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Node Immunization on Large Graphs:
Theory and Algorithms
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Abstract—Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or
remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the Node Immunization
problem, is the core building block in many high-impact applications, ranging from public health, cybersecurity to viral marketing.
A central component in Node Immunization is to find the best k bridges of a give graph. In this setting, we typically want to
determine the relative importance of a node (or a set of nodes) within the graph, for example, how valuable (as a bridge) a
person or a group of persons is in a social network.
First of all, we propose a novel ‘bridging’ score ∆λ, inspired by immunology, and we show that its results agree with intuition
for several realistic settings. Since the straightforward way to compute ∆λ is computationally intractable, we then focus on the
computational issues and propose a surprisingly efficient way (O(nk2 + m)) to estimate it. Experimental results on real graphs
show that (1) the proposed ‘bridging’ score gives mining results consistent with intuition; and (2) the proposed fast solution is up
to 7 orders of magnitude faster than straightforward alternatives.

Index Terms—Immunization, Graph Mining, Scalability

F

1 INTRODUCTION

G IVEN a graph, we want to quickly find the k best
nodes to immunize (or, equivalently, remove), to make

the remaining nodes to be most robust to the virus attack.
This is the core problem for many applications: In a
computer network intrusion setting, we want the k best
nodes to defend (e.g., through expensive and extensive
vigilance), to minimize the spread of malware. Similarly, in
a law-enforcement setting, given a network of criminals, we
want to neutralize those nodes that will maximally scatter
the graph.

There are three main challenges behind this problem.
First (C1. Vulnerability measure), we need a ‘Vulnerability’
measure of the graph, that is, how likely/easily that a graph
will be infected by a virus. Second (C2. Shield-value),
based on the ‘Vulnerability’ measure of the entire graph, we
further need a measure to quantify the ‘Shield-value’ of a
given set of nodes in the graph, i.e., how important are they
in terms of maintaining the ‘Vulnerability’ of the graph?
Alternatively, how much less vulnerable will be the graph
to the virus attack, if those nodes are removed/immunized?
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Third (C3. Algorithms), based on the ‘Shield-value’ mea-
sure of a set of nodes, we need an effective and scalable
algorithm to quickly determine the k nodes that collectively
exhibit the highest ‘Shield-value’ score on large, disk-
resident graphs.

In this paper, we aim to address these challenges in mul-
tiple dimensions. Motivated from immunology and graph
loop/path capacity, we adopt the first1 eigenvalue λ of the
graph as the ‘Vulnerability’ measurement (for C1). Based
on that, we propose a novel definition of the ‘Shield-
value’ score Sv(S) for a specific set of nodes (for C2).
By carefully using the results from the theory of matrix
perturbation, we show that the proposed ‘Shield-value’
gives a good approximation of the corresponding eigen-
drop (i.e., the decrease of the ‘Vulnerability’ measurement
if we remove/immunize the set of nodes S from the graph).
Furthermore, we show that the proposed ‘Shield-value’
score is sub-modular, which enables us to develop a near-
optimal and scalable algorithm (NetShield) to find a set of
nodes with highest ‘Shield-value’ score (for C3). Finally,
we propose a variant (NetShield+) to further balance the
optimization quality and computational cost.

The main contributions of this paper can be summarized
as

1. A novel definition of the ‘Shield-value’ score Sv(S)
for a set of nodes, by carefully using the results from
the theory of matrix perturbation.

2. A near-optimal and scalable algorithm (NetShield) and
its variant (NetShield+) to find a set of nodes with
highest ‘Shield-value’ score, by carefully using results

1. In this paper, the first eigenvalue means the eigenvalue with the
largest module.
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from the theory of sub-modularity.
3. Extensive experiments on several real data sets, illus-

trating the effectiveness and efficiency of the proposed
methods.

The rest of the paper is organized as follows: Section 2
gives the problem definitions. We present the ‘Vulnera-
bility’ measurement in Section 3. The proposed ‘Shield-
value’ score is presented in Section 4. We address the
computational issues in Section 5 and evaluate the proposed
methods in Section 6. Section 7 gives the related work, and
Section 8 gives the conclusions.

2 PROBLEM DEFINITIONS

Table 1 lists the main symbols we use throughout the
paper. In this paper, we focus on un-directed un-weighted
graphs. We represent the graph by its adjacency matrix.
Following standard notations, we use capital bold letters
for matrices (e.g., A), lower-case bold letters for vectors
(e.g., a), and calligraphic fonts for sets (e.g., S). We denote
the transpose with a prime (i.e., A′ is the transpose of
A), and we use parenthesized superscripts to denote the
corresponding variable after deleting the nodes indexed by
the superscripts. For example, λ is the first eigenvalue of A,
then λi is the first eigenvalue of A after deleting its i(th)

row/column. We use (λi,ui) to denote the ith eigen-pair
(sorted by the magnitude of the eigenvalue) of A. When the
subscript is omitted, we refer to them as the first eigenvalue
and eigenvector respectively (i.e., λ , λ1 and u , u1).

TABLE 1: Symbols

Symbol Definition and Description
A,B, . . . matrices (bold upper case)
A(i, j) the element at the ith row and jth

column of matrix A
A(i, :) the ith row of matrix A
A(:, j) the jth column of matrix A
A′ transpose of matrix A
a,b, . . . column vectors
S, T , . . . sets (calligraphic)
n number of nodes in the graph
m number of edges in the graph
(λi,ui) the ith eigen-pair of A
λ first eigenvalue of A (i.e., λ , λ1)
u first eigenvector of A (i.e., u , u1)
λ(i), λ(S) first eigenvalue of A by deleting

node i (or the set of nodes in S)
∆λ(i) eigen-drop: ∆λ(i) = λ− λ(i)

∆λ(S) eigen-drop: ∆λ(S) = λ− λ(S)

Sv(i) ‘Shield-value’ score of node i
Sv(S) ‘Shield-value’ score of nodes in S
V(G) ‘Vulnerability’ score of the graph

With the above notations, our problems can be formally
defined as follows:

Problem 1: Measuring ‘Vulnerability’
Given: A large un-directed un-weighted connected graph

G with adjacency matrix A;
Find: A single number V(G), reflecting the ‘Vulnera-

bility’ of the whole graph.
Problem 2: Measuring ‘Shield-value’

Given: A subset S with k nodes in a large un-directed
un-weighted connected graph G with adjacency
matrix A;

Find: A single number Sv(S), reflecting the ‘Shield-
value’ of these k nodes (that is, the benefit of their
removal/immunization to the vulnerability of the
graph).

Problem 3: Finding k Nodes of Best ‘Shield-value’
Given: A large un-directed un-weighted connected graph

G with n nodes and an integer k;
Find: A subset S of k nodes with the highest ‘Shield-

value’ score among all
(
n
k

)
possible subsets.

In the next three sections, we present the corresponding
solutions respectively.

3 BACKGROUND: OUR SOLUTION FOR
PROBLEM 1
As mentioned in Section 1, the ultimate goal of Node
Immunization problem is to contain epidemic over the
network. In an epidemic network, nodes can have different
states depending on the epidemic model. The model we
simulate here is SIS model [46]. In SIS model, each node
would have one of the following two states: susceptible
and infected. Susceptible nodes can be infected by infected
nodes with infection rate b at each time stamp, and each
infected node can get back to susceptible state with host-
recovery rate d. Epidemic threshold is an intrinsic property
of a network. When the strength of the virus is greater than
the epidemic threshold, then the epidemic would breakout.

Here, we begin to address Problem 1. According to [46],
the epidemic thresholds of arbitrary cascade models on
arbitrary networks can be determined by the largest eigen-
value of network’s connectivity matrix. The intuition is that,
the larger the largest eigenvalue is, the more connected the
graph is, and therefore the more vulnerable the structure is
under epidemic. Thus we suggest using the first eigenvalue
λ as ‘Vulnerability’ score. We should point out that it is
not our main contribution to adopt λ as the ‘Vulnerability’
measure of a graph. Nonetheless, it is the base of our
proposed solutions for both Problem 2 and Problem 3.

3.1 ‘Vulnerability’ Score
In Problem 1, the goal is to measure the ‘Vulnerability’
of the whole graph by a single number. We adopt the
first eigenvalue of the adjacency matrix A as such a
measurement (eq. (1)): the larger λ is, the more vulnerable
the whole graph is.

V(G) , λ (1)

Figure 1 presents an example, where we have four graphs
with 5 nodes. Intuitively, the graph becomes more and more
vulnerable from the left to the right. In other words, for a
given strength of the virus attack, it is more likely that an
epidemic will break out in the graphs on the right than those
on the left side. Therefore, the vulnerability of the graph
increases. We can see that the corresponding λ increases
from left to right as well. Note that ‘Vulnerability’ score
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(a) λ = 1.7 (b)λ = 2.0 λ = 2.9 λ = 4.0

Fig. 1: An example of measuring ‘Vulnerability’ of the graph.
More edges, and carefully placed, make the graph better con-
nected, and thus more vulnerable. Notice that the chain (a) and
the star (b) have the same number of edges, but our λ score
correctly considers the star as more vulnerable.

in this paper is not necessarily comparable between graphs
with different number of nodes. That means if we have
two graphs with the same ‘Vulnerability’ score but different
number of nodes, this does not necessarily means that they
two have the same ability to contain the epidemic.

Notice that the concept of ‘Vulnerability’ is different from
vertex connectivity of the graph [20]. For ‘Vulnerability’,
we want to quantify how likily/easiy a graph will be
infected by a virus (given the strength of virus attack).
Whereas for vertex connectivity, we want to quantify how
difficult for a graph to be disconnected. For example,
both graph (a) and (b) in figure 1 have the same vertex
connectivity (both are 1). But graph (b) is more vulnerable
to the virus attack. Also notice that although ‘Vulnerability’
is related to both graph density (i.e., average degree) and di-
ameter, neither of them can fully describe the ‘Vulnerability’
by itself. For example, in figure 1, (a) and (b) share the same
density/average degree although (b) is more vulnerable than
(a); (b) and (c) share the same diameter although (c) is more
vulnerable than (b).

3.2 Justifications

The first eigenvalue λ is a good measurement of the
graph ‘Vulnerability’, because of recent results on epidemic
thresholds from immunology [7]: λ is closely related to
the epidemic threshold τ of a graph under a flu-like
SIS (susceptible-infective-susceptible) epidemic model, and
specifically τ = 1/λ. This means that a virus less infective
than τ will quickly get extinguished instead of lingering
forever. Therefore, given the strength of the virus (that is,
the infection rate and the host-recovery rate), an epidemic
is more likely for a graph with larger λ.

We can also show that the first eigenvalue λ is closely
related to the so-called loop capacity and the path capacity
of the graph, that is, the number of loops and paths of
length l (l = 2, 3, . . .). If a graph has many such loops and
paths, then it is well connected, and thus more vulnerable
(i.e., it is easier for a virus to propagate across the graph =
the graph is less robust to virus attack). Note that although
there are many other measurements that are also related
to graph connectivity like second smallest eigenvalue of
the Laplacian Matrix of the graph, they are not as directly
related to epidemic threshold as λ is, as shown in [46].
Thus, for the epidemic-like influence process, λ is more
suitable for evaluating vulnerability score than those alter-
native measurements.

4 OUR SOLUTION FOR PROBLEM 2
In this section, we focus on Problem 2. We first present our
solution, and then provide justifications.

4.1 Proposed ‘Shield-value’ Score

Fig. 2: An example on measuring the ‘Shield-value’ score
of a given set of nodes. The best k nodes found by our
NetShield are shaded. In (a), notice that the highest degree
nodes (e.g., node 1) is not chosen. In (b), immunizing the
shaded nodes makes the remaining graph most robust to
the virus attack.

In Problem 2, the goal is to quantify the importance of
a given set of nodes S, and specifically the impact of their
deletion/immunization to the ‘Vulnerability’ of the rest of
the graph. The obvious choice is the drop in eigenvalue,
or eigen-drop ∆λ that their removal will cause to the
graph. We propose to approximate it, to obtain efficient
computations, as we will describe later. Specifically, we
propose using Sv(S) defined as:

Sv(S) =
∑
i∈S

2λu(i)2 −
∑
i,j∈S

A(i, j)u(i)u(j) (2)

Intuitively, by eq. (2), a set of nodes S has higher ‘Shield-
value’ score if (1) each of them has a high eigen-score
(u(i)), and (2) they are dissimilar with each other (small
or zero A(i, j)). Figure 2 shows an example on measuring
the ‘Shield-value’ score of a given set of nodes. The best
k nodes found by our NetShield (which will be introduced
very soon in the next section) are shaded. The result is
consistent with intuition. In figure 2(a), it picks node 13
as best k = 1 node (although nodes 1, 5 and 9 have the
highest degree). In figure 2(b), deleting the shaded nodes
(node 1, 5, 9 and 13) will make the graph least vulnerable
(i.e., the remaining graphs are sets of isolated nodes; and
therefore it is most robust to virus attack).

4.2 Justifications
Here, we provide some justifications on the proposed
‘Shield-value’ score, which is summarized in Lemma 1. It
says that our proposed ‘Shield-value’ score Sv(S) is a good
approximation for the eigen-drop ∆λ(S) when deleting the
set of nodes S from the original graph A.

Lemma 1: Let λ(S) be the (exact) first eigen-value of Â,
where Â is the perturbed version of A by removing all of
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its rows/columns indexed by set S. Let δ = λ− λ2 be the
eigen-gap, and d be the maximum degree of A. If λ is the
simple first eigen-value of A, and δ ≥ 2

√
2kd, then

∆λ(S) = Sv(S) +O(
∑
j∈S
‖A(:, j)‖2) (3)

where Sv(S) is computed by eq. (2) and ∆λ(S) = λ−λ(S).
Proof: First, let us write Â as a perturbed version of the
original matrix A:

Â = A + E, and E = F + F′ + G (4)

where F(:, j) = −A(:, j) (j ∈ S and F(:, j) = 0 (j /∈ S);
G(i, j) = A(i, j) (i, j ∈ S) and G(i, j) = 0(i /∈ S, or j /∈
S).

Since Au = λu, we have

u′F′u = u′Fu = (F′u)′u = −
∑
j∈S

λu(j)2

u′Gu =
∑
i,j∈S

A(i, j)u(i)u(j) (5)

Let λ̃ be the corresponding perturbed eigen-value of λ,
according to the matrix perturbation theory (p.183 [53]),
we have

λ̃ = λ+ u′Eu +O(‖E‖2F )

= λ+ u′Fu + u′F′u + u′Gu +O(‖E‖2F )

= λ− (
∑
j∈S

2λu(j)−
∑
i,j∈S

A(i, j)u(i)u(j))

+O(
∑
j∈S
‖A(:, j)‖2)

= λ− Sv(S) +O(
∑
j∈S
‖A(:, j)‖2) (6)

Let λ̃i(i = 2, ..., n) be the corresponding perturbed eigen-
value of λi(i = 2, ..., n). Again, by the matrix perturbation
theory (p.203 [53]), we have

λ̃ ≥ λ− ‖E‖2 ≥ λ− ‖E‖F ≥ λ−
√

2kd

λ̃i ≤ λi + ‖E‖2 ≤ λi + ‖E‖F ≤ λi +
√

2kd (7)

Since δ = λ− λ2 ≥ 2
√

2kd, we have λ̃ ≥ λ̃i(i = 2, ..., n).
In other words, we have λ(S) = λ̃. Therefore,

∆λ(S) = λ− λ(S) = λ− λ̃
= Sv(S) +O(

∑
j∈S
‖A(:, j)‖2) (8)

which completes the proof.
Notice that ‖E‖F and ‖E‖2 refer to the Frobenious norm

and the l2 norm of E, respectively. The former is defined as
‖E‖F =

∑n
i=1

∑n
j=1 a

2
ij , while ‖E‖2 equals to the largest

eigenvalue of E. And the inequality ‖E‖F > ‖E‖2 always
holds.

5 OUR SOLUTION FOR PROBLEM 3
In this section, we deal with Problem 3. Here, the goal is
to find a subset of k nodes with the highest ‘Shield-value’
score (among all

(
n
k

)
possible subsets). We start by showing

that the two straightforward methods (referred to as ‘Com-
Eigs’, and ‘Com-Eval’) are computationally intractable.
Then, we present the proposed NetShield algorithm and
analyze its accuracy as well as its computational com-
plexity. Finally to further balance the optimization quality
and computational cost, we propose a variant of NetShield,
NetShield+.

5.1 Challenges
There are two obviously straightforward methods for Prob-
lem 3. The first one (referred to as ‘Com-Eigs’2) works
as follows: for each possible subset S, we delete the
corresponding rows/columns from the adjacency matrix A;
compute the first eigenvalue of the new perturbed adjacency
matrix; and finally output the subset of nodes which has the
smallest eigenvalue (therefore has the largest eigen-drop).
Despite the simplicity of this strategy, it is computational
intractable due to its combinatorial nature. It is easy to
show that the computational complexity of ‘Com-Eigs’ is
O(
(
n
k

)
· m)3. This is computationally intractable even for

small graphs. For example, in a graph with 1K nodes and
10K edges, suppose that it takes about 0.01 second to find
its first eigenvalue. Then we need about 2,615 years to find
the best-5 nodes with the highest ‘Shield-value’ score!

A more reasonable (in terms of speed) way to find the
best-k nodes is to evaluate Sv(S), rather than to compute
the first eigenvalue λ(S),

(
n
k

)
times, and pick the subset

with the highest Sv(S). We refer to this strategy as ‘Com-
Eval’. Compared with the straightforward method (referred
to as ‘Com-Eigs’, which is O(

(
n
k

)
· m)); ‘Com-Eval’ is

much faster (O(
(
n
k

)
· k2)). However, ‘Com-Eval’ is still

not applicable to real applications due to its combinatorial
nature. Again, in a graph with 1K nodes and 10K edges,
suppose that it only takes about 0.00001 second to evaluate
Sv(S) once. Then we still need about 3 months to find the
best-5 nodes with the highest ‘Shield-value’ score!

Theorem 1: K-Node Immunization with λ is NP com-
plete.
Proof: See the appendix.

5.2 Proposed NetShield Algorithm
The proposed NetShield is given in Alg. 1. In Alg. 1,
we compute the first eigenvalue λ and the corresponding
eigenvector u in step 1. In step 4, the n × 1 vector v
measures the ‘Shield-value’ score of each individual node.
Then, in each iteration of steps 6-17, we greedily select one
more node and add it into set S according to score(j) (step
13). Note that steps 10-12 are to exclude those nodes that
are already in the selected set S.

2. To our best knowledge, this is the best known method to get the
optimal solution of Problem 3.

3. We assume that k is relatively small compared with n and m (e.g.,
tens or hundreds). Therefore, after deleting k rows/columns from A, we
still have O(m) edges.
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Algorithm 1 NetShield

Input: the adjacency matrix A and an integer k
Output: a set S with k nodes

1: compute the first eigenvalue λ of A; let u be the
corresponding eigenvector u(j)(j = 1, ..., n);

2: initialize S to be empty;
3: for j = 1 to n do
4: v(j) = (2 · λ−A(j, j)) · u(j)2;
5: end for
6: for iter = 1 to k do
7: let B = A(:,S);
8: let b = B · u(S);
9: for j = 1 to n do

10: if j ∈ S then
11: let score(j) = −1;
12: else
13: let score(j) = v(j)− 2 · b(j) · u(j);
14: end if
15: end for
16: let i = argmaxjscore(j), add i to set S;
17: end for
18: return S.

5.3 Analysis of NetShield

Here, we analyze the accuracy and efficiency of the pro-
posed NetShield.

First, according to the following theorem, Alg. 1 is near-
optimal wrt ‘Com-Eval’. In addition, by Lemma 1, our
‘Shield-value’ score (which ‘Com-Eval’ tries to optimize)
is a good approximation for the actual eigen-drop ∆λ(S)
(which ‘Com-Eigs’ tries to optimize). Therefore, we would
expect that Alg. 1 also gives a good approximation wrt
‘Com-Eigs’ (See Section 6 for experimental validation).

Theorem 2: Effectiveness of NetShield. Let S and S̃ be
the sets selected by Alg. 1 and by ‘Com-Eval’, respectively.
Let ∆λ(S) and ∆λ(S̃) be the corresponding eigen-drops.
Then, ∆λ(S) ≥ (1− 1/e)∆λ(S̃).
Proof: Let I,J ,K be three sets and I ⊆ J . Define the
following three sets based on I,J ,K: S = I ∪ K, T =
J ∪ K, R = J \ I.

Substituting eq.(2), we have

Sv(S) − Sv(I) =
∑
i∈K

2λu(i)2 −
∑
i,j∈K

A(i, j)u(i)u(j)

− 2
∑

j∈I,i∈K
A(i, j)u(i)u(j)

Sv(T ) − Sv(J ) =
∑
i∈K

2λu(i)2 −
∑
i,j∈K

A(i, j)u(i)u(j)

− 2
∑

j∈J ,i∈K
A(i, j)u(i)u(j) (9)

According to Perron-Frobenius theorem, we have u(i) ≥

0(i = 1, ..., n). Therefore,

(Sv(S) − Sv(I))− (Sv(T )− Sv(J ))

= 2
∑

i∈K,j∈R
A(i, j)u(i)u(j) ≥ 0 (10)

⇒ Sv(S)− Sv(I) ≥ Sv(T )− Sv(J )

Therefore, the function Sv(S) is sub-modular.
Next, we can verify that node i selected in step 16 of

Alg. 1 satisfies i = argmaxj /∈SSv(S ∪ j) for a fixed set S.
Next, we prove that Sv(S) is monotonically non-

decreasing wrt S. According to eq. (9), we have

Sv(S) − Sv(I) =
∑
i∈K

2λu(i)2 −
∑
i,j∈K

A(i, j)u(i)u(j)

− 2
∑

j∈I,i∈K
A(i, j)u(i)u(j)

≥
∑
i∈K

2λu(i)2 − 2
∑

j∈S,i∈K
A(i, j)u(i)u(j)

= 2
∑
i∈K

u(i)(λu(i)−
∑
j∈S

A(i, j)u(j))

≥ 2
∑
i∈K

u(i)(λu(i)−
n∑

j=1

A(i, j)u(j))

= 2
∑
i∈K

u(i)(λu(i)− λu(i)) = 0 (11)

where the last equality is due to the definition of eigenvalue.
Finally, it is easy to verify that Sv(φ) = 0, where

φ is an empty set. Using the property of sub-modular
functions [30], we have ∆λ(S) ≥ (1− 1/e)∆λ(S̃).

According to Lemma 2, the computational complexity
of Alg. 1 is O(nk2 + m), which is much faster than both
‘Com-Eigs’ (O(

(
n
k

)
·m)) and ‘Com-Eval’ (O(

(
n
k

)
· k2)).

Lemma 2: Computational Complexity of NetShield.
The computational complexity of Alg. 1 is O(nk2 +m).
Proof:

The cost of step 1 is O(m), and the cost of step 2 is
constant. For steps 3-5, its cost is O(n). For each inner
loop of steps 6-17, its cost is O(n)+O(n · iter). Therefore,
we have

cost(Netshield) = O(m) +O(n) +

k∑
iter=1

(n+ n · iter)

= O(nk2 +m) (12)

which completes the proof.
Finally, according to Lemma 3, the space cost of Alg. 1

is also efficient (i.e., linear wrt the size of the graph).
Lemma 3: Space Cost of NetShield. The space cost of

Alg. 1 is O(n+m+ k).
Proof:

The space cost of step 1 is O(n + m + 1): O(m)
for storing the graph, O(n + m) for running the eigen-
decomposition algorithm, O(n) for storing u and O(1) for
storing λ. The cost for step 2 is O(1). For steps 3-5, we
need an additional O(n) space. Then, it takes O(n) space
for each inner loop (steps 6-17) and we can re-use this
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space for the next iteration. Finally, we need O(k) to store
the selected nodes (step 18).

Putting the above together and ignoring the constant
term, we have that the space cost of Alg. 1 is O(n+m+k),
which completes the proof.

5.4 A Variant: NetShield+ Algorithm

Recall in Lemma 1, the eigen-gap δ, max degree d and k
should satisfy δ ≥ 2

√
2kd. Given the fact that λ ≤ d, we

have δ ≤ d. Therefore we get the constraint between max
degree d and k, which can be simplified as k ≤ d/8. The
constraint implies that in order to get a good approximation
of ∆λ(S) with Sv(S), the number of nodes we select to
immunize should be less than d/8, which might not hold
when the max degree of the graph is relatively small. To
address this problem and further balance the optimization
quality and the computational cost, we propose NetShield+
algorithm, which is given in Alg. 2. Instead of finding out
all the k nodes to delete in one round as in NetShield (i.e.
compute the first eigenvalue and corresponding eigenvector
only once), NetShield+ tries to find out those k nodes
iteratively. By fixing a batch number b as an extra input,
NetShield+ would pick out and delete b best nodes for
current graph at each round, and then use the updated
graph for next round of computation. More discussion on
choosing an appropriate value of b is in Section 6. In
Alg. 2, an extra variable b is provided as input compared
to NetShield. It first computes the number of iterations t in
step 1. In each iteration of steps 3-8, we find b nodes to
delete from current graph by NetShield algorithm and add
them to S. At the end of each iteration, we update matrix
A by deleting those selected nodes from it. The algorithm
will terminate when all the k nodes are collected.

By a similar procedure for Lemma 2, we can show that
the time complexity of NetShield+ is O(mk/b+nkb); and
its space cost is the same as that of NetShield. Thus, it is
still a linear algorithm wrt the size of the input graph.

Algorithm 2 NetShield+

Input: the adjacency matrix A, two integers k and b
Output: a set S with k nodes

1: compute the number of iterations t = bk/bc;
2: initialize S to be empty;
3: for j = 1 to t do
4: initialize S ′ to be empty;
5: S ′ =NetShield(A, b);
6: S = S

⋃
S ′;

7: update A by deleting the nodes in S ′;
8: end for
9: if k > tb then

10: S ′ =NetShield(A, k − tb);
11: S = S

⋃
S ′;

12: end if
13: return S.

6 EXPERIMENTAL EVALUATIONS

We present detailed experimental results in this section.
All the experiments are designed to answer the following
questions:

1: (Effectiveness) How effective is the proposed Sv(S) in
real graphs?

2: (Efficiency) How fast and scalable is the proposed
NetShield?

6.1 Data sets

TABLE 2: Summary of the data sets

Name n m

Karate 34 152
AA 418,236 2,753,798

NetFlix 2,667,199 171,460,874
Oregon-A 633 1,086
Oregon-B 1,503 2,810
Oregon-C 2,504 4,723
Oregon-D 2,854 4,932
Oregon-E 3,995 7,710
Oregon-F 5,296 10,097
Oregon-G 7,352 15,665
Oregon-H 10,860 23,409
Oregon-I 13,947 30,584

The real data sets we used are summarized in table 2. The
first data set (Karate) is a unipartite graph, which describes
the friendship among the 34 members of a karate club at
a US university [65]. Each node is a member in the karate
club and the existence of the edge indicates that the two
corresponding members are friends. Overall, we have n =
34 nodes and m = 156 edges.

The second data set (AA) is an author-author network
from DBLP.4 AA is a co-authorship network, where each
node is an author and the existence of an edge indicates
the co-authorship between the two corresponding persons.
Overall, we have n = 418, 236 nodes and m = 2, 753, 798
edges. We also construct much smaller co-authorship net-
works, using the authors from only one conference (e.g.,
KDD, SIGIR, SIGMOD, etc.). For example, KDD is the
co-authorship network for the authors in the ‘KDD’ con-
ference. For these smaller co-authorship networks, they
typically have a few thousand nodes and up to a few
ten thousand edges. In this graph, the Node Immunization
algorithm can help us identify a set of authors who are
most important in terms of their influence in data mining
and information retrieval area.

The third data set (NetFlix) is from the Netflix prize.5

This is also a bipartite graph. We have two types of
nodes: user and movie. The existence of an edge indicates
that the corresponding user has rated the corresponding
movie. Overall, we have n = 2, 667, 199 nodes and
m = 171, 460, 874 edges. This is a bipartite graph, and

4. http://www.informatik.uni-trier.de/˜ley/db/
5. http://www.netflixprize.com/
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we convert it to a unipartite graph A: A =

(
0 B
B′ 0

)
,

where 0 is a matrix with all zero entries and B is the
adjacency matrix of the bipartite graph. Like the AA data
set, by our Node Immunization algorithm, it aims to a set
of well connected users/movies.

The last is a series of data set (Oregon) from Oregon
AS (Autonomous System) router graphs, which are AS-
level connectivity networks inferred from Oregon route-
views [57]. The number of nodes in this set ranges from
633 to 13,947, the corresponding edges ranges from 1,086
to 30,584. The result returned by Node Immunization
algorithm would be a set of most important routers in the
network to immunize when virus begins to spread around
the Internet.

Repeatability of Experimental Results. The code for the
proposed NetShield and NetShield+ is available in https:
//www.dropbox.com/s/aaq5ly4mcxhijmg/Netshieldplus.tar.

6.2 Effectiveness
Here, we first test the approximation accuracy of the
proposed Sv(S). Then, we compare different immunization
policies, followed by some case studies. Notice that the
experiment results of quality vs. speed trade-off for the
proposed NetShield, NetShield+, the optimal ‘Com-Eigs’
and the alternative greedy method are presented in subsec-
tion 6.3.

6.2.1 Approximation quality of Sv(S)

The proposed NetShield is based on eq. (2). That is, we
want to approximate the first eigenvalue of the perturbed
matrix by λ and u. By Lemma 1, it says that Sv(S) is a
good approximation for the actual eigen-drop ∆λ(S). Here,
let us experimentally evaluate how good this approximation
is on real graphs. We construct an authorship network from
one of the following conferences: ‘KDD’, ‘ICDM’, ‘SDM’,
‘SIGMOD’, ‘VLDB’, ‘NIPS’, ‘UAI’, ‘SIGIR’ and ‘WWW’.
We then compute the linear correlation coefficient between
∆λ(S) and Sv(S) with several different k values (k =
1, 2, 5, 10, 20). The results are shown in table 3. It can be
seen that the approximation is very good - in all the cases,
the linear correlation coefficient is greater than 0.9. Figure 3
gives the scatter plot of ∆λ(S) (i.e., the actual eigen-drop)
vs. Sv(S) (i.e., the proposed ‘Shield-value’) for k = 5 on
‘ICDM’ data set.

6.2.2 Immunization by NetShield and NetShield+
Recall that the proposed ‘Vulnerability’ score of the graph
is motivated by the epidemic threshold [7]. In this paper,
we primarily use SIS model (like, e.g., the flu) in our
experiment for simplicity. Nonetheless, it has been proved
that largest eigenvalue of the connectivity matrix can be
used as epidemic threshold for many other cascade models
on arbitrary networks [46].

We compare NetShield and NetShield+ with the follow-
ing alternative choices: (1) picking a random neighbor of
a randomly chosen node [11] (‘Aquaintance’), (2) picking
the nodes with the highest eigen-scores u(i)(i = 1, ..., n)
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Fig. 3: Evaluation of the approximation accuracy of Sv(S)
on the ‘ICDM’ graph. The proposed ‘Shield-value’ Sv(S)
(y-axis) gives a good approximation for the actual eigen-
drop ∆λ(S) (x-axis). Most points are on or close to the
diagonal (ideal).
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Fig. 5: Average number of infectees at the end of each
simulation using different methods and their corresponding
variance

(‘Eigs’)6, (3) picking the nodes with the highest abnor-
mality scores [54] (‘abnormality’), (4) picking the nodes
with the highest betweenness centrality scores based on
the shortest path [15] (‘Short’), (5) picking the nodes with
the highest betweenness centrality scores based on random
walks [39] (‘N.RW’), (6) picking the nodes with the highest
degrees (‘Degree’), (7) picking the nodes with the highest
PageRank scores [43] (‘PageRank’) and (8) picking the
nodes with highest robustness scores [8] (‘Robust’). For
each method, we delete 5 nodes for immunization. Let
s = λ·b/d be the normalized virus strength (bigger s means
more stronger virus), where b and d are the infection rate
and host-recovery rate, respectively. The result is presented
in figure 4, which is averaged over 100 runs. It can be
seen that the proposed NetShield+ and NetShield are always
the best, - their curves are always the lowest which means
that we always have the least number of infected nodes in
the graph with this immunization strategy. Notice that the

6. For the un-directed graph which we focus on in this paper, ‘Eigs’ is
equivalent to ‘HITS’[29].
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TABLE 3: Evaluation on the approximation accuracy of Sv(S). Larger is better.

k ‘KDD’ ‘ICDM’ ‘SDM’ ‘SIGMOD’ ‘VLDB’ ‘NIPS’ ‘UAI’ ‘SIGIR’ ‘WWW’
1 0.9519 0.9908 0.9995 1.0000 0.9548 0.9915 0.9990 0.9882 0.9438
2 0.9629 0.9910 0.9984 0.9927 0.9541 0.9914 0.9988 0.9673 0.9427
5 0.9721 0.9888 0.9992 0.9895 0.9671 0.9925 0.9987 0.9423 0.9406
10 0.9726 0.9863 0.9987 0.9852 0.9382 0.9924 0.9986 0.9327 0.9377
20 0.9683 0.9798 0.9929 0.9772 0.9298 0.9907 0.9985 0.9354 0.9288
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Fig. 4: Evaluation of immunization of NetShield and NetShield+ on the Oregon-A graph. The fraction of infected nodes
(in log-scale) vs. the time step. s is normalized virus strength. Lower is better. The proposed NetShield and NetShield+
is always the best, leading to the fastest healing of the graph. Best viewed in color.

performance of ‘Eigs’ is much worse than the proposed
NetShield. This indicates that by collectively finding a set
of nodes with the highest ‘Shield-value’, we indeed obtain
extra performance gain (compared with naı̈vely choosing
the top-k nodes which have the highest individual ‘Shield-
value’ scores). Figure 5 shows the statistical significance of
our proposed method on Oregon-A with the same setting as
figure 4(b). Note that as the average numbers of infectees
and variances of abnormality, shortest path betweenness
centrality, eigen-scores and robustness score based methods
are relative large and beyond the scope, we choose to only
report the results of other stable methods. The results on
other Oregon graphs are similar to those of Oregon-A.

6.2.3 Case studies

Next, we will show some case studies to illustrate the
effectiveness of the proposed Sv(S), the ‘Shield-value’
score of a subset of nodes.

We run the proposed NetShield on AA data set and return
the best k = 200 authors. Some representative authors,
to name a few, are ‘Sudhakar M. Reddy’, ‘Wei Wang’,
‘Heinrich Niemann’, ‘Srimat T. Chakradhar’, ‘Philip S.
Yu’, ‘Lei Zhang’, ‘Wei Li’, ‘Jiawei Han’, ‘Srinivasan
Parthasarathy’, ‘Srivaths Ravi’, ‘Antonis M. Paschalis’,
‘Mohammed Javeed Zaki’, ‘Lei Li’, ‘Dimitris Gizopoulos’,
‘Alberto L. Sangiovanni-Vincentelli’, ‘Narayanan Vijaykr-
ishnan’, ‘Jason Cong’, ‘Thomas S. Huang’, etc. We can
make some very interesting observations from the result:

1 There are some multi-disciplinary people in the result.
For example, Prof. Alberto L. Sangiovanni-Vincentelli
from UC Berkeley is interested in ‘design technol-
ogy’, ‘cad’, ‘embedded systems’, and ‘formal verifi-
cation’; Prof. Philip S. Yu from UIC is interested in

‘databases’, ‘performance’, ‘distributed systems’ and
‘data mining’.

2 Some people show up because they are famous in one
specific area, and occasionally have one/two papers in
a remotely related area (therefore, increasing the path
capacity between two remote areas). For example, Dr.
Srimat T. Chakradhar mainly focuses on ‘cad’. But
he has co-authored in a ‘NIPS’ paper. Therefore, he
creates a critical connection between these two (orig-
inally) remote areas: ‘cad’ and ‘machine learning’.

3 Some people show up because they have ambiguous
names (e.g., Wei Wang, Lei Li, Lei Zhang, Wei Li,
etc.). Take ‘Wei Wang’ as an example; according to
DBLP,7 there are 49 different ‘Wei Wang’s. In our ex-
periment, we treat all of them as one person. That is to
say, it is equivalent to putting an artificial ‘Wei Wang’
in the graph who brings 49 different ‘Wei Wang’s
together. These 49 ‘Wei Wang’s are in fact spread
out in quite different areas. (e.g., Wei Wang@UNC
is in ‘data mining’ and ‘bio’; Wei Wang@NUS is in
‘communication’; Wei Wang@MIT is in ‘non-linear
systems’. )

6.3 Efficiency
We will study the wall-clock running time of the proposed
NetShield and NetShield+ here. Basically, we want to
answer the following three questions:

1. (Speed) What is the speedup of the proposed NetShield
over the straightforward methods (‘Com-Eigs’ and
‘Com-Eval’)?

2. (Scalability) How does NetShield scale with the size
of the graph (n and m) and k?

7. http://www.informatik.uni-trier.de/˜ey/db/indices
/a-tree/w/Wang:Wei.html



1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TKDE.2015.2465378, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 26, NO. 11, NOVEMBER 2014 9

3. (Quality/Speed Trade-Off) How does NetShield and
NetShield+ balance between the quality and the speed?

For the results we report in this subsection, all of the
experiments are done on the same machine with four
2.4GHz AMD CPUs and 48GB memory, running Linux
(2.6 kernel). If the program takes more than 1,000,000
seconds, we stop running it.

First, we compare NetShield with ‘Com-Eigs’ and ‘Com-
Eval’. Figure 6 shows the comparison on three real data
sets. We can make the following conclusions: (1) Straight-
forward methods (‘Com-Eigs’ and ‘Com-Eval’) are com-
putationally intractable even for a small graph. For exam-
ple, on the Karate data set with only 34 nodes, it takes
more than 100,000 and 1,000 seconds to find the best-10
by ‘Com-Eigs’ and by ‘Com-Eval’, respectively. (2) The
speedup of the proposed NetShield over both ‘Com-Eigs’
and ‘Com-Eval’ is huge - in most cases, we achieve several
(up to 7) orders of magnitude speedups! (3) The speedup of
the proposed NetShield over both ‘Com-Eigs’ and ‘Com-
Eval’ quickly increases wrt the size of the graph as well
as k. (4) For a given size of the graph (fixed n and m),
the wall-clock time is almost constant - suggesting that
NetShield spends most of its running time in computing
λ and u.

Next, we evaluate the scalability of NetShield. From
figure 7, it can be seen that NetShield scales linearly wrt
both n and m, which means that it is suitable for large
graphs.
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Fig. 7: Evaluation of the scalability of the proposed Net-
Shield wrt. n (number of nodes) and m (number of edges),
respectively. The wall-clock time of our NetShield scales
linearly wrt n and m.

Then, we evaluate how the proposed NetShield balances
between the quality and speed. For the Karate graph, we

use the proposed NetShield to find a set of k nodes and
check the corresponding eigen-drop (i.e., the decrease of
the first eigenvalue of the adjacency matrix) as well as
the corresponding wall-clock time. We compare it with
‘Com-Eigs’, which always gives the optimal solutions (i.e.,
it returns the subset that leads to the largest eigen-drop).
The results (eigen-drop vs. wall-clock time) are plotted in
figure 8. It can been seen that NetShield gains significant of
speedup over the ‘Com-Eigs’, at the cost of a small fraction
of quality loss (i.e., the green dash lines are near-flat).

Fig. 8: Evaluation of the quality/speed trade off. Eigen-drop
vs. wall-clock time, with different budget k.The proposed
NetShield (red star) achieves a good balance between
eigen-drop and speed. Note that the x-axis (wall-clock time)
is in logarithmic scale. The number inside the parenthesis
above each green dash curve is the ratio of eigen-drop
between NetShield and ‘Com-Eigs’. NetShield is optimal
when this ratio is 1. Best viewed in color.

We also compare the proposed NetShield with the fol-
lowing heuristic (referred to as ‘Greedy’): at each iteration,
we re-compute the first eigenvector of the current graph
and pick a node with the highest eigen-score u(i); then
we delete this node from the graph and go to the next
iteration. For the NetFlix graph, we find a set of k nodes
and check the corresponding eigen-drop as well as the
corresponding wall-clock time. The quality/speed trade-
off curve is plotted in figure 9. From the figure, we can
make two observations: (1) the quality of the two methods
(‘Greedy’ vs. the proposed NetShield) are almost the same
(note that the green dash curves in the plots are always
straight flat); (2) the proposed NetShield is always faster
than ‘Greedy’ (up to 103x speedup).

Finally, we evaluate how NetShield+ further balances
between the quality and speed. To try different batch value
b, we move the experiment on a larger data set, Oregon-
G. In figure 10(a), we set k to different values. For each
setting of k, we change the value of b and report the
relationship between ratio b/k wrt eigen-drop. The three
lines all begins with b = 1, that is b/k = 0.02, 0.01, 0.005
for k = 50, 100, 200 respectively. Note that when b/k
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(a) Karate (b) AA (c) NetFlix

Fig. 6: Wall-clock time vs. the budget k for different methods. The time is in the logarithmic scale. Our NetShield (red
star) is much faster. Lower is better.

increases to 1, NetShield+ is reduced to NetShield. As we
can see, as b increases, eigen-drop decreases, but does not
make significant differences in each setting. Figure 10(b)
reports the relationship between wall clock time and eigen-
drop when setting different b/k ratios and k values. Setting
b = 1 is very time consuming in all three cases. However
when b is increased to k/10, the time is significantly
reduced while eigen-drop still keeps relatively high.

Fig. 9: Comparison of NetShield vs. ‘Greedy’. The pro-
posed NetShield (red star) is better than ‘Greedy’ (i.e.,
faster, with the same quality). Note that the x-axis (wall-
clock time) is in logarithmic scale. The number inside the
parenthesis above each green dash curve is the speedup
of the proposed NetShield over ‘Greedy’. Best viewed in
color.

7 RELATED WORK
In this section, we review the related work, which can be
categorized into 5 parts: measuring the importance of nodes
on graphs, immunization, spectral graph analysis, influence
maximization, and general graph mining.

Measuring Importance of Nodes on Graphs. In the
literature, there are a lot of node importance measurements,

including betweenness centrality, both the one based on the
shortest path [15] and the one based on random walks [39],
PageRank [43], HITS [29], and coreness score (defined
by k-core decomposition) [36]. Other remotely related
works include the abnormality score of a given node [54],
articulation points [20], and k-vertex cut [20]. Our ‘Shield-
value’ score is fundamentally different from these node
importance scores, in the sense that they all aim to measure
the importance of an individual node; whereas our ‘Shield-
value’ tries to collectively measure the importance of a set
of k nodes. Despite the fact that all these existing measures
are successful for the goal they were originally designed
for, they are not designed for the purpose of immunization.
Therefore, it is not surprising that they lead to sub-optimal
immunization results (See figure 4). Moreover, several of
these importance measurements do not scale up well for
large graphs, being cubic or quadratic wrt the number of
nodes n, even if we use approximations (e.g., [37]). In
contrast, the proposed NetShield is linear wrt the number
of edges and the number of nodes (O(nk2 +m)). Another
remotely related work is outbreak detection [31] in the
sense that both works aim to select a subset of “important”
nodes on graphs. However, the motivating applications
(e.g., immunization) of this work is different from detect-
ing outbreak [31] (e.g., contaminants in water distribution
network). Consequently we solve a different optimization
problem (i.e., maximize the ‘Shield-value’ in eq. (2)) in
this paper.

Another related topic is information diffusion. Many
works in this domain are based on finding out the most
influential or critical nodes among the network to maxi-
mize/minimize the spread of information as shown in [60],
[22], [3]. Saito et al. [49] and Yamagishi et al. [64] give the
diffusion probability model and opinion formation model
respectively based on node attributes. Tuli et al. [58] present
an approach for selecting critical nodes for both simple and
complex contagions, with the assumption that a node can
contract a contagion from more than one neighbor. Another
interesting work is about selecting critical nodes from the
network within certain budget as in [42] and [41].

Immunization. There is vast literature on virus prop-
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Fig. 10: Evaluation of quality/speed trade off of NetShield+. Eigen-drop does not change linearly wrt computation time,
it is easy to find compromise points where we can get considerable eigen-drop with short computation time.

agation and epidemic thresholds: for full cliques (eg.,
Hethcote [24]), for power-law graphs [5], and studies of
heuristics for immunization policies [11]. The only papers
that study arbitrary graphs focus on the epidemic threshold
(Wang et al. [61] and its follow-up work [16], [7], [46]).
In short, none of the above papers solves the problem of
optimal immunization for an arbitrary, given graph.

Tong et al. in [57] address the problem of optimizing the
leading eigenvalue by edge manipulation. Kim et al. [45]
present an immunization approach of online networks based
on self-similar selection, which does not require informa-
tion about network morphology at individual node level.
The reverse engineering of immunization problems can be
defined as follows: given a snapshot of a graph in which
an infection has been spreading for some time, find out
the original seed set where the infection started. Related
works about this topic are shown in [47] and [48]. Other
related works include [44], [46], [35] and [67] which study
the theory about determining epidemic in the network, al-
gorithms about effective immunization, reverse engineering
and Node Immunization given uncertain data.

Spectral Graph Analysis. Pioneering works in this
aspect can be traced back to Fiedler’s seminal work [14].
Representative follow-up works include [50], [40], [66],
[12], etc. All of these works use the eigenvectors of the
graph (or the graph Laplacian) to find communities in the
graph.

Influence Maximization Although Node Immunization
and influence maximization all aim to find a subset of nodes
to affect the influence spread in the graph, they are different
with each other in the sense that Node Immunization tries
to minimize the influence spread by changing the graph
structure, while influence maximization aims to choose
an optimal subset of seeds to maximize the ‘infected’
population. The pioneering work in influence maximization
is from Kempe et al [28]. To address the NP-hardness of
the problem, different efficient and scalable algorithms were
proposed to approximate the optimal solution for different
models [9], [10], [19], [52], [18].

General Graph Mining. In recent years, graph min-

ing is a very hot research topic. Representative works
include pattern and law mining [1], [6], frequent substruc-
ture discovery [63], [26], community mining and graph
partition [27], [2], proximity [55], [17], [56], bridgeness-
based detection of fuzzy communities [38], the network
value of a customer [13], the bridge centrality [25], graph
blocker [21], the connectivity of the small world [51]
and social capital [32], etc. Research about sampling in
graph shows that the influential individuals in the graph
can be identified by only accessing to a small portion
of nodes in the network. Also, certain sample biases are
beneficial for many applications [34], [33]. A large amount
of work is also done on analyzing the spreading process
of competing information, virus and etc. [4], [59], [62].
The algorithm in [23] enables within-network and across-
network classification with regional features of the graph.

8 CONCLUSION

We studied the node immunization problem on large real
graphs. Besides the problem definitions, our main con-
tributions can be summarized as the following three per-
spectives. First, we proposed a novel definition of ‘Shield-
value’ score Sv(S) for a set of nodes S, by carefully
using the results from the theory of matrix perturbation.
Second, we proposed a near-optimal and scalable algorithm
(NetShield) to find a set of nodes with the highest ‘Shield-
value’ score. We further proposed its variant (NetShield+)
to balance the optimization quality and speed. Finally, we
conducted extensive experiments on several real data sets
to illustrate both the effectiveness as well as the efficiency
of our methods. Specifically, the proposed methods (a) give
an effective immunization strategy (b) scale linearly with
the size of the graph (number of edges) and (c) outperform
competitors by several orders of magnitude.

Future work includes (1) to parallelize the current method
(e.g., using Hadoop8) and (2) to study extensions for
additional virus propagation models, like SIR [24] etc.

8. http://hadoop.apache.org/
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APPENDIX
PROOF OF NP-COMPLETENESS OF K-NODE
IMMUNIZATION

Proof:
We consider the decision version of the K-Node immu-

nization problem as follows.
Problem 4: K-Node Immunization (Decision Version)

(IMM(G, k))
Given: A large un-directed un-weighted connected graph

G with n nodes and an integer k;
Find: A subset S of k nodes. By deleting S from graph

G (with adjacency matrix A), we get a new graph
G(S)(with adjacency matrix Â), in which λ(S) ≤
τ . To make the problem easier, we proof that the
problem is already NP-complete when τ = 0.

First, we show that K-Node immunization problem is in
NP: given subset (S) to be deleted from graph G, we can
check in poly-time if the first eigenvalue of new graph G(S)

is less than 0 or not.
Second, we prove that K-Node immunization problem is

poly-time reducible from a known NP-complete problem,
i.e., the Independent Set problem(IND(G, k)).

Problem 5: Independent Set problem(IND(G, k))
Given a large un-directed un-weighted connected
graph G = (V,E) and a number k > 0, is there
a set of k vertices, no two of which are adjacent?

Assume the size of G is n. Given an instance of
IND(G, k), we create an instance IMM(G,n−k) (delete
n− k nodes in G such that the the first eigenvalue in new
graph is less or equal to 0). We now need to prove two
things:

1. If there is a YES answer to IND(G, k), then there is
a YES answer to IMM(G,n− k).

The adjacency matrix of G which has YES answer to
IND(G, k) is

A =

(
Sk×k Xk×(n−k)

Xk×(n−k) T(n−k)×(n−k)

)
where Sk×k = 0, because the k nodes in S are indepen-

dent to each other. By deleting the rest n − k nodes in T
(T = V/S), we have Xk×(n−k) =0,T(n−k)×(n−k) = 0.
Therefore the adjacency matrix for new graph G(T ) has
Â = 0. Hence λ(T ) = λ(0)= 0. So there is a YES answer
to IMM(G,n− k).

2. If there is a NO answer to IND(G, k), then there is
a NO answer to IMM(G,n− k).

Suppose we have a YES answer to IMM(G,n − k).
Then by deleting n− k nodes from graph G (suppose they
are in T ), we will get new graph G(T ) with λ(T ) ≤ 0 where

Â =

(
Sk×k 0k×(n−k)

0k×(n−k) 0(n−k)×(n−k)

)
Since Sk×k ≥ 0, to satisfy λ(T ) ≤ 0, we need to have

Sk×k = 0, which implies that all the k nodes in S are
independent to each other. The conclusion is contradict with
the assumption that there is a NO answer to IND(G, k),
therefore IMM(G,n−k) can only have NO answer here.

Hence K-node Immunization (Decision Version) is NP-
complete.


