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ABSTRACT

Probabilistic hierarchical time-series forecasting is an important
variant of time-series forecasting, where the goal is to model and
forecast multivariate time-series that have hierarchical relations.
Previous works assume rigid consistency over the given hierarchies
and do not adapt well to real-world data that show deviation from
this assumption. Moreover, recent state-of-art neural probabilistic
methods also impose hierarchical relations on point predictions and
samples of the predictive distribution. This does not account for
full forecast distributions being consistent with the hierarchy and
leading to poorly calibrated forecasts. We close both these gaps and
propose PROFHiT, a probabilistic hierarchical forecasting model
that jointly models forecast distributions over the entire hierarchy.
PROFHiT (1) uses a flexible probabilistic Bayesian approach and (2)
introduces soft distributional consistency regularization that enables
end-to-end learning of the entire forecast distribution leveraging
information from the underlying hierarchy. This enables calibrated
forecasts as well as adaptation to real-life data with varied hierar-
chical consistency. PROFHiT provides 41-88% better performance
in accuracy and significantly better calibration over a wide range
of dataset consistency. Furthermore, PROFHiT adapts to missing
data and can provide reliable forecasts even if up to 10% of input
time-series data is missing, whereas other methods’ performance
severely degrades by over 70%.
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1 INTRODUCTION

Time-series forecasting is an important problem that impacts decision-
making in a wide range of applications. In many real-world situa-
tions, the time-series have inherent hierarchical relations and struc-
tures. Examples include forecasting time-series of employment [27]
measured at different geographical scales; epidemic forecasting [25]
at county, state and country, etc. Given time-series dataset with un-
derlying hierarchical relations, the goal of hierarchical time-series
forecasting is to generate an accurate forecast for all time-series
leveraging the hierarchical relations between time-series [12].

Soft Distributional Consistency
Regularization of refined forecasts 

Hierarchical Time-Series Dataset

Weak 
Consistency

Strong 
Consistency

Base forecasts 

Datasets of varying consistency

Figure 1: PROFHiT learns to produce accurate and calibrated

forecasts from datasets of varying consistency by leverag-

ing underlying hierarchical relations via Soft Distributional

Consistency Regularization

Previous hierarchical forecastingmethods assume that the dataset
is strongly consistent: the time-series values of datasets strictly sat-
isfy the underlying hierarchical constraints. Therefore, thesemodels
usually impose the generated forecasts to be strongly consistent as
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well i.e., forecasts strictly satisfy the hierarchical relations of the
dataset. For example, classical two-step methods [13] use a bottom-
up or top-down approach where all time-series at a single level of
the hierarchy are modeled independently and the values of other
levels are derived using the aggregation function governing the
hierarchy. In contrast, many real-world applications have weakly
consistent datasets, i.e., the data do not follow the strict constraints
of the hierarchy. Such datasets have an underlying data generation
process that follows a hierarchical set of constraints but may con-
tain some deviations. These deviations can be caused by factors
such as measurement or reporting error, asynchrony in data aggre-
gation and revision pipeline, etc, as frequently observed in epidemic
forecasting [1]. Most state-of-the-art methods are designed for ap-
plications having strongly consistent datasets by imposing rigid
constraints — they thus may not adapt to such deviations and can
provide poor forecasts for application with weakly consistent datasets

Moreover, previous methods do not focus on providing calibrated
forecasts with precise uncertainty measures. Traditional methods
focus on point predictions only. Recent post-processing methods

[2, 27, 30] refine base independent forecast distribution as a post-
processing step. While these methods can be easily applied to fore-
casts from any model, this does not enable the models generating
the base forecasts to learn from hierarchical relations between time-
series of the hierarchy. End-to-end learning neural methods directly
leverage hierarchical relations as part of the model architecture [24]
or learning algorithm [11]. Due to their comprehensive end-to-end
approach, they usually outperform post-processing methods by
imposing hierarchical constraints on the mean or fixed quantiles of
the forecast distributions. However, these methods do not enforce
hierarchical consistency on the full distributions. Therefore, the
forecasts may not be well-calibrated [18] i.e., they produce unreliable
prediction intervals that may not match observed probabilities from
ground truth [10].

Table 1: Comparison of PROFHiT with state-of-the-art meth-

ods.

Two-step
methods

Post-processing
methods

End-to-end
neural methods

PROFHiT

(This paper)
Probabilistic
Forecasts × ✓ ✓ ✓

Strong & Weak
Consistency × × × ✓

Distributional
Consistency × ✓ × ✓

End-to-end
Learning × × ✓ ✓

In this work, we fill this gap of learning well-calibrated and
accurate forecasts for both strong and weakly consistent datasets
leveraging underlying hierarchical relations. We propose PROFHiT
(Probabilistic Robust Forecasting for Hierarchical Time-series), a
neural probabilistic hierarchical time-series forecasting method
that provides an end-to-end Bayesian approach to model the dis-
tributions of forecasts of all time-series together (see Table 1 for a
comparison). Specifically, we introduce a novel Soft Distributional
Consistency Regularization (SoftDisCoR) to tackle the challenge.
First, SoftDisCoR enables PROFHiT to leverage hierarchical re-
lations over entire forecast distributions to generate calibrated

forecast distributions by encouraging the forecast distribution of
any parent node to be similar to the aggregation of children nodes’
forecast distributions (Figure 1). Second, since SoftDisCoR is a soft
constraint, our model is trained to adapt to datasets with varying
hierarchical consistency that allows the model to trade-off con-
sistency for better accuracy and calibration on weakly consistent
datasets. Our main contributions are:

(1) Accurate andCalibrated ProbabilisticHierarchical Time-

Series Forecasting: We propose PROFHiT, a deep proba-
bilistic framework for modeling the distributions of each
time-series together using the soft distributional consistency
regularization (SoftDisCoR). PROFHiT leverages probabilis-
tic deep-learning models to learn priors of individual time-
series and refines the priors of all time-series leveraging the
hierarchy to provide accurate and well-calibrated forecasts.

(2) Adaptation to Strong and Weak Consistency via Soft

Distributional Consistency Regularization: SoftDis-
CoR imposes soft hierarchical constraints on the full forecast
distributions to help adapt the model to varying levels of hi-
erarchical consistency. We build a novel refinement module
over base forecast priors and leverage multi-task learning
over shared parameters that enable PROFHiT to perform
consistently well across the hierarchy.

(3) Evaluation Across Multiple Datasets and with Missing

Data: We show that our method PROFHiT outperforms a
wide variety of state-of-the-art baselines on both accuracy
and calibration, at all levels of the hierarchy, for both strong
and weakly consistent datasets. We also show training using
SoftDisCoR enables PROFHiT to leverage hierarchical rela-
tions to provide reliable predictions that can handle missing
data values in the time-series.

2 RELATEDWORK

Probabilistic time-series forecastingClassical probabilistic time-
series forecasting methods include exponential smoothing and
ARIMA [13]. They are simple but focus on univariate time-series
and model each time-series sequence independently. Recently, deep
learning based methods have been successfully applied in this area.
DeepVAR [26] trains an auto-regressive recurrent networkmodel on
a large number of related time series to directly output themean and
variance parameters of the forecast distribution. Other works are
inspired from the space-state models and explicitly model the tran-
sition and emission components with deep learning modules such
as deep Markov models [17] and deep state space models [19, 23]
Recently, EpiFNP [14] has achieved state-of-art performance in
epidemic forecasting. It learns the stochastic correlations between
input data and datapoints to model a flexible non-parametric distri-
bution for univariate sequences.
Hierarchical time-series forecasting Classical works on hier-
archical time-series forecasting used a two-step approach [12, 13]
and focus on point predictions. They first forecast for time-series
only at a single level of the hierarchy and then derive the forecasts
for other nodes using the hierarchical relations.

Recent methods likeMinT and ERM are post-processing steps ap-
plied on the set of forecasts at all levels of hierarchy. MinT [29, 30]
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assumes that the base-level forecasts are uncorrelated and unbi-
ased and solve an optimization problem to minimize the variance
of forecast errors of past predictions. The unbiased assumption is
relaxed in ERM [2]. Corani et al. [6] and [22] use a fully Bayesian
bottom-up post-processing approach using base forecasts from full
hierarchy. Another line of works projects the base forecasts of all
time-series into a subspace of consistent forecasts. [9] use an iter-
ative Game-theoretic approach of minimizing forecast error and
projection error. Taieb et al. [27] uses copula method to refine base
forecasts to be distributionally consistent as a post-processing step.
Recent neural methods perform end-to-end learning that enables
the model to leverage hierarchical relations while forecasting. Ran-
gapuram et al. [24] use a deep-learning based end-to-end approach
to directly train on the projected forecasts. SHARQ [11] is another
recent probabilistic deep-learning based method that uses quantile
regression and regularizes for consistency at different quantiles
of forecast distribution. However, unlike our approach, these end-
to-end methods do not regularize for forecast consistency over
the entire distribution (Distributional consistency) but only over
fixed quantiles. Most of these methods also are not designed for
cases where the hierarchical constraints are not always consistently
followed.

3 PRELIMINARIES

3.1 Problem Statement

Consider the dataset D of 𝑁 time-series over the time horizon
1, 2, . . . ,𝑇 . Let y𝑖 ∈ R𝑇 be time-series 𝑖 and 𝑦 (𝑡 )

𝑖
its value at time

𝑡 . The time-series have a hierarchical relationship denoted as T =

(𝐺T , 𝐻T ) where 𝐺T is a tree of 𝑁 nodes rooted at time-series 1.
For a non-leaf node (time-series) 𝑖 , we denote its children as C𝑖 . The
node values are related via set of relations 𝐻T of form 𝐻T = {y𝑖 =∑

𝑗∈C𝑖 𝜙𝑖 𝑗y𝑗 : ∀𝑖 ∈ {1, 2, . . . , 𝑁 }, |C𝑖 | > 0} where values of 𝜙𝑖 𝑗 are
known and time-independent real-valued constants.

Definition 1 (Consistency Error - CE). Given a dataset D
of 𝑁 time-series over the time horizon 1, 2, . . . ,𝑇 and aggregation

relations 𝐻T as above, the dataset consistency error (CE) is defined

as

𝐸T (D) =
∑︁

𝑖∈{1,2,...𝑁 },C𝑖≠∅

©­«y𝑖 −
∑︁
𝑗∈C𝑖

𝜙𝑖 𝑗y𝑗
ª®¬
2

. (1)

(Intuitively, datasets with lower CE have time-series values which

more strictly follow relations 𝐻T ).

Definition 2 (Strong and weak consistency). A datasetD is

strongly consistent if 𝐸T (D) = 0. Otherwise, D is said to be weakly

consistent.

Let the current time-step be 𝑡 . For any 1 ≤ 𝑡1 < 𝑡2 ≤ 𝑡 , we
denote y(𝑡1:𝑡2 )

𝑖
= {𝑦 (𝑡1 )

𝑖
, 𝑦

(𝑡1+1)
𝑖

, . . . , 𝑦
(𝑡2 )
𝑖

}. Given the data D𝑡 =

[y1:𝑡1 , y1:𝑡2 , . . . , y1:𝑡
𝑁
] and hierarchical relations 𝐻T , a model 𝑀 is

trained to predict the marginal forecast distributions at time 𝑡 +𝜏 for
all time-series of hierarchy leveraging past values of all time-series:
{𝑝𝑀 (𝑦 (𝑡+𝜏 )1 |D𝑡 ), . . . 𝑝𝑀 (𝑦 (𝑡+𝜏 )

𝑁
|D𝑡 )}. Along with the accuracy of

probabilistic forecasts, we also evaluate forecast distributions for
calibration. We define calibration of model forecasts based on pre-
vious works [14, 18]:

Definition 3. (Calibration Score of a Model) Given a model 𝑀

we define a calibration function 𝑘𝑀 : [0, 1] → [0, 1] as follows:
Given a confidence 𝑐 , 𝑘𝑀 (𝑐) is the fraction of the predictions for

which the ground truth lies within 𝑐-confidence interval. The cal-

ibration score 𝐶𝑆 (𝑀) is the total deviation between 𝑐 and 𝑘𝑀 (𝑐):
𝐶𝑆 (𝑀) =

∫ 1
0 |𝑘𝑀 (𝑐) − 𝑐 |𝑑𝑐 . A perfectly calibrated model is such that

∀𝑐 : 𝑘𝑀 (𝑐) ≈ 𝑐 .

Given a dataset D with underlying hierarchical relations 𝐻T ,
the goal of Calibrated Probabilistic Hierarchical Forecasting is to
design amodel𝑀 that provides accurate andwell-calibrated forecast
distributions {𝑝𝑀 (𝑦 (𝑡+𝜏 )1 |D𝑡 ), . . . 𝑝𝑀 (𝑦 (𝑡+𝜏 )

𝑁
|D𝑡 )} across all levels

of the hierarchy for both weakly and strongly consistent datasets.

3.2 Functional Neural Process for Base Forecasts

PROFHiT first derives base forecasts for all the node from any
differentiable base forecasting model such that we can use backprop-
agation on the loss function to update the parameters of the base
forecasting model as well. Formally, the base forecasting model
outputs the base forecast distribution parameters {𝜇𝑖 , 𝜎𝑖 }𝑁𝑖=1 from
input time-series of all nodes as 𝑃 ({𝜇𝑖 , 𝜎𝑖 }𝑁𝑖=1 |{y

1:𝑡
𝑖

}𝑁
𝑖=1).

We leverage the recent advances in using Functional Neural
Process [20] based non-parametric probabilistic sequential models
that have provided state-of-art accurate and calibrated predictions
in many domains [14, 15]. These models model the uncertainty of
the input time-series as well as its correlation with time-series in
training data to provide calibrated forecast distribution. Specifically,
we use a slightly modified version of the model proposed in [14] and
denote it as TSFNP. The only difference between [14] and TSFNP is
that instead of modeling correlations with past values of the same
time-series as in univariate time-series forecasting case, we model
correlation with the time-series from all nodes’ past. We provide
a detailed description of TSFNP in the Appendix. For our further
discussion, we can view TSFNP as a stochastic model with some
latent variables:

𝑃 ({𝜇𝑖 , 𝜎𝑖 }𝑁𝑖=1 |D
𝑡 ) =

∫
𝑃

(
𝒵 |{y1:𝑡𝑖 }𝑁𝑖=1

)
(
𝑁∏
𝑖=1

𝑃 (𝜇𝑖 , 𝜎𝑖 |𝒵)
)
𝑑𝒵

(2)

where𝒵 denotes the full set of latent variables of TSFNP.

4 METHODOLOGY

Overview. PROFHiT models the forecast distributions of all time-
series nodes of the hierarchy {𝑃 (𝑦 (𝑡+𝜏 )

𝑖
|D𝑡 )}𝑁

𝑖=1 by leveraging the
relations from the hierarchy to provide accurate and well-calibrated
forecasts that are adaptable to varying hierarchical consistency.
Most existing methods do not attempt to model the entire proba-
bilistic distribution but focus on the consistency of point forecasts
or samples or fixed quantiles of the distribution [11, 24]. This ap-
proach does not fully capture the uncertainty of the forecasts and in
turn, does not provide calibrated predictions. Methods like PEMBU,
MinT and ERM are post-processing steps that can be applied to
base forecasts from any model and provide theoretical guarantees.
However, they do not allow the forecasting model to learn from
relations across the hierarchy. Moreover, most methods assume
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Figure 2: Overview of pipeline of PROFHiT. The input time series is ingested by TSFNP, a Functional Neural Process based

probabilistic forecasting model, to output the base forecast distribution. The parameters of base forecasts are refined by the

Hierarchy-aware Refinement module using predictions from all the time-series. The training is driven by a likelihood loss

that learns from ground truth and Soft Distributional Consistency Regularization that regularizes the forecast distribution to

follow the hierarchical relations.

that the datasets are strongly consistent over hierarchical relations.
However, many real-world datasets are weakly consistent with
time-series values of all nodes of the hierarchy observed simultane-
ously and may not follow the hierarchical relations strictly due to
noise and discrepancies in collecting data at different levels. There-
fore, most previous works may not adapt well to such deviations
from these constraints.

PROFHiT, on the other hand, reconciles the need to model con-
sistency between entire forecast distributions as well as induce
a soft adaptable constraint to enforce consistency via a two-step
process that is trained in an end-to-end manner. The first compo-
nent of PROFHiT is a differentiable neural probabilistic model such
as TSFNP that produces a base forecast distribution for each node
parameterized by {(𝜇𝑖 , 𝜎𝑖 )}𝑁𝑖=1. Base forecasts of all nodes are used
as priors to derive a refined set of forecast distributions parame-
terized by {(𝜇𝑖 , 𝜎̂𝑖 )}𝑁𝑖=1 via the Hierarchy-aware Refinement Module

described in Section 4.1. We introduce the novel Soft Distributional
Consistency Regularization (SoftDisCoR) that enables PROFHiT
to produce refined forecast distributions that are distributionally
consistent with the hierarchical relation 𝐻T as described in Sec-
tion 4.2. The full probabilistic process of PROFHiT is depicted in
Figure 2.

4.1 Hierarchy-aware Refinement Module

The base forecast distributions 𝑃 ({𝜇𝑖 , 𝜎𝑖 }|D𝑡 ) produced by TSFNP
(or any other model that can be used in its place) do not leverage the
underlying hierarchical relations 𝐻T . This may lead to sub-optimal
forecasting performance and inconsistent forecasts. The refinement
module is a differentiable module that aims to fuse the informa-
tion from base forecasts of all nodes to output refined forecast
distributions that can leverage SoftDisCoR to be consistent.

Formally, given the parameters of base forecast distributions
{𝜇𝑖 , 𝜎𝑖 }𝑁𝑖=1 derived from TSFNP for all time-series {y(𝑡

′ :𝑡 )
𝑖

}𝑁
𝑖=1, the

refinement module derives the refined forecast distributions de-
noted by parameters {𝜇𝑖 , 𝜎̂𝑖 }𝑁𝑖=1 as functions of parameters of base
forecasts of all time-series. Let 𝜇 = [𝜇1 . . . , 𝜇𝑁 ] and𝜎 = [𝜎1 . . . , 𝜎𝑁 ]
be vectors of means and standard deviations of base distributions.
Since each of the node’s refined distribution parameters depends on
all 𝑁 node’s base forecast parameters, the refinement process must
be efficient in fusing the information from all the base forecasts
for each node. Moreover, since we require that PROFHiT should
be adaptable to datasets of both strong and weak consistency, the
refinement process should automatically learn to trade-off between
the influence of base forecast distribution for each node and the
fused information from all the nodes. Considering these objectives,
we derive the mean 𝜇𝑖 of refined distribution as a weighted sum
of two terms: a) 𝜇𝑖 , the mean of base time-series, and b) linear
combination of all base mean of all time-series:

𝛾𝑖 = sigmoid(𝑤̂𝑖 ), 𝜇𝑖 = 𝛾𝑖𝜇𝑖 + (1 − 𝛾𝑖 )w𝑇
𝑖 𝜇. (3)

{𝑤̂𝑖 }𝑁𝑖=1 and {w𝑖 }𝑖=1:𝑁 are both learnable set of parameters of the
model. sigmoid(·) denotes the sigmoid function. The operations in
Equation 3 have a total computational complexity of𝑂 (𝑁 ) for each
node and therefore 𝑂 (𝑁 2) in total. This is on par with previous
state-of-art end-to-end refinement methods like HierE2E [24] and
more efficient than post-processing methods like MinT and ERM
during inference. The learnable parameter 𝛾𝑖 allows the refinement
module to trade-off between the influence of the base distribution of
node 𝑖 and the influence of the other nodes of the hierarchy making
PROFHiT automatically adapt to datasets with varying hierarchical
consistency.

Similarly, we assume the variance of the refined distribution
depends on the base mean and variance of all the time-series. The
variance parameter 𝜎̂𝑖 of the refined distribution is derived from
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the base distribution parameters 𝜇 and 𝜎 as

𝜎̂𝑖 = 𝑐𝜎𝑖sigmoid(v𝑇1𝑖𝜇 + v𝑇2𝑖𝜎 + 𝑏𝑖 ) (4)

where {v1𝑖 }𝑁𝑖=1, {v2𝑖 }
𝑁
𝑖=1 and {𝑏𝑖 }

𝑁
𝑖=1 are parameters and 𝑐 is a posi-

tive constant hyperparameter. Note that the complexity of Equation
4 is also 𝑂 (𝑁 2).

4.2 Soft Distributional Consistency

Regularization

While the refinement module helps aggregate information from
base forecasts to refine the distribution parameters, we also need
to design the loss function such that parameters of the refinement
module and TSFNP utilize the underlying hierarchical relations
𝐻T to provide hierarchically consistent forecast distributions by
effectively utilizing information from all nodes of the time-series.
For the full distribution of the refined forecasts to be consistent,
we use a Distributional Consistency Error(DCE) as part of the loss
function and regularize the full distribution of all nodes.

The Distributional Consistency Error (DCE) is defined as follows:

Definition 4. (Distributional Consistency Error - DCE) Given

the forecasts at time 𝑡 + 𝜏 as {𝑝𝑀 (𝑦 (𝑡+𝜏 )1 |D𝑡 ), . . . 𝑝𝑀 (𝑦 (𝑡+𝜏 )
𝑁

|D𝑡 )}
distributional consistency error (DCE) is defined as∑︁

𝑖∈{1,...,𝑁 },C𝑖≠∅
𝐷𝑖𝑠𝑡

©­«𝑝𝑀 (𝑦 (𝑡+𝜏 )
𝑖

|D𝑡 ), 𝑝𝑀 (
∑︁
𝑗∈C𝑖

𝜙𝑖, 𝑗𝑦
(𝑡+𝜏 )
𝑗

|D𝑡 )ª®¬
(5)

where 𝐷𝑖𝑠𝑡 is a distributional distance metric.

Leveraging distributional consistency error as a soft regularizer
enforces forecast distributions to bewell-calibratedwhile adaptively
adhering to the hierarchical relations of the dataset.

For the distance metric Dist in Equation 5, we use the Jensen-
Shannon Divergence [8] (JSD) as the distance metric since it is a
symmetric and bounded variant of the popularly used KL-Divergence
distance. Moreover, it assumes a closed form for many widely used
distributions including for the Gaussian used in PROFHiT. While
we can replace JSD with other distance measures for capturing
distributional similarity, we observed that JSD was sufficient for
providing good forecast performance in our applications. We de-
rive the distributional consistency error on Gaussian parameters
{(𝜇𝑖 , 𝜎̂𝑖 )}𝑁𝑖=1 as

Ldist =
𝑁∑︁
𝑖=1

JSD ©­«𝑃 (𝑦 (𝑡+𝜏 )𝑖
|𝜇𝑖 , 𝜎̂𝑖 ), 𝑃 ©­«

∑︁
𝑗∈C𝑖

𝜙𝑖 𝑗𝑦
(𝑡+𝜏 )
𝑗

|{𝜇 𝑗 , 𝜎̂ 𝑗 } 𝑗∈C𝑖

ª®¬ª®¬ .
(6)

The computation of JSD is generally intractable. However, in our
case, due to parameterization of each time-series distribution as a
Gaussian we get a closed-form differentiable expression:

Ldist =
𝑁∑︁
𝑖=1

𝜎̂2
𝑖
+

(
𝜇𝑖 −

∑
𝑗∈𝐶𝑖

𝜙𝑖 𝑗 𝜇 𝑗

)2
4
∑

𝑗∈𝐶𝑖
𝜙2
𝑖 𝑗
𝜎̂2
𝑗

+

𝑁∑︁
𝑖=1

∑
𝑗∈𝐶𝑖

𝜙2
𝑖 𝑗
𝜎̂2
𝑗
+

(
𝜇𝑖 −

∑
𝑗∈𝐶𝑖

𝜙𝑖 𝑗 𝜇 𝑗

)2
4𝜎̂2

𝑖

− 1
2
.

(7)

Derivation of Distributional Consistency Error. To derive Equation
7, we use the following well-known result for JSD of two Gaussian
Distributions [21]: Given two univariate Normal distributions 𝑃1 =
N1 (𝜇1, 𝜎̂1) and 𝑃2 = N2 (𝜇2, 𝜎̂2), the JSD is

JSD(𝑃1, 𝑃2) =
1
2

[
𝜎̂21 + (𝜇1 − 𝜇2)2

2𝜎̂22
+
𝜎̂22 + (𝜇1 − 𝜇2)2

2𝜎̂21
− 1

]
(8)

Consider each JSD term of the summation in Equation 6. Note
that

𝑃 (𝑦𝑡+𝜏𝑖 |𝜇𝑖 , 𝜎𝑖 ) = N(𝜇𝑖 , 𝜎̂𝑖 ) (9)
and 𝑃 (∑𝑗∈C𝑖

𝜙𝑖 𝑗𝑦
𝑡+𝜏
𝑗

|{|𝜇 𝑗 , 𝜎 𝑗 } 𝑗∈C𝑖
)) is weighted sum of Gaussian

variables {N (𝜇 𝑗 , 𝜎̂ 𝑗 )} 𝑗∈𝐶𝑖
. Therefore,

𝑃
©­«
∑︁
𝑗∈C𝑖

𝜙𝑖 𝑗𝑦
𝑡+𝜏
𝑗 |{𝜇 𝑗 , 𝜎 𝑗 } 𝑗∈C𝑖

ª®¬ = N ©­«
∑︁
𝑗∈𝐶𝑖

𝜙𝑖 𝑗 𝜇 𝑗 ,

√︄ ∑︁
𝑗∈𝐶𝑖

𝜙2
𝑖 𝑗
𝜎̂2
𝑗

ª®¬ .
(10)

Using Equation 8 along with Equations 9,10 we get the desired
result in Equation 7.

We use the distributional consistency error as a soft regulariza-
tion term to enable PROFHiT to leverage constraints 𝐻T when
generating forecast distributions. We do not make DCE a hard
constraint since the model needs to adapt to datasets of varying
consistency. Particularly, for weakly consistent datasets, we do not
require PROFHiT to strictly adhere the hierarchical relations 𝐻T
which may result in sub-optimal forecast accuracy and calibration,
since the ground truth does not follow𝐻T as well. Therefore, using
DCE as a soft-regularizer allows the model to adapt to varying
strictness of 𝐻T across different domains.

4.3 Details on Training

Training loss. Along with the SoftDisCoR loss Ldist which in-
forms PROFHiT of hierarchical relations 𝐻T optimizes for distri-
butional consistency, we derive the Likelihood Loss Lll to optimize
for the accuracy and calibration of the forecasts. Using TSFNP (or
any other base forecasting model with latent variables) as the, the
full probabilistic process of PROFHiT can be summarized as:

𝑃 ({𝑦 (𝑡+𝜏 )
𝑖

}𝑁𝑖=1 |D
𝑡 ) =∫

𝑃

(
𝒵 |{y1:𝑡𝑖 }𝑁𝑖=1

) (
𝑁∏
𝑖=1

𝑃 (𝜇𝑖 , 𝜎𝑖 |𝒵)
)

︸                                       ︷︷                                       ︸
TSFNP (Base forecasts)

𝑁∏
𝑖=1

𝑃 (𝜇𝑖 , 𝜎̂𝑖 |{𝜇 𝑗 , 𝜎 𝑗 }𝑁𝑗=1)𝑃 (𝑦
(𝑡+𝜏 )
𝑖

|𝜇𝑖 , 𝜎̂𝑖 )︸                                               ︷︷                                               ︸
Refinement

𝑑𝒵.

(11)

Integrating over the latent variables 𝒵 in Equation 11 is highly
intractable. Therefore, we use variational inference by approximat-
ing the posterior over the latent variables 𝑃 (𝒵 |{𝑦 (𝑡+𝜏 )

𝑖
}𝑁
𝑖=1) and

derive an ELBOLll which we use as the optimization objective. The
details of the derivation of ELBO loss are in the Appendix. Since
the refinement module is a deterministic mapping from base to
refined distribution parameters, the ELBO derivation is very similar
to that in [14]. Therefore, our framework is flexible to adapt to a
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wide range of neural forecasting models with different learning
algorithms.

Thus, the total loss for training is given as L = Lll + 𝜆Ldist
where the hyperparameter 𝜆 controls the trade-off in importance
between data likelihood and distributional consistency. We also
use the reparameterization trick to make the sampling process
differentiable and we learn the parameters of all training modules
via Stochastic Variational Bayes [16]. The full pipeline of PROFHiT
is summarized in Figure 2.

Parameter sharing across nodes. Since PROFHiT’s TSFNP mod-
ule forecasts for multiple nodes, we leverage the hard-parameter
sharing paradigm of multi-task learning [3] and use a different set
of parameters for Predictive Distribution Decoder (i.e., weights of
Θ3) whereas the parameters of other components of TSFNP are
shared across all nodes (Figure 2). Sharing parameters for Proba-
bilistic Neural Encoder drastically lowers the number of learnable
parameters since datasets can have a large number of nodes (up to
512 nodes in our experiments).

Pre-training on individual time-series. Before we start training
for refined forecasts, we pre-train the parameters of TSFNP on
given training dataset to model base forecast distribution accurately.
We pre-train using only log-likelihood loss to learn parameters
{𝜇𝑖 , 𝜎𝑖 }𝑁𝑖=1.

5 EXPERIMENTS

We evaluate PROFHiT over multiple datasets and compare it with
state-of-the-art baselines1.

5.1 Setup

Baselines: We compare PROFHiT’s performance against state-of-
the-art hierarchical forecasting methods. We also compare against
state-of-the-art general probabilistic forecasting methods to study
the importance ofmodeling the hierarchy for bothweak and strongly
consistent datasets.

(1) TSFNP [14]: a neural forecasting model for accurate and
calibrated forecasts described in Section 3.2

(2) DeepAR [26]: another state-of-the-art deep probabilistic
forecasting models which do not exploit hierarchy relations.

(3) MinT [30]: a post-processing method for reconciliation of
base forecasts

(4) ERM [2]: another post-processing method like MinT that
relaxes unbiased assumptions of base forecasts

(5) HierE2E [24] is a recent state-of-the-art deep learning
based approach that projects the base predictions onto a
space of consistent forecasts and trains the model in an end-
to-end manner.

(6) SHARQ [11] is another state-of-the-art deep learning based
approach that reconciles forecast distributions by using quan-
tile regressions and making the quantile values consistent.

(7) PEMBU [27] is a post-processing method that refines base
forecasts to be distributionally consistent.

1Code and datasets: https://github.com/AdityaLab/Profhit

Note: In our experiments, ee performed ERM and MinT on Monte
Carlo samples of TSFNP predictive distribution since TSFNP pro-
vided better results compared to DeepAR. We also use the mean
forecast from MinT and ERM as input forecasts for PEMBU.

Table 2: Dataset Characteristics and Consistency

Dataset No. of Nodes Levels of
Hierarchy 𝜏

Obs.
per node

Consistency
(CE)

Tourism-L 555 4,5 12 228 Strong(0)
Labour 57 4 8 514 Strong(0)
Wiki 207 5 1 366 Strong(0)

Flu-Symptoms 61 3 4 544 Weak(3.37)
FB-Survey 61 3 4 257 Weak(2.44)

Datasets: Weevaluate on a diverse set of publicly available datasets
(Table 2) from different domains with varied hierarchical relations
and consistency. The benchmarking dataset and evaluation setup
is replicated from recent and past literature related to general hier-
archical forecasting as well as epidemic forecasting.

(1) Labour dataset contains monthly employment data from Feb
1978 to Dec 2020 collected from the Australian Bureau of
Statistics.

(2) Tourism-L [30] contains tourism flows in different regions
in Australia grouped via region and demographic. It has two
sets of hierarchies (with four and five levels), one for the
mode of travel and the other for geography with the top
node being the only common node of both hierarchies.

(3) Wiki dataset collects the number of daily views of 145000
Wikipedia articles aggregated into 150 groups [27]. These 150
groups are leaf nodes of a four-level hierarchy with groups
of similar topics aggregated together.

(4) Flu-Symptoms contains flu incidence values called weighted

influenza-like incidence (wILI) values [25] at multiple spatial
scales for USA for period of 2004-2020. The scales used are
states, HHS and National level (US states are grouped into
10 HHS regions by CDC).

(5) FB-Survey provides an aggregated anonymized daily indica-
tor for the prevalence of Covid-19 symptoms based on online
surveys conducted on Facebook [7] from Dec 2020 to Aug
2021 for each state and national level. We use the state-level
values to find aggregates at HHS levels.

Tourism-L, Labour and Wiki are constructed by collecting val-
ues of leaf nodes and deriving the values of the time series of other
nodes of the hierarchy. Hence, they are strongly consistent with
zero CE (Definition 1). The values of each node of the hierarchy
in the case of Flu-Symptoms and FB-Survey are directly collected
or measured. For example, the values of Flu-Symptoms dataset are
collected from public health agencies at the state, HHS and national
levels and aggregated by CDC. Due to factors like reporting dis-
crepancies and noise, they contain values in time series that may
deviate from the given hierarchical relations [4]. Therefore, these
datasets are weakly consistent with significant CE (Table 2). We
also provide level wise consistency errors for all the datasets in the
Appendix.

https://github.com/AdityaLab/Profhit
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Evaluation metrics. We evaluate our model and baselines using
carefully chosen metrics that are widely used in the literature to
measure accuracy and calibration. We also measure the distribu-
tional consistency of the output forecast to study how well the
model trade-off accuracy and consistent for datasets of varying
consistency errors. For a ground truth 𝑦 (𝑡 ) , let the predicted prob-
ability distribution be 𝑝𝑦 (𝑡 ) with mean 𝑦 (𝑡 ) . Also let 𝐹𝑦 (𝑡 ) be the
CDF. •Mean Absolute Percentage Error (MAPE) is a commonly
used score for point-predictions calculated as

𝑀𝐴𝑃𝐸 =
1
𝑁

𝑡𝑁∑︁
𝑡=𝑡1

|𝑦
(𝑡 ) − 𝑦 (𝑡 )

𝑦 (𝑡 )
|

•Log Score (LS) is a standard score used to measure the accuracy
of probabilistic forecasts in epidemiology [25]. LS measures the
negative log likelihood of a fixed size interval around the ground
truth under the predictive distribution:

𝐿𝑆 (𝑝𝑦, 𝑦) = −
∫ 𝑦+𝐿

𝑦−𝐿
log 𝑝𝑦 (𝑦)𝑑𝑦.

Similar to [25], the log-likelihood of a forecast is capped at -10. The
calculation of LS is tractable due to the gaussian assumption on the
forecast distribution.
•Calibration Score (CS): To measure the calibration of forecasts,
we use the calibration score defined in Section 3.1. We approximate
the integral via Riemann sum over [0, 1] with step-size 0.05.
•Cumulative Ranked Probability Score (CRPS) is a widely used
standard metric for the evaluation of probabilistic forecasts that
measures both accuracy and calibration. Given ground truth 𝑦 and
the predicted probability distribution 𝑝𝑦 , let 𝐹𝑦 be the CDF. Then,
CRPS is defined as:

𝐶𝑅𝑃𝑆 (𝐹𝑦, 𝑦) =
∫ ∞

−∞
(𝐹𝑦 (𝑦) − 1{𝑦 > 𝑦})2𝑑𝑦.

We approximate 𝐹𝑦 as a Gaussian distribution formed from samples
of the model to derive CRPS.
•Distributional Consistency Error (DCE): We calculate the Dis-
tributional Consistency Error (Equation 6) on output forecast dis-
tributions during inference to study how PROFHiT and baselines
leverage SoftDisCoR to learn from hierarchical relations across
datasets of varying consistency and trade-off consistent, calibration
and accuracy, especially for weakly consistent data (Section 5.2 Q3).

5.2 Results

We comprehensively evaluate PROFHiT through the following ques-
tions: Q1: Does PROFHiT predict accurate calibrated forecasts? Q2:
Does PROFHiT provide consistently better performance across all
levels of the hierarchy? Q3: Does SoftDisCoR help PROFHiT out-
perform baselines on both strongly and weakly consistent datasets?
Q4: What impact do various modeling choices have on the model’s
overall performance? Q5: How does improved calibration and fore-
cast consistency help PROFHiT deal with missing values in data?

Accuracy and calibration performance (Q1). We evaluate all base-
lines, PROFHiT and its variants for all the datasets over 5 indepen-
dent runs. The average scores across all levels hierarchy are shown
in Tables 3. PROFHiT significantly outperforms all baselines in
MAPE score by 13%. It also outperforms the baselines in LS and CS

significantly in most cases. Finally, PROFHiT shows 41-88% better
CRPS scores. Thus, PROFHiT adapts well to varied kinds of datasets
and outperforms all baselines in both accuracy and calibration.

Performance across the hierarchy (Q2). Next, we look at the per-
formance of all models across each level of the hierarchy. We com-
pared the performance of PROFHiT with best-performing baselines
HierE2E and SHARQ for all datasets. PROFHiT significantly outper-
forms the best baselines both in terms of accuracy and calibration.
The performance improvement is consistent across all levels of the
hierarchy in most of the benchmarks. We show detailed results
in the Appendix. This shows that the model effectively leverages
hierarchical relations across all nodes to provide significantly more
accurate and calibrated forecasts across the hierarchy.

Effect of SoftDisCoR on datasets of varying consistency (Q3).

Since most previous state-of-the-art models assume datasets to
be strongly consistent, deviations from this assumption can cause
under-performance when used with weakly consistent datasets.
This is evidenced in Table 3 where most of the baselines explic-
itly optimize for hierarchical consistency as a hard constraint on
the forecasts. For example, PEMBU’s forecasts have better distri-
butional consistency error (DCE) for weakly consistent datasets.
However, they perform much worse in both accuracy and calibra-
tion than even TSFNP, which does not even leverage hierarchical
relations. Since we use SoftDisCoR as a soft learning constraint,
PROFHiT can learn to trade-off consistency for accuracy and cali-
bration. Therefore, PROFHiT provides 93% better CRPS and signif-
icantly better calibration over the best baselines. These improve-
ments are more pronounced at non-leaf nodes of hierarchy where
PROFHiT’s performance is significanly larger for the weakly consis-
tent Flu-Symptoms and FB-Survey datasets. In the case of strongly
consistent datasets, PROFHiT provides 54% better CRPS and better
calibration while having comparable DCE to PEMBU. We provide
further analysis of these observations in the Appendix.

Ablation study on various modeling choices (Q4). We evaluate the
efficacy and contribution of our various modeling choices including
the usefulness of SoftDisCoR, refinement module, hard-parameter
sharing, and using TSFNP as our model of choice for base fore-
casts. We perform an ablation study using the following variants
of PROFHiT:
• P-NoConsistency: This variant is trained by completely remov-
ing the SoftDisCoR from the training. Note that unlike P-FineTune
which was initially trained with SoftDisCoR before fine-tuning,
P-NoConsistency never uses the SoftDisCoR at any point of the
training routine. Therefore P-NoConsistency measures the im-
portance of explicitly regularizing over the information from the
hierarchy.
• P-NoRefine: We remove the hierarchical refinement module
and optimize the base forecasts for both likelihood and SoftDisCoR
loss.
• P-DeepAR: We evaluate our choice of using TSFNP, a previous
state-of-the-art univariate forecasting model for accurate and cali-
brated forecasts by replacing it with DeepAR[26], another popular
probabilistic forecasting model that was used by HierE2E.
• P-NoParamShare: We study the effect of our multi-tasking
hard-parameter sharing approach (Section 4.3) by training a variant
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Table 3: Average scores (across 5 runs) across all levels of hierarchy for all baselines, PROFHiT and its variants. PROFHiT

provides top performance in terms of all evaluation metrics in most of the benchmarks.

Tourism-L Labour Wiki

Models/Data MAPE% CRPS LS CS DCE MAPE% CRPS LS CS DCE MAPE% CRPS LS CS DCE

DeepAR 3.12 0.17 0.61 0.19 0.32 18.27 0.045 0.75 0.25 0.34 16.52 0.232 0.83 0.27 0.26
TSFNP 2.28 0.21 1.19 0.14 0.39 14.52 0.071 1.41 0.21 0.22 15.63 0.287 0.86 0.21 0.39

TSFNP-MinT 1.17 0.5 0.58 0.15 0.24 16.46 0.045 4.12 0.26 0.12 13.79 0.243 0.78 0.18 0.18
TSFNP-ERM 1.42 0.56 0.53 0.11 0.18 13.57 0.045 3.63 0.23 0.19 17.74 0.221 0.74 0.19 0.21
HierE2E 1.67 0.15 0.38 0.17 0.21 12.53 0.034 0.51 0.25 0.15 17.05 0.211 0.46 0.23 0.12
SHARQ 1.63 0.17 0.41 0.12 0.13 14.21 0.054 0.47 0.18 0.09 16.13 0.241 0.52 0.16 0.16

PEMBU-MinT 1.77 0.15 0.46 0.24 0.03 13.55 0.039 0.56 0.22 0.11 14.66 0.279 0.58 0.21 0.05
PEMBU-ERM 1.63 0.16 0.43 0.21 0.02 13.19 0.042 0.61 0.25 0.03 15.79 0.268 0.54 0.18 0.02

PROFHiT 1.47 0.12 0.33 0.09 0.02 12.79 0.026 0.21 0.14 0.05 12.47 0.184 0.35 0.13 0.04
Flu-Symptoms FB-Survey

Models/Data MAPE% CRPS LS CS DCE MAPE% CRPS LS CS DCE

DeepAR 31.27 0.610 3.25 0.065 0.31 17.39 7.32 5.32 0.17 0.29
TSFNP 12.8 0.460 0.93 0.034 0.42 15.35 5.53 7.84 0.11 0.37

TSFNP-MinT 10.56 0.630 3.18 0.082 0.18 12.24 5.39 6.35 0.14 0.24
TSFNP-ERM 11.85 0.620 2.75 0.075 0.12 13.16 6.14 4.23 0.12 0.19
HierE2E 15.67 0.420 0.81 0.12 0.32 12.63 4.12 1.13 0.19 0.26
SHARQ 18.34 0.470 1.42 0.071 0.21 12.82 3.12 0.81 0.15 0.19

PEMBU-MinT 15.44 0.621 2.55 0.18 0.05 13.75 5.78 4.22 0.22 0.07

PEMBU-ERM 17.57 0.688 2.74 0.15 0.07 12.99 6.31 5.18 0.18 0.1
PROFHiT 8.85 0.250 0.28 0.042 0.14 9.67 1.43 0.45 0.08 0.16

where all the parameters for each TSFNP forecasting module are
shared across all the nodes.
• P-FineTune: We also look at the efficacy of our soft regulariza-
tion using both losses that adapt to optimize for both consistency
and training accuracy by comparing it with a variant where the
predictive distribution decoder parameters are further fine-tuned
for individual nodes using only the likelihood loss.

We compare the performance of PROFHiT with its variants
in CRPS, CS and DCE in table 4 (Rest of the metrics are in Ap-
pendix). We observe that PROFHiT is comparable to or better
than the best-performing variant in most cases. We observe that
the best-performing variant for strongly consistent datasets is P-
NoParamShare which is trained with both likelihood loss and
SoftDisCoR (Table 3). But its performance severely degrades for
weakly consistent datasets since sharing all model parameters
across all time-series makes it inflexible to model patterns and de-
viations specific to individual nodes. In contrast, P-FineTune and
P-NoConsistency performs the best among variants for weakly
consistent datasets since they train separate sets of decoder param-
eters for each node. But they perform poorly for strongly consistent
datasets since they don’t leverage Distributional Consistency ef-
fectively. PROFHiT combines the flexible parameter learning of
P-FineTune and leverage Distributional Consistency to jointly op-
timize the parameters like P-NoParamShare providing comparable
performance to best variants over all datasets.

Adapting to missing data (Q5). Accurate and well-calibrated mod-
els that can effectively leverage the knowledge of the hierarchy
can intuitively allow models to better adapt to noise/missing data.
Hence, we introduce the task of Hierarchical Forecasting with Miss-

ing Values and study the adaptation of models when there are

missing values in time-series. We model a situation that is encoun-
tered in many real-world applications such as Epidemic Forecasting
where the past few values of time-series are missing due to various
factors like data reporting delays [4].

Formally, at time-period 𝑡 , we are given full data up to time
𝑡 − 𝜌 . We set 𝜌 = 5 since it is the average forecast horizon of all
datasets. For sequence values in the period between 𝑡 − 𝜌 and 𝑡 ,
we randomly remove 𝑘% of these values across all time-series. The
models are trained on the complete time-series dataset till time
𝑡 ′ = 𝑡 −𝜌 . Models’ predictions are then used to fill in missing values
for time 𝑡 ′ to 𝑡 . Finally, we input the filled time-series to generate
the forecasts for future time-steps.

We measure the relative decrease in performance of PROFHiT
and baselines with an increase in the percentage of missing data 𝑘
(Figures 3). We observe that PROFHiT’s performance decrease as
the fraction of missing values increases is much slower compared to
other baselines. Even at𝑘 = 10%, PROFHiT’s performance decreases
by 10.45-26.8% compared to other baselines that typically decrease
by over 70%. Thus, PROFHiT effectively uses hierarchical relations
to generate reliable predictions on strong and weakly consistent
datasets.

We compare relative performance decrease with an increase in
the percentage of missing data for PROFHiT and its variants in
Figure 4. We observe that P-NoConsistency’s performance deteri-
orates very rapidly in most benchmarks, showing the importance
of SoftDisCoR for learning provides calibrated and consistent
forecasts. The second worst-performing variant across all datasets
is P-FineTune which also relies less on the hierarchical relations
due to fine-tuning of parameters for specific time-series. This is
followed by P-NoRefine which performs particularly worse in
strongly consistent datasets due to the absence of the refinement
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Table 4: Average scores (across 5 runs) across all levels of hierarchy for PROFHiT and its ablation variants. The best score is

bolded and the second best is underlined.

Tourism-L Labour Wiki Flu-Symptoms FB-Survey

Models/Data CRPS CS DCE CRPS CS DCE CRPS CS DCE CRPS CS DCE CRPS CS DCE

PROFHiT 0.12 0.09 0.02 0.026 0.14 0.05 0.184 0.13 0.04 0.250 0.042 0.14 1.43 0.08 0.16
P-NoConsistency 0.18 0.21 0.35 0.043 0.26 0.17 0.227 0.35 0.14 0.248 0.16 0.22 1.17 0.24 0.22

P-NoRefine 0.16 0.14 0.19 0.037 0.18 0.15 0.219 0.19 0.09 0.256 0.097 0.17 1.15 0.12 0.18
P-DeepAR 0.13 0.12 0.04 0.029 0.17 0.08 0.201 0.24 0.07 0.361 0.083 0.15 2.13 0.18 0.15
P-FineTune 0.16 0.14 0.25 0.031 0.21 0.13 0.216 0.21 0.08 0.240 0.039 0.17 1.18 0.07 0.19

P-NoParamShare 0.13 0.06 0.01 0.027 0.16 0.04 0.185 0.16 0.04 0.350 0.086 0.09 2.64 0.14 0.11
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Figure 3: % increase in CRPS for all models with increase in proportion of missing data.

2% 5% 7% 10%
Data missing

0

10

20

30

40

50

60

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-NoParamShare
P-DeepAR
P-NoRefine
P-NoConsistency
PROFHiT

(a) Tourism-L

2% 5% 7% 10%
Data missing

0

10

20

30

40

50

60

70

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-NoParamShare
P-DeepAR
P-NoRefine
P-NoConsistency
PROFHiT

(b) Labour

2% 5% 7% 10%
Data missing

10

20

30

40

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-NoParamShare
P-DeepAR
P-NoRefine
P-NoConsistency
PROFHiT

(c) Wiki

2% 5% 7% 10%
Data missing

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-NoParamShare
P-DeepAR
P-NoRefine
P-NoConsistency
PROFHiT

(d) Flu-Symptoms

2% 5% 7% 10%
Data missing

5

10

15

20

25

30

35

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-NoParamShare
P-DeepAR
P-NoRefine
P-NoConsistency
PROFHiT

(e) FB-Survey

Figure 4: % increase in CRPS for PROFHiT and variants with an increase in the proportion of missing data.

module to directly learn refined distributions by combining infor-
mation from base forecasts. Finally, we observe that PROFHiT and
P-NoParamShare suffer the least degradation in performance since
both these models prioritize integrating hierarchical consistency
information which enables them to provide better estimates for
imputed data for missing input and use them to generate more
accurate and calibrated forecasts.

6 CONCLUSION AND DISCUSSION

We introduced PROFHiT, a probabilistic hierarchical forecasting
model that produces accurate and well-calibrated forecasts using
soft distributional consistency regularization (SoftDisCoR). This
enables PROFHiT to adapt to datasets with varying levels of hi-
erarchical consistency. We evaluated PROFHiT against previous
state-of-the-art hierarchical forecasting baselines over a wide va-
riety of datasets and observed 41-88% improvement average im-
provement in accuracy and significantly better calibration scores.
PROFHiT provided the best performance across the entire hierar-
chy as well as significantly outperformed other models in providing
robust predictions when it encountered missing data where other
baselines’ performance degraded by over 70%. We also showed

the efficacy of various design choices of PROFHiT including us-
ing TSFNP for generating raw forecasts, multi-tasking approach of
partial parameter sharing, refinement module, and introducing the
novel distributional consistency loss as a soft regularizer.

Our work opens new possibilities like extending to various do-
mains where time-series values across the hierarchy may not be
continuous real numbers, can not be modeled as Gaussian distri-
butions or may have different sampling rates. We can also explore
modeling more complex structures between time-series with dif-
ferent aggregation relations. PROFHiT can also be used to study
anomaly detection in time-series, especially in time-periods where
there are deviations from assumed consistency relations. Similar to
Kamarthi et al. [15], we can extend our work to include multiple
sources of features and modalities of data both specific to each
time-series and global to the entire hierarchy.
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Appendix for When Rigidity Hurts: Soft Consis-

tency Regularization for Probabilistic Hierarchi-

cal Time Series Forecasting

A DETAILS ON TSFNP

We briefly describe the components of TSFNP here and direct the
readers to the [14] for more details.

1) Probabilistic Neural Encoder : It models the temporal patterns of
the input time-series and the uncertainty of its latent representation.
It encodes the input univariate time-series into a latent stochastic
embedding via a GRU [5] followed by a self-attention layer [28]:

[𝜇u𝑖 , log𝜎u𝑖 ] = Self-Atten(GRU(y(𝑡
′ :𝑡 )

𝑖
)),

u𝑖 ∼ N(𝜇u𝑖 , 𝜎u𝑖 ).
(12)

2) Stochastic Data Correlation Graph: We next model the correla-
tions between the input time-series and other time-series of the
dataset to capture contextual representation and uncertainty of the
input data point with respect to training data distribution. These
contextual representations are called local latent variable. The
only difference in our approach compared to [14] is that, unlike
[14] which uses past time-series information from the same node,
in our multi-variate case TSFNP uses past information from all
nodes. Formally, for input sequence y(𝑡

′ :𝑡 )
𝑖

we sample sequences
from the the past training sequences y𝑗 where 𝑗 ∈ {1, . . . , 𝑁 } using
similarity between their latent stochastic embeddings {u𝑖 }𝑁𝑖=1. For
input time-series of node 𝑖 and each of the past training sequences
y𝑗 , we sample yj with probability exp(−𝛾 | |u𝑖 − u𝑗 | |22) into set 𝑁𝑖 .
Then, we derive the local latent variable as

z𝑖 ∼ N ©­«
∑︁
𝑗∈𝑁𝑖

Θ1 (u𝑗 ), exp(
∑︁
𝑗∈𝑁𝑖

Θ2 (u𝑗 ))ª®¬ (13)

where Θ1 and Θ2 are feed-forward networks.
3) Predictive Distribution Decoder : The final step of TSFNP’s sto-

chastic process involves combining the representations from Prob-
abilistic Neural Encoder and Stochastic Data Correlation Graph
that capture relevant sequential and contextual representation and
uncertainty of input time-series. We combine the latent stochas-
tic embedding, local latent variable and combined information of
all past sequences to derive the parameters of the output distribu-
tion via a simple feed-forward network. We first derive a global
latent variable that combines the information from local latent em-
beddings of all past sequences as z = Self-Atten({u𝑖 }𝑁𝑖=1) via a
self-attention layer over {u𝑖 }𝑁𝑖=1 and summation of self-attention
layer’s output.

Finally, we combine the latent embedding of input time-series,
local latent variable and global latent variable to derive the base
forecast distribution modeled as a Gaussian N(𝜇𝑖 , 𝜎𝑖 ) as:

e = concat(u𝑖 , z𝑖 , z), [𝜇𝑖 , log𝜎𝑖 ] = Θ3 (e) (14)

where Θ3 is a feed-forward network.
The full stochastic process of TSFNP can be summarized as:

𝑃 ({𝜇𝑖 , 𝜎𝑖 }𝑁𝑖=1 |D
𝑡 ) =

∫ (
𝑁∏
𝑖=1

𝑃 (u𝑖 |y(1:𝑡 )𝑖
)
)

︸                 ︷︷                 ︸
Probabilistic Encoder(

𝑁∏
𝑖=1

𝑃 (𝑁𝑖 |{u𝑖 }𝑁𝑖=1)𝑃 (z𝑖 |𝑁𝑖 , {u𝑗 }𝑁𝑗=1)
)

︸                                            ︷︷                                            ︸
SDCG

𝑃 (z|{u𝑖 }𝑁𝑖=1)︸         ︷︷         ︸
Global Latent variable(

𝑁∏
𝑖=1

𝑃 (𝜇𝑖 , 𝜎𝑖 |z, z𝑖 , u𝑖 )
)

︸                       ︷︷                       ︸
Raw forecasts

𝑑{u𝑖 }𝑁𝑖=1𝑑{z𝑖 }
𝑁
𝑖=1𝑑{𝑁𝑖 }𝑁𝑖=1 .

(15)

Note that in the main paper we note the set of all latent variables
{u𝑖 , z𝑖 , 𝑁𝑖 }𝑁𝑖=1, z as𝒵.

Note on running time. The novel component of PROFHiT is the
Hierarchy-aware refinement module that facilitates the integration
of base forecast distributions. As described in lines 398-403, the total
computational complexity of obtaining the refined distributional
parameters is 𝑂 (𝑁 2) (𝑁 is the number of nodes in the hierarchy),
which is comparable to the reconciliation step of end-to-end meth-
ods like HierE2E. Post-processing techniques such as MinT, ERM,
and PEMBU have an even higher time complexity of 𝑂 (𝑁 3).

Note that the other portion of the pipeline that may add to the
time-complexity is the base forecastingmodels. Models like DeepAR
and RNN used by HierE2E, SHARQ as well as the post-processing
methods and TSFNP (used by PROFHiT) scale linearly with respect
to the length of the time-series and linearly with the number of
nodes 𝑁 . Therefore all these baselines and PROFHiT use models
with similar time-complexity for base forecasts with respect to the
size of the hierarchy 𝑁 .

B CODE AND DATASET

We evaluated all models on a system with Intel 64-core Xeon Pro-
cessor with 128 GB memory and Nvidia Tesla V100 GPU with 32 GB
VRAM. We provide our implementation of PROFHiT along with
the datasets used at https://github.com/AdityaLab/Profhit.

C HYPERPARAMETERS

C.1 Data Preprocessing

Most datasets used in our work assume the aggregation function
to be a simple summation (i.e, 𝜙𝑖 𝑗 = 1 for all weights). We first
normalize the values of leaf time-series training data to have 0 mean
and variance of 1. Since the aggregation of values at higher levels
of the hierarchy can lead to very large values in time-series, we
instead divide each non-leaf time-series by the number of children.
Then the weights of hierarchical relations become 𝜙𝑖 𝑗 = 1

|𝐶𝑖 | where
𝐶𝑖 is the set of all children nodes of time-series 𝑖 . For the remaining
datasets (Flu-Symptoms, FB-Symptoms) the time-series values are
normalized by default and thus require no extra pre-processing.

https://github.com/AdityaLab/Profhit
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C.2 Model Architecture

The architecture of TSFNP used in PROFHiT is similar to that used
in the original implementation [14]. The GRU unit contains 60
hidden units and is bi-directional. Thus the local latent variable
is also of dimension 60. 𝑁𝑁1 and 𝑁𝑁2 are both 2-layered neural
networks with the first layer shared between both. Both layers
have 60 hidden units. Finally, 𝑁𝑁3 is a three-layer neural network
with the input layer having 180 units (for the concatenated input
of three 60-dimensional vectors) and the last two layers having 60
hidden units. We found that the value of 𝑐 in Equation 4 is not very
sensitive and is usually set to 5.

Note that we do not explicitly model covariance between every
pair of time series (likeMinT, ERM) and use aweighted combination
of base forecast parameters to derive refined forecasts. Therefore
the refinement module complexity (Section 4.1) is 𝑂 (𝑁 2) which is
on par with previous methods like HierE2E.

C.3 Training and Evaluation

Given the training dataset D𝑡 we extract the training dataset for
each node as the set of prefix sequences {(y(𝑡1:𝑡2)

𝑖
, 𝑦

(𝑡2+1)
𝑖

) : 1 ≤
𝑡1 ≤ 𝑡2 < 𝑡 − 𝜏} and train the full model (TSFNP and refinement
module). We tune the hyperparameter using backtesting by vali-
dating on window 𝑡 − 𝜏 to 𝑡 . Finally, we train for entire training set
with the best hyperparameters.

For each benchmark, we used the validation set tomainly find the
optimal batch size and learning rate. We searched over batch-size of
{10, 50, 100, 200} and the optimal learning rate was usually around
0.001. We also found the optimal 𝜆 to be around 0.01 for strongly
consistent datasets and 0.001 for weakly consistent datasets. We
used early stopping with the patience of 150 epochs to prevent
overfitting. For each independent run of a model, we initialized
the random seeds from 0 to 5 for PyTorch and NumPy. We didn’t
observe large variations due to randomness for PROFHiT and all
baselines.

During evaluation, we sampled 2000 Monte-Carlo samples of the
forecast distribution and used it to estimate the mean for MAPE.
We also used the samples mean and variance to evaluate LS and CS
whereas used ensemble scoring to evaluate CRPS directly from the
samples using properscoring package 2.

2https://github.com/properscoring/properscoring

D DERIVATION OF LIKELIHOOD ELBO LOSS

The full predictive distribution of PROFHiT from Equation 11 can
be further expanded as:

𝑃 ({𝑦 (𝑡+𝜏 )
𝑖

}𝑁𝑖=1 |D𝑡 ) =
∫ (

𝑁∏
𝑖=1

𝑃 (u𝑖 |y(1:𝑡 )𝑖
)
)

︸                 ︷︷                 ︸
Probabilistic Encoder(

𝑁∏
𝑖=1

𝑃 (𝑁𝑖 |{u𝑖 }𝑁𝑖=1)𝑃 (z𝑖 |𝑁𝑖 , {u𝑗 }𝑁𝑗=1)
)

︸                                            ︷︷                                            ︸
SDCG

𝑃 (z|{u𝑖 }𝑁𝑖=1)︸         ︷︷         ︸
Global Latent variable

(
𝑁∏
𝑖=1

𝑃 (𝜇𝑖 , 𝜎𝑖 |z, z𝑖 , u𝑖 )
)

︸                       ︷︷                       ︸
Raw forecasts

𝑁∏
𝑖=1

𝑃 (𝜇𝑖 , 𝜎̂𝑖 |{𝜇 𝑗 , 𝜎 𝑗 }𝑁𝑗=1)𝑃 (𝑦
(𝑡+𝜏 )
𝑖

|𝜇𝑖 , 𝜎𝑖 )︸                                               ︷︷                                               ︸
Refinement Module

𝑑{u𝑖 }𝑁𝑖=1𝑑{z𝑖 }
𝑁
𝑖=1 .

(16)

To minimize the data likelihood 𝑃 ({𝑦 (𝑡+𝜏 )
𝑖

}𝑁
𝑖=1 |D𝑡 ) requires in-

tregration over latent variables {u𝑖 }𝑁𝑖=1 and {z𝑖 }𝑁𝑖=1. We instead
perform amortized variational inference on the latent variables
similar to VAE [16].

We approximate the posterior of latent variables

𝑃 ({u𝑖 }𝑁𝑖=1, {z𝑖 }
𝑁
𝑖=1, {𝑁𝑖 }𝑁𝑖=1 |{𝑦

(𝑡+𝜏 )
𝑖

}𝑁𝑖=1)

with a variational distribution

𝑄 ({u𝑖 }𝑁𝑖=1, {z𝑖 }
𝑁
𝑖=1, {𝑁𝑖 }𝑁𝑖=1 |{𝑦

(𝑡+𝜏 )
𝑖

}𝑁𝑖=1)

expressed as:

𝑄 ({u𝑖 }𝑁𝑖=1, {z𝑖 }
𝑁
𝑖=1, {𝑁𝑖 }𝑁𝑖=1 |{𝑦

(𝑡+𝜏 )
𝑖

}𝑁𝑖=1) =
(
𝑁∏
𝑖=1

𝑃 (u𝑖 |y(1:𝑡 )𝑖
)
)

(
𝑁∏
𝑖=1

𝑃 (𝑁𝑖 |{u𝑖 }𝑁𝑖=1)
) (

𝑁∏
𝑖=1

𝑞𝜙 (z𝑖 |y
(1:𝑡 )
𝑖

)
)

(17)

where𝑞𝜙 is a feed-forward network over GRU embeddings of Proba-
bilistic Neural Encoder that parameterizes to a gaussian distribution
of z𝑖 .

The ELBO loss

−E
𝑄 ({u𝑖 ,z𝑖 ,𝑁𝑖 }𝑁𝑖=1 | {𝑦

(𝑡+𝜏 )
𝑖

}𝑁
𝑖=1 )

[log 𝑃 ({𝑦 (𝑡+𝜏 )
𝑖

}𝑁𝑖=1 |{u𝑖 , z𝑖 , 𝑁𝑖 }𝑁𝑖=1)

+ log 𝑃 ({u𝑖 }𝑁𝑖=1, {z𝑖 }
𝑁
𝑖=1, {𝑁𝑖 }𝑁𝑖=1 |{𝑦

(𝑡+𝜏 )
𝑖

}𝑁𝑖=1)

− log𝑄 ({u𝑖 }𝑁𝑖=1, {z𝑖 }
𝑁
𝑖=1, {𝑁𝑖 }𝑁𝑖=1 |{𝑦

(𝑡+𝜏 )
𝑖

}𝑁𝑖=1)]

(18)

https://github.com/properscoring/properscoring


When Rigidity Hurts: Soft Consistency Regularization for Probabilistic Hierarchical Time Series Forecasting KDD ’23, August 6–10, 2023, Long Beach, CA, USA

get simplified to:

L1 = − 𝐸
𝑄 ({u𝑖 ,z𝑖 ,𝑁𝑖 }𝑁𝑖=1,z | {𝑦

(𝑡+𝜏 )
𝑖

}𝑁
𝑖=1 )

[log 𝑃 ({𝑦 (𝑡+𝜏 )
𝑖

}𝑁𝑖=1 |{u𝑖 , z𝑖 , 𝑁𝑖 }𝑁𝑖=1)

+
𝑁∑︁
𝑖=1

log 𝑃 (z𝑖 |{u𝑗 }𝑁𝑗=1, 𝑁𝑖 ) − log𝑞𝑖 (z𝑖 |y(𝑡
′ :𝑡 )

𝑖
)] .

(19)

by canceling similar terms between the variational and true distri-
bution of latent variables.

E CONSISTENCY OF DATASETS

We noted in Section 5.2 Q4 that Flu-Symptoms and FB-Survey
are weakly consistent datasets since they do not strictly follow
the aggregation relations 𝐻T unlike strongly consistent datasets
Tourism-L, Labour, Wiki.

Table 5: Average deviation of observed values in time-series

from hierarchical relations.

Data Flu FB-Survey Tourism-L Labour Wiki

Level 1 0.043 1.27 0 0 0
Level 2 3.41 2.83 0 0 0

Average across hierarchy 3.37 2.44 0 0 0

We empirically observe this by measuring Consistency errors of
all datasets (Definition 1) for the entire hierarchy and at each level
of the hierarchy. The results are in Table 5. As expected there are
no deviations for strongly consistent datasets whereas there is a
significant deviation in weakly consistent data.

F PERFORMANCE ACROSS EACH LEVEL OF

HIERARCHY

We compared the performance of PROFHiT with best-performing
baselines HierE2E and SHARQ for each level of hierarchy of all
datasets. PROFHiT significantly outperforms the best baselines
as well as the variants. At the leaf nodes, which contains most
data, PROFHiT outperforms best baselines by 7% in Wiki to 100%
in FB-Survey. For the top node of time-series the performance
improvement is largest at 35% (Wiki) to 962% (FB-Survey). We
show detailed results in Tables 6 and 7.
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Table 6: Average CRPS scores at each level of hierarchy. PROFHiT significantly outperforms best baselines across all benchmarks.

Note that P-Finetune’s performance decreases at higher levels of hierarchy compared to other variants whereas P-Global’s

performance is worse at lower levels.

Models/Data Tourism-L Labour

Hierarchy Levels 1 2(Travel) 3(Travel) 4(Travel) 5(Travel) 2(Geo) 3(Geo) 4(Geo) 1 2 3 4
HierE2E 0.081 0.103 0.141 0.205 0.272 0.103 0.136 0.175 0.031 0.034 0.034 0.038
SHARQ 0.093 0.131 0.163 0.218 0.295 0.131 0.138 0.152 0.097 0.124 0.133 0.149

PEMBU-MinT 0.112 0.121 0.139 0.203 0.185 0.116 0.128 0.167 0.063 0.033 0.042 0.085
PROFHiT (Ours) 0.051 0.095 0.12 0.17 0.264 0.083 0.106 0.142 0.023 0.019 0.023 0.029

P-FineTune 0.072 0.136 0.083 0.16 0.278 0.124 0.124 0.158 0.024 0.022 0.026 0.035
P-NoParamShare 0.093 0.113 0.122 0.13 0.261 0.093 0.113 0.147 0.021 0.027 0.028 0.027

P-DeepAR 0.075 0.097 0.136 0.183 0.281 0.095 0.122 0.159 0.025 0.027 0.031 0.033
P-NoConsistency 0.086 0.142 0.107 0.18 0.265 0.132 0.138 0.147 0.027 0.031 0.029 0.026

Models/Data Wiki Flu-Symptoms FB-Survey

Hierarchy Levels 1 2 3 4 5 1 2 3 1 2 3
HierE2E 0.042 0.105 0.229 0.272 0.372 0.272 0.421 0.458 4.14 4.04 4.13
SHARQ 0.039 0.136 0.235 0.291 0.378 0.258 0.376 0.381 3.08 3.21 3.13

PEMBU-MinT 0.031 0.171 0.241 0.385 0.433 0.337 0.567 0.773 4.82 5.53 6.15
PROFHiT (Ours) 0.031 0.074 0.133 0.216 0.252 0.216 0.133 0.338 0.32 0.43 1.89

P-FineTune 0.034 0.086 0.153 0.232 0.275 0.222 0.175 0.293 0.43 0.65 1.83

P-NoParamShare 0.048 0.103 0.187 0.265 0.186 0.269 0.213 0.376 0.37 0.37 2.11
P-DeepAR 0.035 0.094 0.193 0.251 0.285 0.242 0.217 0.328 0.44 0.61 2.01

P-NoConsistency 0.49 0.117 0.93 0.258 0.167 0.227 0.193 0.381 0.42 0.36 2.18

Table 7: Average CS scores at each level of hierarchy. PROFHiT significantly outperforms best baselines across all benchmarks.

Models/Data Tourism-L Labour

Hierarchy Levels 1 2 3 4 5 2(Geo) 3(Geo) 4(Geo) 1 2 3 4
HierE2E 0.15 0.18 0.17 0.21 0.24 0.19 0.18 0.22 0.21 0.23 0.22 0.27
SHARQ 0.09 0.08 0.12 0.11 0.14 0.11 0.12 0.16 0.16 0.16 0.15 0.21

PEMBU-MinT 0.14 0.21 0.22 0.21 0.26 0.18 0.23 0.25 0.21 0.22 0.24 0.21
PROFHiT 0.05 0.06 0.04 0.06 0.11 0.06 0.06 0.1 0.17 0.11 0.15 0.16

P-FineTune 0.09 0.12 0.13 0.17 0.13 0.11 0.13 0.15 0.24 0.21 0.24 0.22
P-NoParamShare 0.06 0.04 0.03 0.08 0.05 0.05 0.03 0.04 0.14 0.18 0.19 0.15

P-DeepAR 0.11 0.09 0.09 0.14 0.13 0.15 0.14 0.13 0.14 0.19 0.17 0.14
P-NoConsistency 0.18 0.19 0.17 0.19 0.22 0.18 0.19 0.24 0.24 0.22 0.25 0.31

Models/Data Wiki Flu-Symptoms FB-Survey

Hierarchy Levels 1 2 3 4 5 1 2 3 1 2 3
HierE2E 0.15 0.21 0.26 0.22 0.24 0.11 0.13 0.11 0.21 0.19 0.18
SHARQ 0.13 0.14 0.14 0.17 0.15 0.58 0.052 0.085 0.16 0.14 0.15

PEMBU-MinT 0.12 0.11 0.12 0.13 0.14 0.17 0.22 0.17 0.2 0.19 0.16
PROFHiT 0.11 0.15 0.12 0.14 0.11 0.031 0.044 0.052 0.09 0.07 0.06

P-FineTune 0.19 0.18 0.23 0.22 0.24 0.033 0.031 0.042 0.05 0.06 0.09
P-NoParamShare 0.16 0.15 0.16 0.17 0.15 0.065 0.072 0.096 0.11 0.13 0.17

P-DeepAR 0.21 0.24 0.26 0.22 0.23 0.064 0.077 0.083 0.15 0.19 0.17
P-NoConsistency 0.29 0.28 0.35 0.33 0.37 0.22 0.18 0.14 0.22 0.25 0.21
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Table 8: Std. dev of CRPS and LS (accros 5 runs) across all levels for all baselines, PROFHiT and its variants. PROFHiT performs

significantly better than all baselines as noted using t-test with 𝛼 = 1%.

Models/Data Tourism-L Labour Wiki Flu-Symptoms FB-Survey

CRPS LS CRPS LS CRPS LS CRPS LS CRPS LS
Baselines DeepAR 0.011 0.040 0.004 0.038 0.002 0.044 0.018 0.098 0.482 0.434

TSFNP 0.006 0.021 0.003 0.018 0.015 0.069 0.019 0.004 0.251 0.217
MinT 0.005 0.019 0.002 0.121 0.018 0.006 0.014 0.111 0.468 0.213
ERM 0.044 0.005 0.002 0.110 0.016 0.069 0.018 0.133 0.148 0.209

HierE2E 0.001 0.038 0.003 0.049 0.019 0.018 0.005 0.051 0.325 0.109
SHARQ 0.000 0.011 0.001 0.046 0.017 0.007 0.002 0.116 0.133 0.048

PROFHiT (Ours) 0.001 0.017 0.001 0.003 0.001 0.030 0.005 0.009 0.040 0.008
Ablation P-FineTune 0.016 0.031 0.003 0.003 0.016 0.014 0.001 0.006 0.090 0.004

P-NoParamShare 0.012 0.033 0.000 0.013 0.002 0.001 0.033 0.024 0.248 0.119
P-DeepAR 0.006 0.026 0.001 0.028 0.005 0.043 0.035 0.030 0.103 0.065

P-NoConsistency 0.005 0.012 0.001 0.009 0.015 0.043 0.012 0.025 0.110 0.053
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G DETAILS ON DATA IMPUTATION

EXPERIMENT

Motivation: During real-time forecasting in real-world applica-
tions such as Epidemic or Sales forecasting, we encounter situations
where the past few values of time-series are missing or unreliable
for some of the nodes. This is observed specifically at lower levels,
due to discrepancies or delays during reporting and other factors
[4]. Therefore, one approach to performing forecasting in such a
situation is first by imputation of missing values based on past data
and then using the predicted missing values as part of the input for
forecasting.

Task: To simulate such scenarios of missing data and evaluate
the robustness of PROFHiT and all baselines, we design a task called
Hierarchical Forecasting with Missing Values (HFMV). Formally, at
time-period 𝑡 , we are given full data for up to time 𝑡 − 𝜌 . We show
results here for 𝜌 = 5 which is the average forecast horizon of all
tasks. For sequence values in the time period between 𝑡 − 𝜌 and 𝑡 ,
we randomly remove 𝑘% of these values across all time-series. The
goal of HFMV task is to use the given partial dataset from 𝑡 − 𝜌

to 𝑡 as input along with complete dataset for time-period before
𝑡 − 𝜌 to predict future values at 𝑡 + 𝜏 . Therefore, success in HFMV
implies that models are robust to missing data from the recent past
by effectively leveraging hierarchical relations.

Setup: We first train PROFHiT and baselines on complete dataset
till time 𝑡 ′ and then fill in the missing values of input sequence us-
ing the trained model. Using the predicted missing values, we again
forecast the output distribution. For each baseline and PROFHiT, we
perform multiple iterations of Monte-Carlo sampling for missing
values followed by forecasting future values to generate the fore-
cast distribution. We estimate the evaluation scores using sample
forecasts from all sampling iterations.

H ADAPTING TO VARYING DATASET

CONSISTENCY

Observation 1. The average improvement in performance of

PROFHiT over best forecasting baselines is 72% higher for weakly con-

sistent datasets over its improvement for strongly consistent datasets.

Since most previous state-of-art models assume datasets to be
strongly consistent, deviations to this assumptions can cause under-
performance when used with weakly consistent datasets. This is
evidenced in Table 3 where some of the baselines like MinT and
ERM that explicitly optimize for hierarchical consistency perform
worse than even TSFNP, which does not leverage hierarchical rela-
tions, in Flu-Symptoms and FB-Survey. Overall, we found that for
weakly consistent datasets, PROFHiT provides a much larger 93%
average improvement in CRPS scores over the best baselines com-
pared to 54% average improvement for strongly consistent datasets.
These improvements are more pronounced at non-leaf nodes of hi-
erarchy where PROFHiT improves by 2.8 times for Flu-Symptoms
and 9.2 times for FB-Survey. This is because the baselines which
assume strong consistency do not adapt to noise at leaf nodes that
compound to errors at higher levels of hierarchy.

Observation 2. PROFHiT’s approach to parameter sharing and

soft consistency regularization helps adapt to varying hierarchical

consistency.

We observe that that best performing variant for strongly con-
sistent datasets in P-NoParamShare which is trained with both
likelihood loss and SoftDisCoR (Table 3). But its performance se-
verely degrades for weakly consistent datasets since sharing all
model parameters across all time-series makes it inflexible to model
patterns and deviations specific to individual nodes. In contrast,
P-FineTune and P-NoConsistency performs the best among vari-
ants for weakly consistent datasets since they train separate sets
of decoder parameters for each node. But they perform poorly for
strongly consistent datasets since they don’t leverage Distributional
Consistency effectively. PROFHiT combines the flexible parameter
learning of P-FineTune and leverage Distributional Consistency to
jointly optimize the parameters like P-NoParamShare providing
comparable performance to best variants over all datasets.

Table 9: Average value of 𝛾𝑖 for all datasets. Note that weakly

consistent datasets have higher 𝛾𝑖 (depends mode on past

data of same time-series) where as strongly-consistent data

have lower 𝛾𝑖 (leverages the hierarchical relations).

Consistency Dataset Average value of 𝛾𝑖
Strong Tourism-L 0.420 ± 0.096

Labour 0.348 ± 0.091
Wiki 0.313 ± 0.057

Weak Symp 0.759 ± 0.152
Fbsymp 0.789 ± 0.180

Observation 3. PROFHiT’s Refinement module automatically

learns to adapt to varying hierarchical consistency.

The design choices of the refinement module help PROFHiT to
adapt to datasets of different levels of hierarchical consistency.
Specifically, by optimizing for values of {𝛾𝑖 }𝑁𝑖=1 of Equation 3,
PROFHiT aims to learn a good trade-off between leveraging prior
forecasts for a time-series and hierarchical relations of forecasts
from the entire hierarchy. We study the learned values of {𝛾𝑖 }𝑁𝑖=1
of Equation 3 used to derive refined mean. Note that higher val-
ues of 𝛾𝑖 indicate larger dependence on base forecasts of node and
smaller dependence of forecasts of the entire hierarchy. We plot
the average values of 𝛾𝑖 for each of the datasets in Table 9. We
observe that strongly consistent datasets have lower values of 𝛾𝑖
indicating that PROFHiT’s refinement module automatically learns
to strongly leverage the hierarchy for these datasets compared to
weakly consistent datasets.
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