
Condensing Temporal Networks using Propagation

Bijaya Adhikari∗ Yao Zhang∗ Aditya Bharadwaj∗ B. Aditya Prakash∗

Abstract

Modern networks are very large in size and also evolve with
time. As their size grows, the complexity of performing net-
work analysis grows as well. Getting a smaller representa-
tion of a temporal network with similar properties will help
in various data mining tasks. In this paper, we study the
novel problem of getting a smaller diffusion-equivalent rep-
resentation of a set of time-evolving networks.

We first formulate a well-founded and general temporal-

network condensation problem based on the so-called

system-matrix of the network. We then propose NetCon-

dense, a scalable and effective algorithm which solves this

problem using careful transformations in sub-quadratic run-

ning time, and linear space complexities. Our extensive ex-

periments show that we can reduce the size of large real

temporal networks (from multiple domains such as social,

co-authorship and email) significantly without much loss of

information. We also show the wide-applicability of Net-

Condense by leveraging it for several tasks: for example,

we use it to understand, explore and visualize the original

datasets and to also speed-up algorithms for the influence-

maximization problem on temporal networks.

1 Introduction

Given a large time-varying network, can we get a
smaller, nearly “equivalent” one? Networks are a com-
mon abstraction for many different problems in various
domains. Further, propagation-based processes are very
useful in modeling multiple situations of interest in real-
life such as word-of-mouth viral marketing, epidemics
like flu, malware spreading, information diffusion and
more. Understanding the propagation process can help
in eventually managing and controlling it for our benefit,
like designing effective immunization policies. However,
the large size of today’s networks, makes it very hard to
analyze them. It is even more challenging considering
that such networks evolve over time. Indeed, typical
mining algorithms on dynamic networks are very slow.

One way to handle the scale is to get a summary:
the idea is that the (smaller) summary can be analyzed
instead of the original larger network. While summa-
rization (and related problems) on static networks has

∗Department of Computer Science, Virginia Tech. Email:
{bijaya, yaozhang, adb, badityap}@cs.vt.edu.

Figure 1: Condensing a Temporal Network

been recently studied, surprisingly getting a smaller rep-
resentation of a temporal network has not received much
attention (see related work). Since the size of temporal
networks are order of magnitude higher than static net-
works, their succinct representation is important from
a data compression viewpoint too. In this paper, we
study the problem of ‘condensing’ a temporal network
to get one smaller in size which is nearly ‘equivalent’
with regards to propagation. Such a condensed net-
work can be very helpful in downstream data mining
tasks, such as ‘sense-making’, influence maximization,
immunization and so on. Our contributions are:
• Problem formulation: Using spectral characteriza-

tion of propagation processes, we formulate a novel
and general Temporal Network Condensa-
tion problem.

• Efficient Algorithm: We design careful transforma-
tions and reductions to develop an effective, near-
linear time algorithm NetCondense which is also
easily parallelizable. It merges unimportant node
and time-pairs to quickly shrink the network with-
out much loss of information.

• Extensive Experiments: Finally, we conduct multi-
ple experiments over large diverse real datasets to
show correctness, scalability, and utility of our al-
gorithm and condensation in several tasks e.g. we
show speed-ups of 48 x in influence maximization
over dynamic networks.

The rest of the paper is organized in the usual way. We
omit proofs due to lack of space.

2 Preliminaries

We give some preliminaries next. Notations used and
their descriptions are summarized in Table 1.
Temporal Networks: We focus on the analysis of
dynamic graphs as a series of individual snapshots.
In this paper, we consider directed, weighted graphs

Table 1: Summary of symbols and descriptions

Symbol Description

G Temporal Network

Gcond Condensed Temporal Network

Gi, Ai ith graph of G and adjacency matrix

wi(a, b) Edge-weight between nodes a and b
in time-stamp i

V ; E Node-set; Edge-set

αN Target fraction for nodes

αT Target fraction for time-stamps

T # of timestamps in Temporal Network

FG Flattened Network of G
XG Average Flattened Network of G
SG The system matrix of G
FG ; XG The adjacency matrix of FG ; XG
λS Largest eigenvalue of SG
λF; λX Largest eigenvalue of FG ; XG
A Matrix (Bold capital letter)

u, v Column Vectors (Bold small letter)

G = (V,E,W) where V is the set of nodes, E is the
set of edges and W is the set of associated edge-weights
w(a, b) ∈ [0, 1]. A temporal network G is a sequence of T
graphs, i.e., G = {G1, G2, . . . , GT }, such that the graph
at time-stamp i is Gi = (V,Ei,Wi). WLOG, we assume
every Gi in G has the same node-set V (as otherwise, if
we have Gi with different Vi, just define V = ∪Ti=1Vi).
Our ideas can, however, be easily generalized to other
types of dynamic graphs.
Propagation models: We primarily base our dis-
cussion on two fundamental discrete-time propaga-
tion/diffusion models: the SI [3] and IC models [10].
The SI model is a basic epidemiological model where
each node can either be in ‘Susceptible’ or ‘Infected’
state. In a static graph, at each time-step, a node in-
fected/active with the virus/contagion can infect each
of its ‘susceptible’ (healthy) neighbors independently
with probability w(a, b). Once the node is infected, it
stays infected. SI is a special case of the general ‘flu-
like’ SIS model, as the ‘curing rate’ (of recovering from
the infected state) δ in SI is 0 while in SIS δ ∈ [0, 1).
In the popular IC (Independent Cascade) model nodes
get exactly one chance to infect their healthy neighbors
with probability w(a, b); it is a special case of the gen-
eral ‘mumps-like’ SIR model, where nodes in ‘Removed’
state do not get re-infected, with δ = 1.

We consider generalizations of these models to
temporal networks [17], where an infected node can only
infect its susceptible ‘current’ neighbors (as given by G).
Note that models on static graphs are special cases of
those on temporal networks (with all Gi ∈ G identical).

3 Our Problem Formulation

Real temporal networks are usually gigantic in size.
However, their skewed nature (in terms of various dis-
tributions like degree, triangles etc.) implies the exis-

tence of many nodes/edges which are not important in
propagation. Similarly, as changes are typically grad-
ual, most of adjacent time-stamps are not drastically
different. There may also be time-periods with sparse
connectivities which will not contribute much to prop-
agation. Overall, these observations intuitively imply
that it should be possible to get a smaller ‘condensed’
representation of G while preserving its diffusive char-
acteristics; which is our task.

It is natural to condense as a result of only local
‘merge’ operations on node-pairs and time-pairs of G—
such that each application of an operation maintains
the propagation property and shrinks G. This will also
ensure that successive applications of these operations
‘summarize’ G in a multi-step hierarchical fashion.

More specifically, merging a node-pair {a, b} will
merge nodes a and b into a new super-node say c, in
all Gi in G. Merging a time-pair {i, j} will merge
graphs Gi and Gj to create a new super-time, k,
and associated graph Gk. However, allowing merge
operations on every possible node-pair and time-pair
results in loss of interpretability of the result. For
example, it is meaningless to merge two nodes who
belong to completely different communities or merge
times which are five time-stamps apart. Therefore, we
have to limit the merge operations in a natural and
well-defined way. This also ensures that the resulting
summary is useful for downstream applications. We
allow a single node-merge only on node pairs {a, b} such
that {a, b} ∈ Ei for at least one Gi, i.e. {a, b} is in the
unweighted ‘union graph’ UG(V,Eu = ∪iEi). Similarly,
we restrict a single time-merge to only adjacent time-
stamps. Note that we can still apply multiple successive
merges to merge multiple node-pairs/time-pairs. Our
general problem is:

Informal Problem 1. Given a temporal network G =
{G1, G2, . . . , GT } with Gi = (V,Ei,Wi) and target frac-
tions αN ∈ (0, 1] and αT ∈ (0, 1], find a condensed
temporal network Gcond = {G′1, G′2, . . . , G′T ′} with G′i =
(V ′, E′i,W

′
i) by repeatedly applying “local” merge op-

erations on node-pairs and time-pairs such that (a)
|V ′| = (1− αN)|V |; (b) T ′ = (1− αT)T ; and (c) Gcond

approximates G w.r.t. propagation-based properties.

3.1 Formulation framework Formalizing Informal
Problem 1 is challenging as we need to tackle following
two research questions: (Q1) Characterize and quantify
the propagation-based property of a temporal network
G; (Q2) Define “local” merge operations.

In general, Q1 is difficult as the characterization
should be scalable and concise. For Q2, the merges
are local operations, and so intuitively they should be
defined so that any local diffusive changes caused by

them is minimum. Using Q1 and Q2, we can formulate
Informal Problem 1 as an optimization problem where
the search space is all possible temporal networks with
the desired size and which can be constructed via some
sequence of repeated merges from G.

3.2 Q1: Propagation-based property One possi-
ble naive answer is to run some diffusion model on G
and Gcond and see if the propagation is similar; but this
is too expensive. Therefore, we want to find a tractable
concise metric that can characterize and quantify prop-
agation on a temporal network.

A major metric of interest in propagation on net-
works is the epidemic threshold which indicates whether
the virus/contagion will quickly spread throughout the
network (and cause an ‘epidemic’) or not, regardless of
the initial conditions. Past works [6, 16] have stud-
ied epidemic thresholds for various epidemic models on
static graphs. Recently, [17] show that in context of
temporal networks and the SIS model, the threshold
depends on the largest eigenvalue λ of the so-called sys-
tem matrix of G: an epidemic will not happen in G if
λ < 1. The result in [17] was only for undirected graphs;
however it can be easily extended to weighted directed
G with a strongly connected union graph UG (which just
implies that in principle any node can infect any other
node via a path, ignoring time; as otherwise we can just
examine each connected component separately).

Definition 1. System Matrix: For the SI model,
the system matrix SG of a temporal network G =
{G1, G2, ..., GT } is defined as SG =

∏T
i=1(I + Ai).

where At is the weighted adjacency matrix of Gt. For
the SI model, the rate of infection is governed by
λS, the largest eigenvalue of SG . Preserving λS while
condensing G to Gcond will imply that the rate of virus
spreading out in G and Gcond will be preserved too.
Therefore λS is a well motivated and meaningful metric
to preserve during condensation.

3.3 Q2: Merge Definitions We define two opera-
tors: µ(G, i, j) merges a time-pair {i, j} in G to a super-
time k in Gcond; while ζ(G, a, b) merges node-pair {a, b}
in all Gi ∈ G and results in a super-node c in Gcond.

As stated earlier, we want to condense G by suc-
cessive applications of µ and ζ. We also want them
to preserve local changes in diffusion in the locality of
merge operands. At the node level, the level where lo-
cal merge operations are performed, the diffusion pro-
cess is best characterized by the probability of infection.
Hence, working from first principles, we design these op-
erations to maintain the probabilities of infection before
and after the merges in the ‘locality of change’ without

worrying about the system matrix. For µ(G, i, j), the
‘locality of change’ is Gi, Gj and the new Gk. Whereas,
for ζ(G, a, b), the ‘locality of change’ is the neighborhood
of {a, b} in all Gi ∈ G.
Time-pair Merge: Consider a merge µ(G, i, j) be-
tween consecutive times i and j. Consider any edge
(a, b) in Gi and Gj (note if (a, b) /∈ Ei, then wi(a, b) = 0)
and assume that node a is infected and node b is suscep-
tible in Gi (illustrated in Figure 2 (a)). Now, node a can
infect node b in i via an edge in Gi, or in j via an edge
in Gj . We want to maintain the local effects of propa-
gation via the merged time-stamp Gk. Hence we need
to readjust edge-weights in Gk such that it captures the
probability a infects b in G (in i and j).

Lemma 3.1. (Infection via i & j) Let Pr(a→ b|Gi, Gj)
be the probability that a infects b in G in either time i
or j, if it is infected in Gi. Then Pr(a → b|Gi, Gj) =
[wi(a, b) + wj(a, b)], upto a first order approximation.

Lemma 3.1 suggests that the condensed time-stamp
k, after merging a time-pair {i, j} should be Ak =
Ai + Aj . However, consider a G such that all Gi in G
are the same. This is effectively a static network: hence
the time-merges should give the network Gi rather than
TGi. This discrepancy arises because for any single
time-merge, as we reduce ‘T ’ from 2 to 1, to maintain
the final spread of the model, we have to increase the
infectivity along each edge by a factor of 2 (intuitively
speeding up the model [8]). Hence, the condensed

network at time k should be Ak =
Ai+Aj

2 instead; while
for the SI model, the rate of infection should be doubled
for time k in the system matrix. Motivated by these
considerations, we define a time-stamp merge as follows:

Definition 2. Time-Pair Merge µ(G, i, j). The
merge operator µ(G, i, j) returns a new time-stamp k

with weighted adjacency matrix Ak =
Ai+Aj

2 .

Node-pair Merge: Similarly, in ζ(G, a, b) we need to
adjust the weights of the edges to maintain the local
effects of diffusion between a and b and their neighbors.
Note that when we merge two nodes, we need to merge
them in all Gi ∈ G.

Consider any time i. Suppose we merge {a, b} in
Gi to form super-node c in G′i (note that G′i ∈ Gcond).
Consider a node x such that {a, b} and {a, x} are
neighbors in Gi (illustrated in Figure 2 (b)). When c is
infected in G′i, it is intuitive to imply that either node
a or b is infected in Gi uniformly at random. Hence
we need to update the edge-weight from c to x in G′i,
such that the new edge-weight is able to reflect the
probability that either node a or b infects x in Gi.

(a) Time merge of a single edge (b) Node Merge in a single time

Figure 2: (a) Example of merge operation on a single edge (a, b) when time-pair {i, j} is merged to form super-time
k. (b) Example of node-pair {a, b} being merged in a single time i to form super-node c.

Lemma 3.2. (Probability of infecting out-neighbors) If
either node a or node b is infected in Gi and they are
merged to form a super-node c, then the first order
approximation of probability of node c infecting its out-
neighbors is given by:

Pr(c→ z|Gi) =



wi(a, z)

2
∀z ∈ Nboi (a)\Nboi (b)

wi(b, z)

2
∀z ∈ Nboi (b)\Nboi (a)

wi(a, z) + wi(b, z)

4
∀z ∈ Nboi (a) ∩Nboi (b)

where, Nboi (v) is the set of out-neighbors of node v in
time-stamp i. We can write down the corresponding
probability Pr(z → c|Gi) (for getting infected by in-
neighbors) similarly. Motivated by Lemma 3.2, we
define node-pair merge as:

Definition 3. Node-Pair merge ζ(G, a, b). The
merge operator ζ(G, a, b) merges a and b to form a new
super-node c in all Gi ∈ G, s.t. wi(c, z) = Pr(c→ z|Gi)
and wi(z, c) = Pr(z → c|Gi).

3.4 Problem Definition We can now formally de-
fine our problem.

Problem 1. (Temporal Network Condensation
Problem (TNC)) Given a temporal network G =
{G1, G2, . . . , GT } with strongly connected UG, αN ∈
(0, 1] and αT ∈ (0, 1], find a condensed temporal net-
work Gcond = {G′1, G′2, . . . , G′T ′} with G′i = (V ′, E′i,W

′
i)

by repeated applications of µ(G, ·, ·) and ζ(G, ·, ·), such
that |V ′| = (1 − αN)|V |; T ′ = (1 − αT)T ; and Gcond

minimizes |λS − λcond
S |.

Problem 1 naturally contains the GCP coarsening
problem for a static network [18] (which aims to preserve
the largest eigenvalue of the adjacency matrix) as a
special case: when G = {G}. GCP itself is a challenging
problem as it is related to immunization problems.
Hence, Problem 1 is intuitively even more challenging.

4 Our Proposed Method

The naive algorithm is combinatorial. Even the greedy
method which computes the next best merge operands

(a) Temporal Network (b) Flattened Network
Figure 3: (a) G, and (b) corresponding FG .

will be O(αN · V 6), even without time-pair merges. In
fact, even computing SG is inherently non-trivial due
to matrix multiplications. It does not scale well for
large temporal networks because SG gets denser as the
number of time-stamps in G increases. Moreover, since
SG is a dense matrix of size |V | by |V |, it does not
even fit in the main memory for large networks. Even
if there was an algorithm for Problem 1 that could
bypass computing SG , λS still has to be computed to
measure success. Therefore, even just measuring success
for Problem 1, as is, seems hard.

4.1 Main idea To solve the numerical and computa-
tional issues, our idea is to find an alternate representa-
tion of G such that the new representation has the same
diffusive properties and avoids the issues of SG . Then
we develop an efficient sub-quadratic algorithm.

Our main idea is to look for a static network that
is similar to G with respect to propagation. We do
this in two steps. First we show how to construct a
static flattened network FG , and show that it has similar
diffusive properties as G. We also show that eigenvalues
of SG and the adjacency matrix FG of FG are precisely
related. Due to this, computing eigenvalues of FG too is
difficult. Then in the second step, we derive a network
from FG whose largest eigenvalue is easier to compute
and related to the largest eigenvalue of FG . Using it we
propose a new related problem, and solve it efficiently.

4.2 Step 1: An Alternate Static View Our
approach for getting a static version is to expand G
and create layers of nodes, such that edges in G are
captured by edges between the nodes in adjacent layers
(see Figure 3). We call this the “flattened network” FG .

Definition 4. Flattened network. FG for G is de-
fined as follows:

• Layers: FG consists of 1, ..., T layers correspond-
ing to T time-stamps in G.

• Nodes: Each layer i has |V | nodes (so FG has T |V |
nodes overall). Node a in the temporal network G
at time i is represented as ai in layer i of FG.

• Edges: At each layer i, each node ai has a direct
edge to a(i+1) mod T in layer (i + 1) mod T with
edge-weight 1. And for each time-stamp Gi in the
temporal network G, if there is a directed edge (a, b),
then in FG, we add a direct edge from node ai to
node b(i+1) mod T with weight wi(a, b).

For the relationship between G and FG , consider
the SI model running on G (Figure 3 (a)). Say node a is
infected in G1, which also means node a1 is infected in
FG (Figure 3 (b)). Assume a infects b in G1. So in the
beginning of G2, a and b are infected. Correspondingly
in FG node a1 infects nodes a2 and b2. Now in G2, no
further infection occurs. So the same nodes a and b are
infected in G3. However, in FG infection occurs between
layers 2 and 3, which means a2 infects a3 and b2 infects
b3. Propagation in FG is different than in G as each
‘time-stamped’ node gets exactly one chance to infect
others. Note that the propagation model on FG we just
described is the popular IC model. Hence, running the
SI model in G should be “equivalent” to running the IC
model in FG in some sense.

We formalize this next. Assume we have the SI
model on G and the IC model on FG starting from the
same node-set of size I(0). Let IGSI(t) be the expected
number of infected nodes at the end of time t. Similarly,
let IFG

IC (T) be the expected number of infected nodes
under the IC model till end of time T in FG . Note that
IFG
IC (0) = IFG

SI (0) = I(0). Then:

Lemma 4.1. (Equivalence of propagation in G and FG)

We have
∑T
t=1 I

G
SI(t) = IFG

IC (T).

That is, the cumulative expected infections for the
SI model on G is the same as the infections after T
for the IC model in FG . This suggests that the largest
eigenvalues of SG and FG are closely related. Actually,
we can prove a stronger statement that the spectra of
FG and G are closely related (Lemma 4.2).

Lemma 4.2. (Eigen-equivalence of SG and FG) We
have (λF)T = λS. Furthermore, λ is an eigenvalue of
FG, iff λT is an eigenvalue of SG.

Lemma 4.2 implies that preserving λS in G is
equivalent to preserving λF in FG . Therefore, Problem
1 can be re-written in terms of λF (of a static network)
instead of λS (of a temporal one).

4.3 Step 2: A Well Conditioned Network How-
ever λF is problematic too. The difficulty in comput-
ing λF arises because FG is ill-conditioned. So mod-
ern packages take many iterations and the result may
be imprecise. Intuitively, it is easy to understand that
computing λF is difficult: as if it were not, computing
λS itself would have been easy (just compute λF and
raise it to the T -th power).

So we create a new static network that has a close
relation with FG and whose adjacency matrix is well-
conditioned. To this end, we look at the average flat-
tened network, XG , whose adjacency matrix is defined

as XG = FG+FG
′

2 , where FG
′ is the transpose of FG . It

is easy to see that trace of XG and FG are equal, which
means that the sum of eigenvalues of XG and FG are
equal. Moreover, we have the following:

Lemma 4.3. (Eigenvalue relationship of FG and XG)
The largest eigenvalue of FG, λF, and the largest eigen-
value of XG, λX, are related as λF ≤ λX.

Note that if λX < 1, then λF < 1. Moreover, if
λF < 1 then λS < 1. Hence if there is no epidemic
in XG , then there is no epidemic in FG as well, which
implies that the rate of spread in G is low. Hence, XG
is a good proxy static network for FG and G and λX is a
well-motivated quantity to preserve. Also we need only
weak-connectedness of UG for λX (and corresponding
eigenvectors) to be real and positive (by the Perron-
Frobenius theorem). Furthermore, XG is free of the
problems faced by FG and SG : it is well-conditioned
and its eigenvalue can be efficiently computed.
New problem: Considering all of the above, we re-
formulate Problem 1 in terms of λX. Since G and XG
are closely related networks, the merge definitions on
XG can be easily extended from those on G.

Problem 2. Given G with weakly connected UG over
V , αN and αT , find Gcond by repeated application of
µ(XG , ., .) and ζ(XG , ., .) such that |V ′| = (1 − αN)|V |;
T ′ = (1− αT)T ; and Gcond minimizes |λX − λcond

X |.

4.4 NetCondense In this section, we propose a fast
greedy algorithm for Problem 2 called NetCondense,
which only takes sub-quadratic time in the size of the
input. Again, the obvious approach is combinatorial.
Consider a greedy approach using ∆-Score.

Definition 5. ∆-Score. ∆XG (a, b) = |λX − λcond
X |

where λcond
X is the largest eigenvalue of the new XG after

merging a and b (node or time-pair).

The greedy approach will successively choose those
merge operands at each step which have the lowest

∆-Score. Doing this naively will lead to quartic time
(due to repeated re-computations of λX for all possible
time/node-pairs). Recall that we limit time-merges to
adjacent time-pairs and node-merges to node-pairs with
an edge in UG . Now, computing ∆-Score simply
for all edges (a, b) ∈ UG is still expensive. Hence
we estimate ∆-Score for node/time pairs instead using
Matrix Perturbation Theory [23]. Let u and v be right
and left eigenvector of XG , corresponding to λX. Let
u(ai) and v(ai) be the right and left ‘eigenscore’ of node
ai in XG . Then we have the following lemmas.

Lemma 4.4. (∆-Score for time-pair) Let Vi = nodes in
Layer i of XG. Now, for merge µ(XG , i, j) to form k,

∆XG (i, j) =
−λX(

∑
i∈Vi,Vj

η(i,i)) +
∑

k∈Vk
v(i)koTu + Y

vTu−
∑

i∈Vi,Vj
η(i,i)

upto a first-order approximation, where η(i,j) =
u(i)v(j), Y =

∑
i∈Vi,j∈Vj

(η(i,j) + η(j,i))XG(i, j), and

koTu = 1
2 (λXu(i) + λXu(j) + u(i) + u(j)).

Lemma 4.5. (∆-Score for node-pair) Let Va =
{a1, a2, . . . , aT } ∈ XG corresponding to node a in G.
For merge ζ(XG , a, b) to form c,

∆XG (a, b) =
−λX(

∑
a∈Va,Vb

η(a,a)) +
∑

c∈Vc
v(a)coTu + Y

vTu−
∑

a∈Va,Vb
η(a,a)

upto a first-order approximation, where η(a,b) =
u(a)v(b), Y =

∑
a∈Va,b∈Vb

(η(a,b) + η(b,a))XG(a, b), and

coTu = 1
2λX(u(a) + u(b)).

Our algorithm NetCondense works as follows: we
first calculate ∆-Score for time-pairs based on Lemma
4.4. Similarly, for all edges in UG using Lemma 4.5.
Then we choose the top number of node/time-pairs
based on score, and we keep merging till Gcond is of the
desired size. Complete pseudo-code is in Algorithm 1.

Lemma 4.6. NetCondense has sub-quadratic time-
complexity of O(TEu+E logE+αNθTV +αTE), where
θ is the maximum degree in any Gi ∈ G and linear
space-complexity of O(E + TV).

Parallelizability: We can easily parallelize NetCon-
dense: once the eigenvector of XG is computed, ∆-
Score for node-pairs and time-pairs (loops in Lines 3
and 5 in Algorithm 1) can be computed independent of
each other in parallel. Similarly, µ and ζ operators (in
Line 11) are also parallelizable.

5 Experiments

5.1 Experimental Setup We briefly describe our
set-up next. All experiments are conducted using a 4
Xeon E7-4850 CPU with 512GB 1066Mhz RAM. Our
code is publicly available for academic purposes1.

1http://people.cs.vt.edu/~bijaya/codes/NetCondense.zip

Algorithm 1 NetCondense

Require: Temporal graph G , 0 < αN < 1, 0 < αT < 1
Ensure: Temporal graph Gcond(V ′, E′, T ′)
1: obtain XG using Definition 4.
2: for every adjacent time-pairs {i, j} do
3: Calculate ∆XG (i, j) using Lemma 4.4

4: for every node-pair {a, b} in UG do
5: Caluclate ∆XG (a, b) using Lemma 4.5

6: sort the lists of ∆-Score for time-pairs and node-pairs
7: Gcond = G
8: while |V ′| > αN · |V | or T ′ > αT · T do
9: (x, y)← node-pair or time-pair with lowest ∆-Score

10: Gcond ← µ(Gcond, x, y) or ζ(Gcond, x, y)

11: return Gcond

Table 2: Datasets Information.

Dataset Weight |V | |E| T

WorkPlace Contact Hrs 92 1.5K 12 Days

School Contact Hrs 182 4.2K 9 Days

Enron # Emails 184 8.4K 44 Months

Chess # Games 7.3K 62.4K 9 Years

Arxiv # Papers 28K 3.8M 9 Years

Wikipedia # Pages 118K 2.1M 10 Years

WikiTalk # Messages 497K 2.7M 12 Years

DBLP # Papers 1.3M 18M 25 Years

Datasets. We run NetCondense on a variety of real
datasets (Table 2) of varying sizes from different do-
mains such as social-interactions (WorkPlace, School,
Chess), co-authorship (Arxiv, DBLP) and communi-
cation (Enron, Wikipedia, WikiTalk). They include
weighted and both directed and undirected networks.
Edge-weights are normalized to the range [0, 1].
Baselines. Though there are no direct competitors, we
adapt multiple methods to use as baselines.
Random: Uniformly randomly choose node-pairs and
time-stamps to merge.
Tensor: Here we pick merge operands based on the
centrality given by tensor decomposition. G can be
also seen as a tensor of size |V | × |V | × T . So we
run PARAFAC decomposition [12] on G and choose the
largest component to get three vectors x, y, and z of
size |V |, |V |, and T respectively. We compute pairwise
centrality measure for node-pair {a, b} as x(a) ·y(b) and
for time-pair {i, j} as z(i) · z(j) and choose the top-K
least central ones.
CNTemp: We run Coarsenet [18] (a summarization
method which preserves the diffusive property of a static
graph) on UG and repeat the summary to create Gcond.

In Random and Tensor, we use our own merge
definitions, hence the comparison is inherently unfair.

5.2 Perfomance of NetCondense: Effectiveness
We ran all the algorithms to get Gcond for different
values of αN and αT , and measure RX = λcond

X /λX
to judge performance for Problem 2. See Figure 4.

NetCondense is able to preserve λX excellently (upto
80% even when the the number of time-stamps and
nodes are reduced by 50% and 70% respectively). On
the other hand, the baselines perform much worse, and
quickly degrade λX. Note that Tensor does not even
finish within 7 days for DBLP for larger αN . Random
and Tensor perform poorly even though they use the
same merge definitions, showcasing the importance of
right merges. In case of Tensor, unexpectedly it
tends to merge unimportant nodes with all nodes in
their neighborhood even if they are “important”; so it
is unable to preserve λX. Finally CNTemp performs
badly as it does not use the full temporal nature of G.

(a) WikiTalk (b) DBLP

Figure 4: RX = λcond
X /λX vs αN (top row, αT = 0.5)

and vs αT (bottom row, αN = 0.5).

We also compare our performance for Problem 1,
against an algorithm specifically designed for it. We use
the simple greedy algorithm GreedySys for Problem 1
(as the brute-force is too expensive): it greedily picks
top node/time merges by actually re-computing λS.
We can run GreedySys only for small networks due
to the SG issues we mentioned before. See Figure 5
(λM

S is λcond
S obtained from method M). NetCondense

does almost as well as GreedySys, due to our careful
transformations and reductions.

(a) WorkPlace (b) School

Figure 5: Plot of RS = λNetCondense
S /λGreedySys

S .

5.3 Application 1: Temporal Influence Maxi-
mization In this section, we show how to apply our
method to the well-known Influence Maximization prob-
lem on a temporal network (TempInfMax) [2]. Given a
propagation model, TempInfMax aims to find a seed-set
S ⊆ V at time 0, which maximizes the ‘footprint’ (ex-
pected number of infected nodes) at time T . Solving it
directly on large G can be very slow. Here we propose
to use the much smaller Gcond as an approximation of G,
as it maintains the propagation-based properties well.

Specifically, we propose CondInf (Algorithm 2) to
solve the TempInfMax problem on temporal networks.
The idea is to get Gcond from NetCondense, solve
TempInfMax problem on Gcond, and map the results
back to G. Thanks to our well designed merging scheme
that merges nodes with the similar diffusive property
together, a simple random mapping is enough. To be
specific, let the operator that maps node v from Gcond

to G be ζ−1(v). If v is a super-node then ζ−1(v) returns
a node sampled uniformly at random from v.

Algorithm 2 CondInf

Require: Temporal graph G , 0 < αN < 1, 0 < αT < 1
Ensure: seed set S of top k seeds
1: S = ∅
2: Gcond ← NetCondense (G, αN , αT)
3: k′1, k

′
2, ..., k

′
S ← Run base TempInfMax on Gcond

4: for every k′i do
5: ki ← ζ−1(k′i); S ← S ∪ {ki}
6: return S

We use two different base TempInfMax methods:
ForwardInfluence [2] for the SI model and Greedy-
OT [7] for the PersistentIC model. As our approach
is general (our results can be easily extended to other
models), and our actual algorithm/output is model-
independent, we expect CondInf to perform well for
both these methods. To calculate the footprint, we
infect nodes in seed set S at time 0, and run the
appropriate model till time T . We set αT = 0.5
and αN = 0.5 for all datasets. We show results only
for ForwardInfluence in Table 3. The results for
Greedy-OT were similar, however Greedy-OT did
not even finish for datasets larger than Enron. As we
can see, our method performs almost as good as the base
method on G, while being significantly faster (upto 48
times), showcasing its usefulness.

5.4 Application 2: Understanding/Exploring
Networks We can also use NetCondense for ‘sense-
making’ of temporal datasets: it ensures that important
nodes and times remain unmerged while super-nodes
and super-times form coherent interpretable groups of
nodes and time-stamps. This is not the case for the
baselines e.g. Tensor merges important nodes, giving

Table 3: Performance of CondInf (CI) with For-
wardInfluence (FI) as base methods. σm and Tm are
the footprint and running time for method m respectively.
‘-’ means the method did not finish.

Dataset σFI σCI TFI TCI

School 130 121 14s 3s

Enron 110 107 18s 3s

Chess 1293 1257 36m 45s

Arxiv 23768 23572 3.7d 7.5h

Wikipedia - 26335 - 7.1h

Figure 6: Condensed WorkPlace (αN = 0.6, αT = 0.5).

us heterogeneous super-nodes lacking interpretability.
WorkPlace: It is a social-contact network between
employees of a company with five departments, where
weights are normalized contact time. In Gcond (see
Figure 6), we find a super-node composed mostly of
nodes from SRH (orange) and DSE (pink) departments,
which were on floor 1 of the building while the rest were
on floor 2. In the same super-node, surprisingly, we find
a node from DMCT (green) department on floor 2 who
has a high contact with DSE nodes. It turns out s/he
was labeled as a “wanderer” in [4].

Unmerged nodes in the Gcond had high degree in
all T . For example, we found nodes 80, 150, 751,
and 255 (colored black) remained unmerged even for
αN = 0.9. In fact, all these nodes were classified as
“Linkers” whose temporal stability is crucial for epi-
demic spread [4]. The visualization of Gcond emphasizes
that linkers connect consistently to nodes from multiple
depts.; which is not obvious in the original networks.
We also examined the super-times, and discovered that
the days in and around the weekend (where there is little
activity) were merged together.
School: It is socio-contact network between high school
students from five different sections over several days [5].
In Gcond, we find a super-node containing nodes from
MP*1 and MP*2 sections and another super-node with
nodes from remaining three sections PC, PC*, and PSI.
The groupings in the super-nodes are intuitive as the
dataset can broadly be divided into two components
(MP*1 and MP*2) and (PC, PC*, and PSI) [5].
Enron: They are the email communication networks of
employees of the Enron Corporation. In Gcond (αN =
0.8, αT = 0.5), we find that unmerged nodes are im-
portant nodes such as G. Whalley (President), K. Lay
(CEO), and J. Skilling (CEO). We also found a star with

Chief of Staff S. Kean in the center and important offi-
cials such as Whalley, Lay and J. Shankman (President)
for six consecutive time-stamps. We also find a clique of
high ranking officials in the same period. These struc-
tures appear only in consecutive time-stamps leading to
when Enron declared bankruptcy. Sudden emergence,
stability for over six/seven time-stamps, and sudden dis-
appearance of these structures correctly suggests that a
major event occurred during that time. We also note
that time-stamps in 2001 were never merged, indicative
of important and suspicious behavior.
DBLP: These are co-authorship networks from DBLP-CS
bibiliography. This is an especially large dataset: hence
exploration without any condensation is hard. In Gcond

(αN = 0.7, αT = 0.5), we found that the unmerged
nodes were very well-known researchers such as Philip
S. Yu, Christos Faloutsos, Rakesh Aggarwal, and so
on.We also find a giant super-node of size 395, 000.
An interesting observation is that famous researchers
connect very weakly to the giant super-node. Whereas,
less known researchers connect to the giant super-node
with higher edge-weights. Another common pattern
among famous researchers is that they connect to super-
nodes only in the earlier time-stamps in the dataset.
This observation suggests that as the authors become
more famous, they collaborate less with non-famous
researchers or their collaborators too become famous.

(a) Scalability (b) Parallelizability
Figure 7: Near-linear running time and speed-up.

5.5 Scalability and Parallelizability Figure 7 (a)
shows the runtime of NetCondense on the compo-
nents of increasing size of Arxiv. NetCondense has
subquadratic time complexity. In practice, it is near-
linear w.r.t input size. Figure 7 (b) shows the near-
linear run-time speed-up of parallel-NetCondense vs
cores on Wikipedia.

6 Related Work

Mining Dynamic Graphs. Dynamic graphs have
gained a lot of interest recently (see [1] for a survey).
Many graph mining tasks on static graphs have been
introduced to dynamic graphs, including community
detection [24] and link prediction [21]. Due to the
increasing size, typically it is challenging to perform
analysis on temporal networks.
Propagation. Cascade processes have been widely
studied, including in epidemiology [3, 8], information

diffusion [10], cyber-security [11] and product market-
ing [20]. A lot of work has been done on determining
the epidemic threshold i.e. the conditions under which
a virus causes an epidemic [6, 16, 17]. Examples of
propagation-based optimization problems are influence
maximization [10, 7, 2], and immunization [26]. Re-
motely related work deals with weak and strong ties
over time for diffusion [9].
Graph Summarization. Here, we seek to find a com-
pact representation of a large graph by leveraging global
and local graph properties like local neighborhood struc-
ture [15], node/edge attributes [25], action logs [19],
eigenvalue of the adjacency matrix [18], and key sub-
graphs. It is also related to graph sparsification algo-
rithms [14]. The goal is to either reduce storage and
manipulation costs, or simplify structure. Summariz-
ing temporal networks has not seen much work, except
recent papers based on bits-storage-compression [13],
or extracting a list of recurrent sub-structures over
time [22]. Unlike these, we are the first to focus on hier-
archical condensation: using structural merges, giving a
smaller propagation-equivalent temporal network.

7 Discussion and Conclusions

In this paper, we proposed a novel general Temporal
Network Condensation Problem using the funda-
mental so-called ‘system matrix’ and present an effec-
tive, near-linear and parallelizable algorithm NetCon-
dense. Using a variety of large datasets, we leverage
it to dramatically speed-up influence maximization al-
gorithms on temporal networks, and to explore and un-
derstand complex datasets. As also shown by our ex-
periments, it is useful to note that our method itself
is model-agnostic and has wide-applicability, thanks to
our carefully chosen metrics which can be easily gener-
alized to other propagation models. There are multiple
ideas to explore: including leveraging NetCondense
for other tasks such as role discovery and immunization.
Acknowledgements This paper is based on work partially

supported by the NSF (IIS-1353346), the NEH (HG-229283-

15), ORNL (Task Order 4000143330) and from the Maryland

Procurement Office (H98230-14-C- 0127), and a Facebook

faculty gift.
References

[1] C. Aggarwal and K. Subbian. Evolutionary network
analysis: A survey. ACM Computing Survey, 2014.

[2] C. C. Aggarwal, S. Lin, and S. Y. Philip. On influential
node discovery in dynamic social networks. In SDM,
2012.

[3] R. M. Anderson and R. M. May. Infectious Diseases
of Humans. Oxford University Press, 1991.

[4] M. G. et. al. Data on face-to-face contacts in an office
building suggest a low-cost vaccination strategy based
on community linkers. Network Science, 3(03), 2015.

[5] J. Fournet and A. Barrat. Contact patterns among
high school students. PloS one, 9(9):e107878, 2014.

[6] A. Ganesh, L. Massoulie, and D. Towsley. The effect
of network topology in spread of epidemics. IEEE
INFOCOM, 2005.

[7] N. T. Gayraud, E. Pitoura, and P. Tsaparas. Diffusion
maximization in evolving social networks. In COSN,
2015.

[8] H. W. Hethcote. The mathematics of infectious dis-
eases. SIAM review, 42(4):599–653, 2000.

[9] M. Karsai, N. Perra, and A. Vespignani. Time varying
networks and the weakness of strong ties. Scientific
Reports, 4:4001, 2014.

[10] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
KDD, 2003.

[11] J. O. Kephart and S. R. White. Measuring and
modeling computer virus prevalence. In Research in
Security and Privacy, pages 2–15. IEEE, 1993.

[12] T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM Review, 51(3):455–500, 2009.

[13] W. Liu, A. Kan, J. Chan, J. Bailey, C. Leckie, J. Pei,
and R. Kotagiri. On compressing weighted time-
evolving graphs. In CIKM12. ACM, 2012.

[14] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis,
and A. Ukkonen. Sparsification of influence networks.
In KDD, pages 529–537. ACM, 2011.

[15] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph
summarization with bounded error. In SIGMOD, 2008.

[16] B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler,
and C. Faloutsos. Threshold conditions for arbitrary
cascade models on arbitrary networks. In ICDM, 2011.

[17] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos,
and C. Faloutsos. Virus propagation on time-varying
networks: Theory and immunization algorithms. In
ECML/PKDD10, 2010.

[18] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and
V. Subrahmanian. Fast influence-based coarsening for
large networks. In KDD14.

[19] Q. Qu, S. Liu, C. S. Jensen, F. Zhu, and C. Faloutsos.
Interestingness-driven diffusion process summarization
in dynamic networks. In ECML/PKDD. 2014.

[20] E. M. Rogers. Diffusion of innovations. 2010.
[21] P. Sarkar, D. Chakrabarti, and M. Jordan. Nonpara-

metric link prediction in dynamic networks. In ICML,
2012.

[22] N. Shah, D. Koutra, T. Zou, B. Gallagher, and
C. Faloutsos. Timecrunch: Interpretable dynamic
graph summarization. In KDD15.

[23] G. W. Stewart. Matrix perturbation theory. 1990.
[24] C. Tantipathananandh and T. Y. Berger-Wolf. Finding

communities in dynamic social networks. In ICDM11.
[25] N. Zhang, Y. Tian, and J. M. Patel. Discovery-driven

graph summarization. In ICDE, 2010.
[26] Y. Zhang and B. A. Prakash. Dava: Distributing

vaccines over networks under prior information. In
SDM, 2014.

