteristics? There exist two
important types of nodes, for information propagation:
nodes that are influential (“kernel nodes”), and nodes that
serve as “bridges” to boost the diffusion (“media nodes”).
How to find these nodes and uncover connections between
them? In addition, it is also important to discover the
hidden community structure of these nodes, which can help
study their interactions, predict links and also understand
the information flow in such networks.

In this paper, we give an intuitive and novel

optimization-based formulation for this task, which aims to

discover media nodes as well as community structures of ker-

nel nodes. We prove our task is computationally challeng-

ing, and develop an effective and practical algorithm MeiKe

(pronounced as ‘Mike’). It first obtains media nodes via

a new successive summarization based approach, and then

finds kernel nodes including their community structures. Ex-

perimental results show that MeiKe finds high-quality me-

dia and kernel communities which match our expectations

and ground-truth (outperforming non-trivial baselines by

40% in F1-score). Our case studies also demonstrate the

applicability of MeiKe on a variety of datasets.

1 Introduction

Given a large graph G, possibly learnt from cascade
analysis, can we find communities of bridges and in-
fluential nodes? Diffusion over networks is an impor-
tant phenomenon with many applications such as public
health, social media, and cyber security. The problem
of community detection (i.e. finding cohesive groups
of nodes) has been extensively studied in many fields,
and many algorithms have been proposed. The typical
assumption for communities is that they have denser
internal connectivity and sparser external connectivity
(also called ‘cavemen’ communities) [18]. Such notions
have been relaxed and extended to handle overlapping
structures too [26]. While very useful to understand net-
work topology in general, they may not be ideal to dis-
cover how information propagates, when networks are
actually being utilized for diffusion. Other lines of re-

∗Department of Computer Science, Virginia Tech. Email:
{yaozhang, bijaya, tekang, badityap}@cs.vt.edu.

cent work try to learn influence models at community-
scale, using groups supplied by graph-partitioning al-
gorithms like METIS [17] or extract the structure of
high-degree/celebrity nodes [25]. Instead, in this paper,
we explore community detection by factoring in differ-
ent roles of nodes during the diffusion in a general way
without restrictive assumptions on the process.

Based on just the diffusive properties of the net-
work, we want to discover nodes which are critical for
diffusion (the ‘media nodes’/‘bridges’) and understand
how they connect to celebrities/‘kernels’ and other ordi-
nary nodes. Media nodes bridging celebrities and ordi-
nary nodes may not necessarily have a large number of
connections, making it harder to extract them. Tradi-
tional community detection algorithms usually cannot
uncover this tri-partite structure. Finding this struc-
ture can help in downstream tasks, like viral marketing,
link prediction, immunization and so on. We demon-
strate an example in Figure 1: the left figure is a Twit-
ter retweet network with two communities: technology
and entertainment. Each community has three types
of users: celebrities, media, and other nodes. The
middle figure is the result of community detection ob-
tained from the classical Newman’s modularity-based
algorithm [18]. The right figure is the result obtained
from our algorithm MeiKe. Newman’s algorithm un-
covers communities that are horizontal, which groups
all three types of nodes together. However, our algo-
rithm identifies media nodes, and discovers vertical ker-
nel communities which group celebrities with common
interest. Our contributions include:

• Problem Formulation: We design a novel task
MeiKeCom to find communities of nodes using
diffusive properties. MeiKeCom is an intuitive
and principled optimization-based formulation. To
the best of our knowledge, we are the first to study
such a task under a diffusion setting.

• Effective Algorithms: We develop MeiKe, an ef-
ficient and practical algorithm to identify media
nodes, and kernel communities. We use a variety
of techniques including getting graph summaries.

• Extensive Experiments: We run extensive experi-
ments and conduct case studies on large real-world
networks to demonstrate the effectiveness of our al-
gorithm. It finds high-quality groups, outperform-

(a) Twitter retweet network (b) Result of Newman’s algorithm (c) Result of MeiKe

Figure 1: Our method detects more intuitive structure: (a) an example Twitter retweet network; (b)
communities detected by Newman’s algorithm; (c) ordinary communities (green), media nodes (black),
and kernel communities (red) detected by MeiKe.

ing several non-trivial baselines.

2 Our Formulations

Table 1 lists the main symbols we use in the paper.

Table 1: Terms and Symbols

Symbol Definition and Description

G(V,E,W) graph with the node set V , the edge set E
and the weight set W

wij edge weight in G (prob. that i infects j)
K; l set of kernel communities with |K| = l
Ki; ki kernel community set with ki nodes

K set of all kernel nodes (=
⋃l

i=1Ki)
M ;m set of media nodes with |M | = m

σ(S) downstream effect of a set S
ρ(S) upstream effect of a set S
φ(S) full-stream effect of a set S
φb(a) local effect of edge (a, b) on φ(a)
simM (i, j) Jaccard similarity of node i and j w.r.t M
1(u, v, E) an indicator function representing whether

(u, v) or (v, u) ∈ E
u the right eigenvector of λG

G′(V ′, E′,W ′) graph considering local effects in G
w′ij edge weight in G′

λG (λ′G) the largest eigenvalue of the adjacency ma-
trix of G (G′)

2.1 Preliminaries We assume that our network
G(V,E,W) is a weighted directed graph, where V is
the set of vertices, E is the set of edges, and W =
{wij |(i, j) ∈ E} is the set of edge weights (WLOG, we
assume wij ∈ (0, 1]). wij measures the “strength” of
interaction from i to j e.g. retweets. Now consider a
diffusion process on G, such as the spread of a meme
on a blog-network or a topic on a citation network. In
fact G may have been learnt from observing such a pro-
cess itself. For ease of description, we assume that the
diffusion follows the well-known Independent Cascade
(IC) model [11]. However, our method can be naturally
generalized to a wide variety of cascade style models
like SIR, SIS and others [1], as it leverages the local ef-
fects of diffusion. In the IC model, each infected node
i gets only one chance to infect its healthy neighbor j

independently with probability wij .

2.2 Media nodes In a network G, different nodes
may have different impact on a diffusion process. For
example, there exists a small fraction of nodes that are
influential (‘celebrities’) e.g. users like Barack Obama
who get retweeted many times in Twitter. Several pre-
vious works have studied the problem of finding celebri-
ties and their structures [11, 25]. In addition to celebri-
ties, another type of nodes also plays an important role
in the information diffusion. These nodes need not be
well-connected as celebrities. However, they are will-
ing to get information from various types of nodes, and
also willing to create/push the information to other
nodes [13]. We notice that they can be treated as
“bridges” between plain celebrities and the rest of the
network including other celebrities and normal users,
to boost the diffusion. For example, in the Twitter
retweet network (Figure 1), CNN and TEDchris have
many connections to celebrities (elonmusk, spacex and
TeslaMoters), and they are also followed by the rest
of the network. Once a celebrity posts a tweet, the
tweet can quickly reach these nodes (upstream), and
then effectively propagate to other nodes via these nodes
(downstream). In other words, structurally speaking,
the main observation is that these nodes have both high
upstream effect (of getting influenced) and downstream
effect (of influencing other nodes) during the informa-
tion diffusion. We call these nodes “media nodes”.
Comparison to Role Discovery. The concept of bridge
nodes in general has been studied in previous works
in terms of role discovery [14, 27, 9] (see details in
related work). However, all of above studies assume
that bridge nodes structurally connect to homogeneous
nodes/communities (such as celebrities). In contrast,
our description of media nodes is from the viewpoint of
information diffusion: (a) they can easily get influenced
by celebrities while they also tend to influence many

other nodes; and (b) they bridge heterogeneous nodes
(celebrities and other nodes) as well as homogeneous
nodes (celebrities and celebrities).

So media nodes have the following properties:
Property PM1: Upstream effect of diffusion. The
upstream effect of a node set S on diffusion means its
capability of getting influenced from other nodes, i.e.,
the probability of nodes in S getting infected in general.
Property PM2: Downstream effect of diffusion. The
downstream effect of S on diffusion means its capability
of influencing other nodes, i.e, how many nodes S can
infect if it is a seed set.
Media node set M . A media node set M should
have both high upstream and downstream effect. We
first define upstream and downstream effect of diffusion
formally. We define the upstream effect of a node set
S, ρ(S), as the expected number of infected nodes in
S over all possible seeds uniformly chosen at random,
i.e., ρ(S) =

∑
A⊆V Pr(A)ρA(S), where A is all possible

choices of the seed set and Pr(A) is the probability
of these possible choices (A is uniformly chosen from
|V |, so Pr(A) = 1

2|V |
). ρA(S) is the expected number

of active nodes in set S at the end of the diffusion
process under the IC model, given seed set A. As ρA(S)
measures how many nodes in S will get influenced if A
is a seed set, intuitively ρ(S) measures how likely nodes
in S can be influenced in general. Hence higher ρ(S) is,
the higher upstream effect S has overall.

We define the downstream effect as σ(S). Following
the definition in [11], σ(S) is the expected number of
active nodes in the entire network at the end of the
diffusion process, with S as seeds. It measures how
much influence S can spread over a network (higher
σ(S) is, the higher downstream effect S has).

Given σ(S) and ρ(S), we define φ(S), the full-
stream diffusion effect of S as, φ(S) = σ(S)ρ(S).
Intuitively, φ(S) tells us about the expected “total
usefulness” of a node during diffusion over all possible
spreading cascades. A node having a large expected
influencing capacity may not necessarily have a large
“usefulness”, as its ability to get influenced from others
may still be small. Formally, a media node set is:

Definition 1. (ε-m Media node set) Given an ε ∈ R+

and m ∈ N, any node set M ⊆ V is an ε-m media node
set iff φ(M) > ε and |M | = m.

2.3 Kernel Communities Given a media node set
M , a natural follow-up question to ask is which nodes
have high influence on media nodes? As mentioned
above, there exists a small fraction of nodes that
are influential (‘celebrities’). In this paper, we call
them kernel nodes. We observe that kernel nodes
typically have high out-degree. For example, in Twitter

network, kernel nodes like Obama have millions of people
retweeting but very few people he retweets.

Subsequently, we are interested in communities of
kernels, as we want to study groups of nodes that behave
similarly. Community structure allows us to uncover
the underlying interactions between nodes [6]. First,
it is straightforward to assume ‘kernel communities’
are structurally densely connected [6, 18, 25], as kernel
nodes tend to have high degree. Second, we also want
nodes in each kernel community connect to similar
media nodes. This can help us understand which groups
of nodes have influential pattern similar to media nodes.
We observe kernel nodes that connect to similar media
nodes are related. For example, in Figure 1, three
related accounts elonmusk, spacex, and TeslaMotors,
all connect to media nodes CNN and TEDchris. In sum,
kernel communities should have:
Property PK1: Connectivity among themselves.
Property PK2: Similarity w.r.t. media nodes.
Kernel community set K. First, we use simM (u, v)
to denote how similar are the connections to a media
node set M for u and v. Let us denote NM (i) = {j|j ∈
M, (i, j) ∈ E or (j, i) ∈ E}. Since NM (i) contains all
nodes in M that connect to i, we therefore use Jaccard
similarity between NM (u) and NM (v) to represent the
similarity of u and v w.r.t. M , namely, simM (u, v) =
|NM (u)∩NM (v)|
|NM (u)∪NM (v)| . Let us denote K = {K1, . . . ,Kl} as a

set of kernel communities where each Ki ⊆ V is a kernel
community, K =

⋃l
i=1Ki as a set with all kernel nodes,

1(u, v, E) as an indicator function representing whether
(u, v) or (v, u) ∈ E, and ŵuv as the maximum weight
between u and v. Now we are ready to give the formal
definition of kernel community :

Definition 2. (Kernel community) A set of kernel
communities K = {K1, . . . ,Kl} satisfies: Ki ⊆ V \M ,
Ki 6= Kj, ∀i |Ki| = ki, and for any node u ∈ Ki,
v /∈ Ki, we have

∑
a∈Ki

1(u, a,E)ŵausimM (u, a) ≥∑
a∈Ki

1(v, a, E)ŵvasimM (v, a).

The intuition above is that for any node u ∈ Ki,
the cumulative similarity+connectivity between u and
all nodes in Ki should be stronger than the one between
a node v /∈ Ki and all nodes in Ki. The term
1(u, a,E)ŵau comes from PK1, while simM (u, a) comes
from PK2. Note that two communities can connect
to similar media nodes though they may not be well
connected among themselves.

2.4 Ordinary Nodes We call nodes apart from ker-
nel nodes and media nodes as ordinary nodes. They
typically have more connections to kernel nodes (due to
high degrees of kernel nodes). Hence, we associate ordi-
nary communities to corresponding kernel communities.

Formally, for Ki, its corresponding ordinary Oi are ob-
tained by counting the links from node u ∈ V \ (K∪M)
to Ki. If node u has the highest number of links to
kernel Ki, then u ∈ Oi. Note that for simplicity, we
assume there is no overlap between ordinary communi-
ties. If node u has the same number of links to multiple
kernels, we uniformly at random pick one as its associ-
ated kernel. For example, in Figure 1, jwage has more
connections to elonmusk, spacex and TeslaMotors, so
it belongs to such kernel community.

Figure 2: Structure of K, M , and O.

2.5 Relative structure Given our definitions above,
the structure we want to uncover is shown in Figure 2.
First, according to PK1, K1 has more edges within itself
than to K2 in Figure 2. And an ordinary community
has more connections to one kernel community than to
others (e.g., O1 mainly connects to K1). In contrast,
due to PM1 and PM2, media nodes can bridge between
different kernel communities (homogeneous nodes in
a sense that they are kernels), as well as kernel and
ordinary communities (heterogeneous nodes).

2.6 The MeiKeCom task Under the IC model, we
now define our task, Detecting Media and Kernel
Community (MeiKeCom), as two separate problems:

Problem 1. MeiKeCom-media
Given: Graph G(V,E,W), number of media nodes m.
Find: set M∗ = arg maxM φ(M), s.t. |M | = m.

Problem 2. MeiKeCom-kernel
Given: Graph G(V,E,W), media node set M , l kernel
communities in which each kernel community Ki has ki
nodes.
Find: kernel community set K = {K1, . . . ,Kl},

K∗ = arg max
K

∑
Ki∈K

∑
u,v∈Ki

1(u, v, E)ŵuvsimM (u, v)

s.t. ∀ i, j, |Ki| = ki, Ki 6= Kj , and Ki ⊆ V \M

These problems naturally follow from our defini-
tions. We allow our kernel communities to have over-
laps for flexibility (however, in practice, such overlaps
are small < 5% of the community size). By design there
is no overlap between media and kernel nodes.
Remark 1 [Generality]: Though we assume the diffu-
sion process is under the IC model, MeiKeCom can
be defined easily for other infection models (only the
definition of φ(M) will change).
Complexity. We have the following propositions:

Proposition 2.1. In MeiKeCom-media, finding a
best set M for σ(M) is NP-hard and for ρ(M) is #P-
hard. Also φ(·) is not submodular or supermodular.

Proposition 2.2. MeiKeCom-kernel is NP-hard.

In Proposition 2.1, the #P-hard property can be
proved by a reduction from the counting problem of
s-t connectedness in a directed graph, which is #P-
complete [3]; the NP-hard part is well-known [11]; and
the submodularity/supermodularity can be shown by
two counter-examples. Proposition 2.2 can be proved
by a reduction from the well-known Maximum Clique
problem [10]. Hence, MeiKeCom is very challenging.

3 Our Methods

In this section, we propose a novel multi-stage algo-
rithm, MeiKe (MEdIa KErnel-community detection al-
gorithm), to solve the MeiKeCom task. MeiKe con-
sists of two parts: it first finds M using a merge-based
algorithm, and then detects kernel communities. We
mainly focus on Problem 1, and give an iterative pair-
wise relaxation heuristic for Problem 2. Once we find M
and K, the ordinary communities can be found directly
as mentioned in Sec. 2.4.

3.1 Finding Media Nodes We need to optimize
φ(M) = σ(M)ρ(M) for MeiKeCom-media. σ(M)
can be possibly optimized using influence maximization
algorithms [11]. The metric ρ(M) intuitively relates to
immunization problems such as [23], where the goal is
to remove a set of nodes to maximize the number of
nodes saved. However, both of them separately can
not exactly solve MeiKeCom-media (as also shown in
Table 4 in our experiments). A näıve way is to use
Greedy (an algorithm that successively adds a node to
M with maximum marginal gain of φ(M)). However,
Greedy will involve running Monte-Carlo simulations,
and will cost O(m|V |I(|V |+ |E|)) time (where I is the
simulation time). This is infeasible for large networks.
Hence, we need a faster algorithm.
Main Idea. We propose a novel merge-based approach
instead. The idea is that we merge unimportant edges
successively, maintaining the overall full-stream effect,
such that nodes that remain unmerged (the ‘singleton’
nodes) are ones with highest φ(·). To find such unim-
portant edges, we first look at the local contribution of
each edge (a, b) on φ(a)1. We then merge node-pairs that
have the smallest impact on the overall full-stream ef-
fect. We keep merging node-pairs until there are only m
singleton nodes left, and these nodes are media nodes.
This approach raises three important questions: (Q1)

1φ(a) = φ({a}) (similarly for σ(a) and ρ(a)).

How to quantify the ‘local effect’ of edge (a, b) on φ(a)?
(Q2) How does local effect change when an edge is
merged? (Q3) Which edges to merge such that the over-
all change in full-stream effect is the smallest?
Q1 Local effect. We define the local effect of edge
(a, b) on φ(a) (denoted by φb(a)) as the probability of
b getting infected directly through a. Formally, φb(a) =
ρ(a)wab. Recall that φ(a) = ρ(a)σ(a). Since σ(a) can
be treated as the summation of the probability of each
node getting infected (σ(a) =

∑
i∈V Pr(i gets infected |

a is infected)), φb(a) can be treated as the direct contri-
bution of edge (a, b) towards φ(a). To compute φb(a), a
key question is to obtain ρ(a).

The next proposition shows that ρ(a) is related to
u = [u1, . . . , u|V |]

T , the right eigenvector of the largest
eigenvalue λG, of the adjacency matrix of G. It can be
proved by extending Lemma 6 in [24] to a set of cascade
style models including IC, SIR and SIS on G.

Proposition 3.1. If λG > 1, then for a node a in G,
ρ(a) ∝ ua.

To ensure ua ∈ R+, G needs to be strongly
connected [24]. If not, we can just extract the giant
strongly connected component (GCC) of G and operate
on the GCC. This is because in real networks most of
the nodes lie in the GCC [12]. Moreover, nodes outside
the GCC are unlikely to be media nodes, as they usually
will not have high full-stream effect (at least one of σ(·)
or ρ(·) is small). Note that we only need to do this
for media nodes, and is not required for further steps.
To summarize, using Proposition 3.1, the local effect
of edge (a, b) on φ(a) is proportional to uawab, i.e.,
φb(a) ∝ uawab. For convenience, we construct a new
graph G′(V ′, E′,W ′) to represent the local effect φb(a),
where V ′ = V , E′ = E, and w′ab = uawab (as shown in
Figure 3(Left)).
Q2 Local effect after merging. The next natural
question to ask is, starting from G′, if edge (a, b) is
merged to form a new node c, what should the new
local effects of edges from c to its neighbors be? It is
intuitive to assume that if c is infected in G′, we are
really intending to choose to infect only one of node
a or b (chosen uniformly at random). Hence, consider
a node x that has an edge from a in G′ (see Figure 3
(Left)). If we want to merge a and b to form node c,
then after merging, w′cx = [1

2 (ua + ub)][
1
2wax(1 + wba)].

The first term comes from ρ(c) (which is either ρ(a) or
ρ(b)). The second term comes from a or b spreading
the influence to x (b to x probability is waxwba, and
from a to x is wax). Figure 3 shows other cases (such
as when s and t connect to both a and b). In summary,
the merging process is:

Figure 3: Left: the graph G′ with edge weights to
represent local effects of diffusion for G; Right: the
resulting merged graph with new weights when node
a and node b in G′ are merged into a new node c.

Definition 3. (φ-merge) Let N i(v) (No(v)) denote
the set of in-neighbors (out-neighbors) of a node v. If
the node-pair (a, b) is now merged to a new node c in G′,
then the local effect of edges between c and its neighbors
are:

w
′
nc =

un(1 + wab)wna

2
∀n ∈Ni(a)\Ni(b)

un(1 + wba)wnb

2
∀n ∈Ni(b)\Ni(a)

un[(1 + wba)wnb + (1 + wba)wnb)]

4
∀n ∈Ni(a) ∩Ni(b)

w
′
cn =

ya,b(1 + wba)wan

4
∀n ∈No(a)\No(b)

ya,b(1 + wab)wbn

4
∀n ∈No(b)\No(a)

ya,b[(1 + wba)wan + (1 + wab)wbn]

4
∀n ∈No(a) ∩No(b)

where ya,b = (ua + ub)/2.

Q3 Selecting node pairs to merge. Definition 3
shows how local effects change when edges are merged.
Now let us investigate which node pairs should we merge
such that change in overall full-stream effect is as small
as possible. Note that the small value of w′ab does
not mean the full-stream effect of edge (a, b) on the
whole graph is small. To quantify the overall full-stream
effect, intuitively, when edges are merged, our goal is
to maintain the diffusive property of the whole graph
G′. Prakash et al. [20] demonstrate that the diffusive
property of a graph is captured by the largest eigenvalue
of the adjacency matrix of a graph, for a wide range of
cascade style propagation models, including IC model.
We adapt this methodology in this paper2. Recently,
Purohit et al. [21] proposed a diffusion based coarsening
algorithm to get a smaller representation of a graph
while maintaining the largest eigenvalue. Differently,
our idea is to get the media nodes (singleton nodes)
instead of a smaller graph, and we also need to maintain
the local effect of incident edges on φ(·) to (resulting in
different merge definitions).

To maintain the largest eigenvalue of the adjacency
matrix of G′ (denoted by λ′G), our goal is to merge

2This also allows our method to be generalized to other
diffusion models.

edges which have the least impact on it. The idea is
that, we measure the impact of merging each edge on
the overall diffusion as I(a, b) = |λ′G−(a,b)

− λ′G|, where

λ′G−(a,b)
is the largest eigenvalue of the graph G′−(a,b)

which is the result of merging (a, b) on G′. G′−(a,b) is
obtained following Definition 3. Let us define h and g
as the left and right eigenvectors corresponding to λ′G.
Now, using matrix perturbation theory, I(a, b) can be
approximated as:

Proposition 3.2. As a first-order approximation, the
impact of an edge (a, b) is

I(a, b) =
−λ (gaha + gbhb) + haθ + w′bagahb + w′abgbha

hT g − (gaha + gbhb),

where θ = ua+ub
2

[1+wba
2

(
λ′Gga
ua

− wabgb) + 1+wab
2

(
λ′Ggb
ub

−
wbaga)].

Algorithm. From Proposition 3.2, we can get I(a, b)
for each edge (a, b) in O(1) time. Hence, to get the
media node set M , we keep merging edges with the
smallest impacts until only m singleton nodes are left.
Algorithm 1 shows the pseudocode. We first compute
the eigenvector and get G′ for local effects(Line 2-3).
Then we obtain I(a, b) for each edge (a, b) (Lines 4-
5), and finally, merge edges with smallest impact till m
singleton (unmerged) nodes are left (Lines 7-9). Note
that Algorithm 1 is monotonous: the set of media nodes
selected for the larger m is the superset of media node
chosen for smaller m, which is desirable.

Proposition 3.3. The time complexity of Algorithm 1
is O(|E| log |E|+D(|V | −m)).

Algorithm 1 Finding Media Nodes

Require: graph G, number of media nodes m
1: i = 0, n = |V |, S = ∅
2: Compute the right eigenvector u corresponding to λG
3: Get G′ by updating edge weight w′ab = uawab in G
4: for each edge (a, b) in G′

5: Compute I(a, b) according to Proposition 3.2
6: π = ordering of pairs in the increasing order of I
7: while the number of singleton nodes > m do

8: i = i+ 1
9: (a, b) = π(i), G′ = G′−(a,b)

10: M = Singleton Nodes
11: return M

3.2 Finding kernel communities According to
Proposition 2.2, MeiKeCom-kernel is a NP-hard
problem. In this section, we leverage the idea in [25]
(Algorithm 2): we convert Problem 2 into an optimiza-
tion problem that can find an ‘assignment’ vector zv for
any node v, and solve it iteratively. Note that we need
to plug in media nodes here, as any node u and v in the
same kernel community have high value of simM (u, v).
Specifically, for each node v ∈ V \M , we define a weight

vector zv = [zv1, . . . , zvl]
T to represent its relative im-

portance to each community kernel. The higher zvi is,
the more connection v has to kernel community Ki.
Given zu and zv, it is natural to use their inner product
zTu zv to measure similarity between their connection to
kernel communities. And as defined in Section 2, the
similarity between u and v w.r.t. M is quantified by
simM (u, v). Let us denote z = [z1, . . . , zi, . . .] where
i ∈ V . We have the following optimization problem:

(3.1)

z∗ = arg max
z

∑
(u,v)∈E\EM

zTu zvwuvsimM (u, v)

s.t.
∑

v∈V \M
zvi = ki, ∀i ∈ {1, . . . , l};

∑
1≤i≤l

zvi ≤ 1, ∀v ∈ V \M ;

zvi ≥ 0, ∀v ∈ V \M, ∀i ∈ {1, . . . , l},
where EM is a set of edges incident on M , i.e., EM =
{(u, v) ∈ E|u ∈ M or v ∈ M}. This can be solved
iteratively efficiently with the time complexity O(lγ2)
per iteration, where γ is the number of nodes that are
connected to M .

4 Experiments

4.1 Experimental Setup We briefly describe our
set-up. All experiments are conducted using a 4 Xeon
E7-4850 CPU with 512GB of 1066Mhz main memory3.
Datasets. We use multiple datasets (Table 2). We ex-
pect to find media nodes as: media websites/accounts in
MemeTracker and Twitter, survey papers in Citation,
and people who cover multiple areas/departments in
Coauthor, Google+ and Enron. We learn the weights
of MemeTracker from blog cascades [7] and normalize
the number of emails for Enron as edge weights. For
others, we set them to be the same as wij = 0.02 fol-
lowing literature [21].

To evaluate our method, we also use ground-truth
media nodes and kernel communities for Coauthor

and MemeTracker. We briefly describe it next. For
Coauthor, we pick authors who are PC members in
confs. of more than 2 areas as media nodes, as they
are important in different areas such as AI, DB and
Networks (as shown in Fig. 2). After that, we directly
use other PC members in each area as the ground truth
for kernel communities [25]. Similarly, for MemeTracker,
we pick high web traffic websites which cover more than
two topics (like sports and entertainment) as media
nodes. For kernel communities, we pick websites in each
area that have spread the most memes from the original
cascades [7] as the ground truth.
Parameters. We choose m to be roughly 1-2% of the

3Code is at: http://people.cs.vt.edu/yaozhang/meike/.

Table 2: Datasets Information.
Dataset Domain #Nodes #Edges
Enron [16] Emails 156 2,061

MemeTracker [7] Cascades 851 5,000
Citation [22] Citation 8,046 18,322
Google+ [15] Social Media 107K 14M
Twitter [25] Social Media 456K 8M
Coauthor [25] Coauthors 0.8M 2M

graph size and set l = 5. This matches media node
set sizes and number of kernel communities we found
in datasets with ground-truth. And for the ease of
evaluation, we conservatively set all ki to be 100 for
Coauthor, Twitter and Google+; and as 10 for Enron,
MemeTracker and Citation (due to their smaller sizes).
Baselines. To measure the diffusive property of me-
dia nodes, we compare MeiKe with Greedy (men-
tioned in Sec. 3.1), Pmia [3] and Netshield [23].
To test the hypothesis that media nodes are not
just the nodes connecting/overlapping communities,
we use HIS and MaxD [14] (finding structural holes
that connect homogenous communities), and Big-
Clam [26], Clique [19] (overlapping community de-
tection), as baselines. To measure the performance
of kernel communities, we compare MeiKe with sev-
eral community detection algorithms: Louvain [2];
d-Louvain, p-Louvain (apply Louvain to high-
degree/high-pagerank (top 20%) nodes); Newman [6];
Weba [25] (celebrity-based); and BigClam, Clique.

4.2 Evaluation of media nodes We measure our
performance on a variety of aspects.
Comparison with ground-truth. We use Precision,
Recall, and F1-score to compare against the baselines.
As shown in Table 3, MeiKe performs the best for
Coauthor (we got the same result for MemeTracker),
which achieves up to 40% improvement over all baselines
in F1-score. Note that BigClam does not return
any overlapping communities and hence any media
nodes for Coauthor. From the results, it is obvious
that media nodes are neither simply structural holes
that HIS and MaxD optimize for, nor just overlaps
among communities that BigClam and Clique can
find. Similarly, Pmia and Netshield do not perform
well. All the results are expected, as MeiKe returns
nodes with full-stream diffusion effect.

Table 3: Quality of media nodes compared to the
ground-truth.

Coauthor Precision Recall F1-score
MeiKe 0.231 0.520 0.320
Pmia 0.176 0.301 0.222

Netshield 0.149 0.195 0.169
HIS 0.194 0.412 0.263

MaxD 0.173 0.372 0.237
BigClam 0.000 0.000 0.000
Clique 0.044 0.366 0.078

Performance of MeiKe for MeiKeCom-media. As

mentioned before, media nodes have high full-stream
diffusion effect. To validate it, we compare MeiKe
against Pmia and Netshield. Note that Greedy is
not scalable for large networks. We could only run
it on Enron and MemeTracker. We find that MeiKe
is able to obtain at least 85% of nodes obtained by
Greedy, while being significantly faster. Table 4
shows the results (all values are averaged over 1000
simulations) of MeiKe against Pmia and Netshield
on Citation and Google+. For both networks, Pmia
has the highest σ(M) value as it optimizes downstream
effect. Netshield does best for ρ(M) as immunization
algorithms are related to the upstream effect. MeiKe
gives the best results for φ(M), which shows that our
algorithm effectively solves for MeiKeCom-media. In
addition, we also find that media nodes are diverse:
they are barely connected among themselves, yet well
connected to the rest of the network. This makes sense
as we want them to diffuse information to the whole
network. For example, in Coauthor, there are almost
zero edges among media nodes. Furthermore, they
connect to multiple kernel communities. For example, in
Coauthor, Carlos Guestrin, as a media node, connects
to multiple kernel communities.

Table 4: Quality of MeiKe for MeiKeCom-media.
Citation σ(M) ρ(M) φ(M)
MeiKe 1744.7 20.4 35591.9
Pmia 1974.7 4.8 9382.6

Netshield 1087.2 28.9 31420.1

Google+ σ(M) ρ(M) φ(M)

MeiKe 7842.4 611.6 4.8× 106

Pmia 8723.5 672.3 3.8× 106

Netshield 6612.1 672.3 4.4× 106

Case studies of media nodes. We conduct case
studies to show MeiKe can find meaningful nodes.
Coauthor: Authors discovered as media nodes us-
ing MeiKe, such as Carlos Guestrin and Leonidas J.
Guibas, are typically researchers who have published
papers in multiple areas. For example, Carlos Guestrin
has published papers in multiple areas such as AI, DB
and Networks. Hence, they act as classic bridge nodes.
In addition, a media node does not necessarily have high
degree. For example, Wei-Ying Ma, found as a media
node, only has six collaborations in our dataset, but
still connects multiple domains. However, he is a well-
known researcher who works on areas like AI, DB and
Viz. This highlights the fact that MeiKe is able to
detect high-quality media nodes even with low degrees.
Citation: Papers identified as media nodes point to
areas where results could be improved, survey existing
methods, and asking important open questions. For
example, “Data management projects at Google” by
Cafarella et al. (2008) provides overview of subset of
ongoing projects at Google like Map-Reduce and GFS.
Since Map-Reduce and GFS are important projects,

Table 5: Quality (F1-score) of kernel communities
compared to other competitors on Coauthor. DP:
Distributed and Parallel Computing; GV: Graphics
and Vision; NC: Networks and Communications.

Method AI DB DP GV NC Avg.
MeiKe 0.613 0.532 0.791 0.392 0.644 0.594
Louvain 0.362 0.070 0.578 0.333 0.164 0.301
d-Louvain 0.465 0.168 0.755 0.155 0.237 0.356
p-Louvain 0.418 0.243 0.762 0.110 0.305 0.368
Newman 0.002 0.014 0.118 0.015 0.003 0.030
BigClam 0.054 0.004 0.032 0.004 0.005 0.019
Clique 0.106 0.029 0.521 0.405 0.039 0.220
Weba 0.601 0.521 0.761 0.431 0.632 0.589

they get more citations than the paper itself. Though
the paper itself has a relatively lower citation count
of 35, the papers which cite it have higher citation
counts. Other media nodes, such as “Magic sets and
other strange ways to implement logic programs” by
Bancilhon et al. (1986), ask open questions. Eleven of
the papers that cite this paper and try to solve the open
questions, are nodes in kernel communities.
MemeTracker: Media nodes found by MeiKe in-
clude mainstream websites such as guardian.co.uk,
huffingtonpost.com, washingtonpost.com. They are
all general news media websites that cover multiple top-
ics such as politics, sports, technology, etc.
Twitter: We find accounts affiliated with media or-
ganizations such as NBC, CBSTopNews and bbcamerica

as media nodes. We also find Ryan Penagos’s account
AgentM as a media node. Since he is the VP and Exec-
utive Editor of Marvel’s Digital Media Group, he acts
as bridge node between entertainment kernel (mostly
consisting of celebrities) and finance kernel. However,
baselines like Clique, HIS or MaxD find many unim-
portant non-news-media accounts.
Enron: Media nodes found by MeiKe are the main ex-
ecutives like K. Lay (CEO) and J. Shankman (COO), as
they routinely communicate with different departments
by emails. It is interesting that J. Hernandez, as an
administrator, is also a media node. We believe it is
because she has many communications among different
departments. However, other baselines can not find it.

4.3 Evaluation of kernel communities We con-
duct multiple experiments for kernels as well.
Comparison with ground-truth. We compute F1-
score, and Jaccard similarity to evaluate the perfor-
mance of MeiKe. Table 5 shows the results of F1-
scores for Coauthor. In short, MeiKe gets the best
results overall: it gets up to 6 times better solutions
compared to the baselines including Weba (celebrity
based), Newman and Louvain (traditional commu-
nity detection), and BigClam and Clique (overlap-
ping community detection).
Centrality and connectivity. We found that the cen-
trality of kernel nodes are much higher than others: for
all networks, kernel nodes have up to 17.2 times higher

average degree, eigenscore, and pagerank than nodes in
the whole graph. As expected, each of kernel commu-
nity has very dense intra-community connections. For
example, in MemeTracker the average intra-community
connections for MeiKe is 45.7, which is larger than d-
Louvain, and p-Louvain (31.3, and 26.3).
Case studies of kernel communities. We found
that each Ki usually covers only one area/topics. In
Citation, each kernel usually has its specific topics.
For example, one kernel comprises of papers on parallel
processing and database, while another has papers on
query estimation and optimization. In Twitter, we
find sports kernel contains athletes like Serena Williams
and Dwight Howard, while entertainment kernel has
celebrities such as Mariah Carey and Taylor Swift.
Kernel’s corresponding ordinary community Or-
dinary communities are consistent with their corre-
sponding kernel communities in terms of diffusion. To
verify it, we first pick 50 nodes uniformly at random in
each Ki as seeds, then run the IC model over G to get
final infections. In every dataset, at least 75% of nodes
that are infected belong to the kernel’s corresponding
ordinary community.
Comparison between kernel communities and
media nodes Each kernel community obtained from
MeiKe shares similar properties like research area,
news topic, etc. Media nodes, on the other hand, are
diverse and connect to multiple kernel communities. In
addition, different from kernel nodes, media nodes do
not necessarily have high centralities. Recall that Wei-
Ying Ma, a media node in Coauthor, has a relatively
low degree. Though as shown in Table 4, media nodes
have high full-stream effect of diffusion, while it is not
a required property for kernel nodes.

5 Related Work

We review the most closely related works here.
Community Detection. Traditionally, communities
were viewed as disjoint set of vertices with dense internal
connections and sparse external connections [18].There
are many different methods for it, such as modularity [2]
and betweeness [6]. Recent work has also tried to find
overlapping communities [26, 19] or groups of important
nodes “kernels” [25] or learn influence models at group
scale [17]. However, none of them look into bringing
diffusive roles of nodes while finding communities.
Network Summarization. We find media nodes
via merging unimportant nodes. Purohit et al. [21]
proposed a merging based summarization algorithm
which just maintains diffusion on a graph. There have
been multiple studies on the related problem, such as
graph sparsification [4] (where edges are removed in
contrast to nodes being merged).

Role Discovery. Role discovery, which tries to find
nodes that perform similar functions in networks, has
been previously studied. McCallum et al. [16] first
approached this problem using a topic model based
method. Recent works, like [5] and [8], used techniques
like NMF and probabilistic generative model. The
most related works to our problem include [9, 14, 27].
Henderson et al. [9] used features to extract different
roles of nodes including bridge nodes that connect so
called ‘main-stream’ nodes. Lou et al. [14] and Yang et
al. [27] detected structural hole spanners which bridge
homogeneous communities. However, our media nodes
are qualitatively different, and all existing works do not
take diffusive properties of the bridge nodes into account
the way we do (see Section 2).

6 Conclusions

We studied the novel task of discovering communities
of nodes leveraging their diffusion roles. We give an
intuitive and principled optimization-based formulation
MeiKeCom based on finding media, kernel and ordi-
nary communities, show that it is computationally chal-
lenging, and then give an effective and practical multi-
step algorithm MeiKe for it. MeiKe first finds me-
dia nodes via a novel merge-based algorithm, and then
computes the kernel communities via a relaxation. Ex-
tensive experiments on multiple real datasets show that
MeiKe outperforms other baselines in both media node
discovery and kernel community detection, and MeiKe
can also find meaningful groups for insights. There are
several fruitful avenues for future work, like extending
our results to temporal networks.
Acknowledgements This paper is based on work partially

supported by the NSF (IIS-1353346), the NEH (HG-229283-

15), ORNL (Order 4000143330) and from the Maryland

Procurement Office (H98230-14-C-0127), and a Facebook

faculty gift.
References

[1] R. M. Anderson and R. M. May. Infectious Diseases
of Humans. Oxford University Press, 1991.

[2] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics, 2008.

[3] W. Chen, C. Wang, and Y. Wang. Scalable influence
maximization for prevalent viral marketing in large-
scale social networks. In KDD. ACM, 2010.

[4] W. S. Fung, R. Hariharan, N. J. Harvey, and D. Pan-
igrahi. A general framework for graph sparsification.
In STOC, pages 71–80. ACM, 2011.

[5] S. Gilpin, T. Eliassi-Rad, and I. Davidson. Guided
learning for role discovery (glrd): framework, algo-
rithms, and applications. In KDD. ACM, 2013.

[6] M. Girvan and M. E. Newman. Community structure
in social and biological networks. PNAS, 2002.

[7] M. Gomez Rodriguez, J. Leskovec, and A. Krause.
Inferring networks of diffusion and influence. In KDD.
ACM, 2010.

[8] Y. Han and J. Tang. Probabilistic community and role
model for social networks. In KDD. ACM, 2015.

[9] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong,
S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, and
L. Li. Rolx: structural role extraction & mining in
large graphs. In KDD, pages 1231–1239, 2012.

[10] R. M. Karp. Reducibility among combinatorial prob-
lems. Springer, 1972.

[11] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
the spread of influence through a social network. In
KDD, 2003.

[12] G. Kossinets and D. J. Watts. Empirical analysis of an
evolving social network. science, 311(5757), 2006.

[13] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW,
pages 591–600. ACM, 2010.

[14] T. Lou and J. Tang. Mining structural hole spanners
through information diffusion in social networks. In
WWW, pages 825–836, 2013.

[15] J. J. McAuley and J. Leskovec. Learning to discover
social circles in ego networks. In NIPS, 2012.

[16] A. McCallum, X. Wang, and A. Corrada-Emmanuel.
Topic and role discovery in social networks with exper-
iments on enron and academic email. JAIR, 2007.

[17] Y. Mehmood, N. Barbieri, F. Bonchi, and A. Ukkonen.
Csi: Community-level social influence analysis. In
ECML/PKDD. 2013.

[18] M. E. Newman. Modularity and community structure
in networks. PNAS, 2006.

[19] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncov-
ering the overlapping community structure of complex
networks in nature and society. Nature, 435, 2005.

[20] B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler,
and C. Faloutsos. Threshold conditions for arbitrary
cascade models on arbitrary networks. In ICDM, 2011.

[21] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and
V. Subrahmanian. Fast influence-based coarsening for
large networks. In KDD, pages 1296–1305. ACM, 2014.

[22] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su.
Arnetminer: Extraction and mining of academic social
networks. In KDD’08, 2008.

[23] H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-
Rad, C. Faloutsos, and D. H. Chau. On the vulnera-
bility of large graphs. In ICDM, 2010.

[24] P. Van Mieghem, J. Omic, and R. Kooij. Virus spread
in networks. ToN, 17(1):1–14, 2009.

[25] L. Wang, T. Lou, J. Tang, and J. E. Hopcroft. De-
tecting community kernels in large social networks. In
ICDM, pages 784–793. IEEE, 2011.

[26] J. Yang and J. Leskovec. Overlapping community
detection at scale: a nonnegative matrix factorization
approach. In WSDM. ACM, 2013.

[27] Y. Yang, J. Tang, C. Leung, Y. Sun, Q. Chen, J. Li,
and Q. Yang. Rain: Social role-aware information
diffusion. In AAAI, 2015.

