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ABSTRACT

Multivariate time-series data are gaining popularity in various ur-

ban applications, such as emergency management, public health,

etc. Segmentation algorithms mostly focus on identifying discrete

events with changing phases in such data. For example, consider

a power outage scenario during a hurricane. Each time-series can

represent the number of power failures in a county for a time pe-

riod. Segments in such time-series are found in terms of different

phases, such as, when a hurricane starts, counties face severe dam-

age, and hurricane ends. Disaster management domain experts

typically want to identify the most affected counties (time-series of

interests) during these phases. These can be effective for retrospec-

tive analysis and decision-making for resource allocation to those

regions to lessen the damage. However, getting these actionable

counties directly (either by simple visualization or looking into the

segmentation algorithm) is typically hard. Hence we introduce and

formalize a novel problem RaTSS (Rationalization for time-series

segmentation) that aims to find such time-series (rationalizations),

which are actionable for the segmentation. We also propose an algo-

rithm Find-RaTSS to find them for any black-box segmentation. We

show Find-RaTSS outperforms non-trivial baselines on generalized

synthetic and real data, also provides actionable insights in multiple

urban domains, especially disasters and public health.

CCS CONCEPTS

• Information systems → Data mining.
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1 INTRODUCTION

Figure 1: Disaster example (a): 2017 Hurricane Irma times-

series (representing power failures of a county during the

hurricane). The first and last cut point are based on the hur-

ricane landfall (Sept. 10) and end time (Sept. 12). Cupoints 𝑐2
and 𝑐3 is around the time when hurricane is changing trajec-

tory. (b) shows a snippet and (c) a heatmap of top 10most im-

portant counties found by our algorithm across cutpoint 𝑐2.

(d) shows a simple magnitude-based TOIs heatmap across 𝑐2.

Brighter colors indicate larger importance weights ((c),(d)).

Motivation: Multivariate time-series data, where each timestamp

has readings from the observations of multiple entities or sensors,

are prevalent in various urban scenarios, ranging from critical in-

frastructures, public health, and so on.

Urban domain experts such as emergency management and

health care authorities segment such data for identifying mean-

ingful events. For these events, they want to understand time-series
of interests (TOIs), i.e., the signals which are more susceptible across

each particular event. For example, in a hurricane disaster scenario,

a set of multivariate time-series can represent power failures across

a set of counties. A domain expert can identify the events which cor-

respond to different phases of the hurricanes (e.g., based on severity

of damage), by using multiple segmentation algorithms [7, 12, 21].

However, most time-series segmentation algorithms [11, 12, 21]

https://doi.org/10.1145/3459637.3482410
https://doi.org/10.1145/3459637.3482410
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are usually complex, and while they give high quality segmenta-

tions, they do not give ready actionable insights to identify the TOIs
across events.

Finding time-series of interests (TOIs): We next discuss how

TOIs gives actionable insights which are useful for domain experts

in context of urban analytics. For the hurricane power failure data

(mentioned above) domain experts (DEs) such as emergency man-

agement authorities seek solutions to reduce power outages in

different counties. If DEs get actionable insights, i.e., which time-

series/counties are the most important with respect to an event,

they can send personnel to fix damage and alert local authorities

to reduce further loss [6]. For example, consider Fig. 1 for the 2017

Hurricane Irma (where Fig. 1(a) shows the hurricane time-series

data with the segmentation, which roughly correspond to different

phases). Fig. 1(b) shows the failure time-series snippet of top 10

counties (i.e. time-series) across the second cutpoint (𝑐2) found by

our algorithm.We see some of the counties have a very high change

of power failures (green box) which are obviously useful to guide

resource allocation as they denote widespread problems. At the

same time there are also some less obvious counties near Atlanta

too (brown box in Fig 1(b)). These counties have relatively lower

but a sudden change of failures compared to the other counties.

Further, see the geographic heatmap plot of our TOIs (based on their
importance weights as learnt by our algorithm) in Fig. 1(c). Clearly

these counties (denoted by blue circle) are not obvious: they are lo-

cated at the north-west corner, far away from where the hurricane

is present (the blue rectangle, where the rest of the important TOIs
are). However they are still important and useful for situational

awareness and resource allocation. Indeed, reports [2] suggest that

this is due to a separate tropical storm happening at this time. Note

that figuring out these counties by just visualizing the time-series

(Fig. 1(a)) across 𝑐2 is hard (as they get buried). In fact, further if

we plot a heatmap of all the counties based on their rate of change

of magnitude across 𝑐2 (Fig. 1(d)) we cannot recover these counties
located at the middle (as their magnitudes are relatively lower).

How can we then find such TOIs for events? One plausible way
to solve such problems might be to somehow interpret the internal

change of state of the segmentation algorithm across any cut-point.

For instance, one might use a recent segmentation algorithm Au-

toplait [21] to segment, which learns a HMM internally. Hence

one way to get the TOIs will be to see which time-series cause

the internal HMM to change across the cut-point. However it is

easy to see these will only point to time-series which help explain

model behavior, but not necessarily give actionable insights to the

DE (as explained above such actionable insights are based more

on the change in the time-series itself, and how similar/dissimilar

these changes are to others). Additionally, DEs may end up using

multiple segmentation algorithms (such as TICC [12] which uses

multilayer MRF in contrast to Autoplait) for different datasets based

on what constitute meaningful events for the data. Tracking the

model behavior for each of these segmentation algorithms will give

different TOIs. Further this may become too complex to the DE,

who will need additional technical help to understand the technical

intricacies of the segmentation algorithm to get any actionable

insights.

Our Contributions: Hence, in a collaboration between computer

scientists and experts at Oak Ridge National Laboratory, we aim to

find a different way to get actionable insights for any segmentation

algorithm. Our contributions are:

• We introduce and formalize a novel problem Rationalization

for Time-series Segmentations (RaTSS) which aims to find

human-friendly and actionable TOIs (rationalizations) for
the urban experts across the associated events in terms of

constituent time-series.
• We propose an algorithm Find-RaTSS to automatically cap-

ture the TOIs in a way that is flexible and works for any

black-box segmentation that a DE may use.

• Finally, we evaluate performance of Find-RaTSS with base-

lines on both synthetic and real general and urban data. Also,

we showcase how rationalizations (TOIs) by Find-RaTSS are

actionable directive for the DEs in urban domains like disas-

ters and disease spread.

The rest of the paper is organized as follows. We first propose

and formalize our novel problem RaTSS. Next, we design an algo-

rithm to solve RaTSS and showcase performances of our algorithm

in the synthetic and real-life urban domain. Additionally, in the ex-

periments (Sec. 4) we show how our TOIs can help a variety of DEs,

including public health for understanding impact of interventions

in the COVID-19 pandemic. We then explore the related literature

on the closest works in urban analytics and time-series mining

and finally conclude with the avenues for future work. Additional

experiments are in the appendix [4].

2 PROBLEM FORMULATION

Notations. Suppose, we have a multivariate time-series data matrix

ofm sequencesX = {𝑥1, 𝑥2, ...𝑥𝑚}, where each𝑥𝑢 = 𝑥𝑢 (𝑡1), ...𝑥𝑢 (𝑡𝑡 )
has 𝑡 observations.We are given a set of cutpointsC = {𝑐1, 𝑐2, . . . , 𝑐𝑘 },
each 1 ≤ 𝑐 𝑗 ≤ 𝑡 . For the rest of the paper we use the term ratio-

nalizations and TOIs as interchangeable. An overview of all the

notations are in Table 1.

The main challenges for formulating such rationalization prob-

lem across a segmentation are: P1.We require a general framework

which works for any X and any segmentation C given by a black-

box segmentation algorithm 𝐵. For generalization, we do not know

anything about 𝐵. P2. We need to associate constituent time-series

across each cutpoint to actionable directives. Hence we propose

an intermediary weighting scheme to measure importance of each

time-series which can map them towards actionable directives.

Problem 2.1 (Informal RaTSS.). Given a multivariate time-
series X and a segmentation C for X. Find the rationalization weight
vector of size 𝑚 × 1, r𝑗 across each cutpoint 𝑐 𝑗 in C, where each
value 𝑟𝑢

𝑗
in r𝑗 is a scalar and represents the importance weight for

time-series 𝑥𝑢 across 𝑐 𝑗 .

What is 𝑟𝑢
𝑗
? One possible approach to measure importance is to

assign a numerical weight 𝑟𝑢
𝑗
to the time-series 𝑥𝑢 in terms of its

change across a cutpoint 𝑐 𝑗 . However, we do not know anything

about the segmentation algorithm𝐵 (P1), besides thewaywe should

measure change (e.g., using time-series features) may be different

for each cut-point. Hence feature-engineering to work for all 𝐵

correctly is not possible.

Hence we present another idea: since C is selected by 𝐵 among all

possible segmentations, we may assume C by 𝐵 is the best in some
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Table 1: Notations.

Symbol Description

X ∈ R𝑚×𝑇
Data matrix consisting of𝑚

time-series each having 𝑡 timestamps

C Segmentation with a set of cutpoints

for X

𝐵 Any segmentation algorithm which outputs

a set of cutpoints on X.

r𝑗 𝑚 × 1 rationalization weight vector

𝐺 (S, E) A segment graph of S nodes (𝑠𝑖 𝑗 ) and

E edges (𝑒𝑖 𝑗𝑘 ) connected by weight w𝑖 𝑗𝑘

𝑠𝑖 𝑗 A node (segment) of 𝐺 consisting of the

sub-sequence of𝑚 time-series within

𝑖 − 𝑗 timestamps

𝑒𝑖 𝑗𝑘 An edge of 𝐺 representing edge weight

of the connected nodes

𝑠𝑖 𝑗 & 𝑠 𝑗𝑘
w𝑖 𝑗𝑘 A𝑚 × 1 weight vector for

𝑒𝑖 𝑗𝑘 , each cell is weight of 𝑥𝑖 in 𝑒𝑖 𝑗𝑘
𝐾 Total number of paths in 𝐺

𝐹 (𝑠𝑖 𝑗 ) A function to return a𝑚 × 𝑓
matrix for each time-series in 𝑠𝑖 𝑗
having 𝑓 features

𝑃𝐵 The path in 𝐺 which maps to C
𝑃rest All possible paths in 𝐺

except the path 𝜋𝐵
𝝅𝐵 , 𝝅 rest Cost of path 𝑃𝐵 , 𝑃rest

𝜶 Global latent weight vector

𝜆1, 𝜆2 Scalar hyper-parameters used for

rationalization Eq. 2

sense (as after all the algorithm 𝐵 output C as the segmentation,

choosing it over all the other possible segmentations). It is natural to
assume that the rationalization weight vectors r𝑗 should be set in

a way that explains why C becomes better compared to all other

possible segmentations. Hence our main idea is to consider C as

the best compared to other possible segmentations, and choose r𝑗 s

to make it so.

Segment Graph. We want to efficiently represent all possible seg-

mentations (as they will be exponential in number to the length

of the sequence). Recently [7] proposed a ‘segment graph’ data

structure𝐺 to represent X and its segmentations efficiently. Hence

we leverage this data structure and convert our rationalization prob-

lem in terms of a graph optimization over𝐺 . The segment graph

𝐺 (S, E) is a Directed Acyclic Weighted Graph (DAWG) consisting of

a set of nodes S and set E of edges. Next, we define its components.

Definition 2.1 (Node set of𝐺). The node set S consists of all pos-

sible segments in 𝑋 . That is, node 𝑠𝑖 𝑗 in node set S of𝐺 consists of

the subsequence ofX of consecutive timestamps 𝑖 to 𝑗 . Additionally

S consists of 𝑠𝑜 and 𝑡𝑎 , two dummy nodes to represent the start

and end of the time-series.

Definition 2.2 (Edge set of 𝐺). An edge 𝑒𝑖 𝑗𝑘 in edge set E con-

nects two adjacent segments 𝑠𝑖 𝑗 and 𝑠 𝑗𝑘 , where 𝑖 < 𝑗 < 𝑘 and

1 ≤ 𝑖 < 𝑇 −1, 1 < 𝑘 ≤ 𝑇 . Each 𝑒𝑖 𝑗𝑘 is mapped to a possible cutpoint

𝑐 𝑗 a timestamp 𝑡 𝑗 in X.

The edge weight vector w𝑖 𝑗𝑘 for the corresponding 𝑒𝑖 𝑗𝑘 repre-

sents the ’change’ of every 𝑥𝑢 between the adjacent segments of

any cutpoint 𝑐 𝑗 . Note that all segmentations of X (including the

segmentation C) naturally get mapped to paths in 𝐺 . We further

define 𝐾 (the total number of segmentations) as the total number

of possible paths from 𝑠𝑜 to 𝑡𝑎 paths in 𝐺 .

Definition 2.3 (Segmentation C in 𝐺). The path 𝑃𝐵 in 𝐺 is the

path from 𝑠𝑜 to 𝑡𝑎 s.t. each edge 𝑒𝑖 𝑗𝑘 ∈ 𝑃𝐵 is mapped to the corre-

sponding 𝑐 𝑗 ∈ C.

Definition 2.4 (Other possible segmentations). 𝑃rest is the set
of all other possible paths in 𝐺 from 𝑠𝑜 to 𝑡𝑎 other than 𝑃𝐵 . Every

path 𝑝𝑣 ∈𝑃rest represents a possible segmentation of 𝑋 .

Thus, in terms of 𝐺 our idea can be stated as that 𝑃𝐵 should be

the best path from 𝑠𝑜 to 𝑡𝑎 in 𝐺 (compared to all paths in 𝑃rest).

Further, r𝑗 should be set in a way that helps make 𝑃𝐵 the best path.

Clearly the weight vectors w𝑖 𝑗𝑘 (which represent how different

adjoining segments are across each edge) also should play a role in

quantifying the quality of each path.

Hence, we need a ‘quality’ metric Quality to compare the paths

which should depend on the rationalization weights, the paths

and the weights over the edges in the paths. Then our required

condition can be stated as:Quality(𝑃𝐵,w𝑖 𝑗𝑘 for each 𝑒𝑖 𝑗𝑘 ∈ 𝑃𝐵, r) >
Quality(𝑝𝑣,w𝑖 𝑗𝑘 for each 𝑒𝑖 𝑗𝑘 ∈ 𝑝𝑣, r),∀𝑝𝑣 ∈𝑃rest. It is not clear how
rwhich has been defined only over 𝑃𝐵 can affect the quality of other

paths. One way to handle this issue is to create ‘rationalizations’

over all edges - which will lead to severe over-parameterization as

the number of edges in 𝐺 is 𝑂 (𝑇 3). Hence, we propose to instead

have a global latent weight vector 𝜶 ∈ R𝑚×1
whose magnitude

captures the global latent importance of each time-series, and then

use 𝜶 over the edges in 𝑃𝐵 to get r𝑗 for each cutpoint 𝑐 𝑗 ∈ C. Our
condition can be re-written as follows:

Quality(𝑃𝐵, 𝛼) > Quality(𝑝𝑣, 𝛼),∀𝑝𝑣 ∈ 𝑃rest (1)

with r𝑗 = someFunctionOf (𝛼,w𝑖 𝑗𝑘 ).
We now informally state our problem in terms of a graph-based

framework.

Problem 2.2 (Informal Graph based RaTSS.). Given, X,
C, and a segment graph 𝐺 on X, so that its path 𝑃𝐵 corresponds to
C. Find 𝜶 to satisfy Eq. 1 and generate the rationalization weight
vector r𝑗 across each edge 𝑒𝑖 𝑗𝑘 in 𝑃𝐵 .

Formalizing Problem2.2.To formalize this problem, several ques-

tions arise:Q1.What is Quality? Due to P1, we cannot consider any
prior knowledge about the segmentation algorithm while designing

the quality metric. A possible approach is to assume Quality as cost
of the path. Hence, we simply consider the weighted length of the

path as its cost. Note that, the length of the path will intuitively

measure how different its adjacent segments are. Intuitively, seg-

mentation algorithms try to find cutpoints so that each segment

corresponds to a distinct phase in some sense, and hence adjacent

segments are expected to be very ‘different’ from one another. In

other words, in our framework, we want to learn 𝜶 which makes

𝑃𝐵 the longest weighted path in 𝐺 from 𝑠𝑜 to 𝑡𝑎 .
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Definition 2.5 (Length of a path). The length 𝝅 𝑣 of a path 𝑝𝑣 is
an𝑚 × 1 vector, each component represents the sum of all the edge

weights w𝑖 𝑗𝑘 in 𝑝𝑣 for time-series 𝑥𝑢 . Hence, 𝝅 𝑣 =
∑
𝑒𝑖 𝑗𝑘 ∈𝑝𝑣 w𝑖 𝑗𝑘 .

Hence we can now write the Quality function for any path 𝑝𝑣
(i.e. the cost of 𝑝𝑣 ) as follows:

Quality(𝑝𝑣,𝜶 ) =
∑

𝑒𝑖 𝑗𝑘 ∈𝑝𝑣
𝜶𝑇w𝑖 𝑗𝑘 =

∑
𝑒𝑖 𝑗𝑘 ∈𝑝𝑣

𝑚∑
𝑢=1

𝜶𝑢w
𝑢
𝑖 𝑗𝑘

Q2. How to generate r𝑗 for each 𝑐 𝑗 using 𝜶 ? As we discussed be-

fore (in Eq. 1), r𝑗 = someFunctionOf (𝛼,w𝑖 𝑗𝑘 ). w𝑖 𝑗𝑘 represents the

change across an edge, while 𝜶 gives us the global latent weight

for each time-series, Additionally, recall that r𝑗 is intuitively the

importance of each time-series over every cut-point 𝑐 𝑗 ∈ C. Hence
a simple way to get r𝑗 is r𝑗 = |𝛼 ⊙ w𝑖 𝑗𝑘 |, where ⊙ is the standard

element-wise vector dot product (and the modulus is because 𝜶
can be negative). Q3. How to set w𝑖 𝑗𝑘? Note that we still haven’t
precisely defined w𝑖 𝑗𝑘 . As discussed before w𝑖 𝑗𝑘 just should reflect

some change in each time-series across the edge. Keeping in mind

P2, we just represent each node 𝑠𝑖 𝑗 as a𝑚 × 𝑓 feature matrix where

𝐹 (𝑠𝑖 𝑗 ) = [f1𝑖 𝑗 , ...f
𝑚
𝑖 𝑗 ], each f

𝑢
is a 𝑓 × 1 feature vector of time-series

𝑥𝑢 in segment 𝑠𝑖 𝑗 . We can set w𝑖 𝑗𝑘 = | |𝐹 (𝑠𝑖 𝑗 ) − 𝐹 (𝑠 𝑗𝑘 ) | |1,2.
This is not feature-engineering.We choose only basic statistical

features f (mean, variance, minimum and maximum in this paper),

as we only need to capture basic changes across the segments -

not how the segmentation algorithm 𝐵 regards as the change (a

feature ablation test in the appendix [4] shows all these features

are necessary and useful for any segmentation). This is different

than directly choosing features to set r𝑗 , as now the rationalization

weights will need to best explain why the cut-point is present, not

how the time-series change.

Putting everything together. We next formalize our task as an

optimization problem. Note that Eq. 1 will result in one inequality

for each path in 𝐺 , which are exponential in number (to 𝑇 ). Hence

directly using Eq. 1 is infeasible. Instead, we tackle a simplified

version, by just adding all the inequalities to get a consolidated

objective. Let 𝝅𝐵 be the length of path 𝑃𝐵 . We also define 𝝅 rest as

follows.

Definition 2.6 (Total length of 𝑃rest). 𝝅 rest is an𝑚 × 1 vector,

each component represents the length of all other paths in 𝑃rest
other than 𝑃𝐵 over each time-series. Hence, 𝝅 rest =

∑
𝑝𝑣 ∈𝑃rest 𝝅 𝑣 =∑

𝑝𝑣 ∈𝑃rest
∑
𝑒𝑖 𝑗𝑘 ∈𝑝𝑣
𝑒𝑖 𝑗𝑘∉𝑃𝐵

w𝑖 𝑗𝑘 .

We can also rewrite 𝝅 rest as

∑
𝑒𝑖 𝑗𝑘 ∈E−𝑃𝐵 𝑝𝑖 𝑗𝑘w𝑖 𝑗𝑘 where 𝑝𝑖 𝑗𝑘

is the number of paths in 𝐺 passing through 𝑒𝑖 𝑗𝑘 . Suppose, 𝚫𝝅 =∑
𝑝𝑣 ∈𝑃rest 𝝅𝐵 −𝝅 𝑣 = (𝐾 −1)𝝅𝐵 −𝝅 rest, where𝐾 is the total number

of paths in 𝐺 . Hence the set of inequalities in Eq. 1 will imply

maximizing 𝜶𝑇𝚫𝝅 . Therefore, we formalize RaTSS as follows.

Problem 2.3 (Formal Graph based RaTSS.). Given, X, C,
a segment graph 𝐺 on X, so that its path 𝑃𝐵 corresponds to C, and a
Function 𝐹 (.) to represent a node 𝑠𝑖 𝑗 on 𝐺 in𝑚 × 𝑓 feature matrix.
Find 𝜶 that satisfy Quality(𝑃𝐵, 𝛼) > Quality(𝑝𝑣, 𝛼),∀𝑝𝑣 ∈ 𝑃rest
and generate rationalization r𝑗 , for each edge 𝑒𝑖 𝑗𝑘 in 𝑃𝐵 such that

argmax

𝜶
𝜶𝑇 (𝚫𝝅) − 𝜆1 | |𝜶 | |1

subject to 𝜶 ≠ 0, | |𝜶 | |2
2
= 1

(2)

r𝑗 = |𝛼 ⊙ w𝑖 𝑗𝑘 | (3)

Details: We want 𝜶 to assign a higher weight for the time-series

with high value in 𝚫𝝅 (each 𝜶𝑢 represents a weight for time-series

𝑥𝑢 ). The term 𝜆1 | |𝜶 | |1 is to encourage sparsity for simple explana-

tions. The constraint | |𝜶 | |2
2
= 1 is to ensure that 𝜶𝑢s are bounded

and comparable. An overview of RaTSS is shown in Fig. 2

Remark 1: A silent assumption in RaTSS is that the segmentation

(events) is meaningful to the DE. For example, when the time-series

is constant, then rationalizations (TOIs) found by RaTSSmay not be

meaningful. Indeed, arguably, it is not clear in this case if there are

any meaningful TOIs in the first place (intuitively, for homogeneous

data, cut points are not useful).

Remark 2: We define our rationalizations in terms of constituent

time-series only. As we discussed in Sec. 1 and show in our exper-

iments later, such a definition is already meaningful in an urban

analytics context (e.g., actionable counties in the hurricane exam-

ple). However, there can be situations where a group of time-series

can also be actionable.We plan to consider such extensions in future

work.

Figure 2: Overview of RaTSS

3 OUR ALGORITHM

We aim to design an efficient approach for Problem 2.3 to identify

the TOIs for RaTSS. Our main steps are- (A) Computing 𝚫𝝅 and

(B) Optimizing r𝑗 . Next, we discuss in detail about these steps,

present an overall algorithm Find-RaTSS and its complexities and

implementation.

(A) Computing 𝚫𝝅 .We construct the segment graph 𝐺 (S, E) to
compute 𝚫𝝅 from 𝐺 . The computation is of three steps: (i) Com-

puting the length of 𝑃𝐵 , i.e. 𝝅𝐵 , which is trivial, (ii) Calculating the

total length of all the possible paths, except 𝝅𝐵 in𝐺 , i.e., 𝝅 rest, and

(iii) Calculating the total number of all possible paths in 𝐺 , i.e., 𝐾 .

Our main challenge is to efficiently compute (ii), and (iii) since the

number of paths in 𝐺 is exponential. Next, we discuss these steps

(ii) and (iii).

For computing 𝝅 rest, we design an efficient technique to calculate

the number of paths 𝑝𝑖 𝑗𝑘 passing through an edge 𝑒𝑖 𝑗𝑘 in constant
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time, by exploiting the properties of𝐺 . Next, we show how we find

𝑝𝑖 𝑗𝑘 with the help of Lemma 3.1.

Lemma 3.1 (Number of paths through an edge 𝑒𝑖 𝑗𝑘 is 𝑝𝑖 𝑗𝑘 ).

Given, 𝑖 and 𝑘 be the begin and end timestamp of the adjacent seg-
ments 𝑠𝑖 𝑗 and 𝑠 𝑗𝑘 of 𝑒𝑖 𝑗𝑘 . For total timestamp 𝑇 , the number of paths
through 𝑒𝑖 𝑗𝑘 is,

𝑝𝑖 𝑗𝑘 =


1 𝑖 = 1, 𝑘 = 𝑇

2
(𝑖−2) 𝑘 = 𝑇

2
(𝑇−𝑘−1) 𝑖 = 1

2
(𝑖−2)+(𝑇−𝑘−1) otherwise

(4)

Proof. Following is the proof for different 𝑖 , 𝑗 , and 𝑘 .

• Case 𝑖 = 1, 𝑘 = 𝑇 : Trivial. Since, there is only on segment

from 1 to 𝑇 and only one path.

• Case 𝑖 = 1, 𝑘 < 𝑇 : (By induction). Suppose, 𝑇 = 𝑘 + 1, then

the number of paths is 2
𝑘+1−𝑘−1 = 2

0 = 1. This is trivial,

because from 𝑠 𝑗𝑘 there is only one possible edge 𝑠 𝑗𝑘 −𝑠𝑘 (𝑘+1)
and thus there is only one possible path.

Suppose, with 𝑇 = 𝑘 + 𝑞 where 𝑞 > 𝑘 , the number of paths

is 2
𝑞−1

. We need to show, with 𝑇 = 𝑘 + 𝑞 + 1, the number of

paths become 2
𝑞
. Since 𝑞 + 1 > 𝑞, all the paths that can be

possible to reach from 𝑠 𝑗𝑘 to 𝑠 𝑗 (𝑘+𝑞) can also be possible to

reach from 𝑠 𝑗𝑘 to 𝑠 𝑗 (𝑘+𝑞+1) using the edge 𝑠 𝑗 (𝑘+𝑞) −𝑠 𝑗 (𝑘+𝑞+1) .
That is, 2

𝑞−1
paths possible from 𝑠 𝑗𝑘 to 𝑠 𝑗 (𝑘+𝑞+1) using the

edge 𝑠 𝑗 (𝑘+𝑞) − 𝑠 𝑗 (𝑘+𝑞+1) .
Again, by the edge construction property of 𝐺 , a path ends

when end timestamp of a node is𝑇 = 𝑘 +𝑞 + 1. If we remove

the timestamp 𝑘 + 𝑞 and consider only 𝑘, 𝑘 + 1, . . . , 𝑘 + 𝑞 −
1, 𝑘 + 𝑞 + 1, then the number of possible paths become 2

𝑞−1

to reach 𝑘 + 𝑞 + 1 (by induction). Because, all edges that

used nodes ended with 𝑘 + 𝑞 now can use nodes ended with

𝑘 + 𝑞 + 1.

Thus, the total number of possible paths with and without

using the edge 𝑠 𝑗 (𝑘+𝑞) − 𝑠 𝑗 (𝑘+𝑞+1) becomes 2
𝑞−1 + 2

𝑞−1 =

2
𝑞−1+1 = 2

𝑞
(proved).

• Case 𝑖 > 1, 𝑘 = 𝑇 : Following the above if we consider 𝑇 = 𝑖

and the 𝑘 = 1. The number of paths is 2
𝑇−𝑘−1 = 2

𝑖−1−1 =

2
𝑖−2

.

• Case 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒: Hence, if there are 2𝑖−2 paths possible to
reach a node 𝑠𝑖 𝑗 and 2

𝑇−𝑘−1
possible paths to reach times-

tamp 𝑇 from a node 𝑠 𝑗𝑘 . The total number of paths possible

through the edge 𝑠𝑖 𝑗 − 𝑠 𝑗𝑘 or 𝑒𝑖 𝑗𝑘 is 𝑝𝑖 𝑗𝑘 = 2
(𝑖−2)+(𝑇−𝑘−1)

.

□

Next, using Lemma 3.1, we can further compute the following

corollary on the total number of paths 𝐾 , intuitively, by setting

𝑖 = 1, and 𝑘 = 2 . . .𝑇 − 1.

Corollary 1 (Total number of possible paths in seg-

ment graph 𝐺 is 𝐾). Given total timestamp is 𝑇 , and number of
paths through an edge 𝑒𝑖 𝑗𝑘 is 𝑝𝑖 𝑗𝑘 . If we consider all the edges in edge-
set𝐺 as E, the total number of possible paths in𝐺 is-𝐾 =1+

∑𝑇−1
𝑘=2
𝑖=1

𝑝𝑖 𝑗𝑘 =

2
𝑇−2

Proof. According to the path property of 𝐺 , every path starts

from 𝑖 = 1 and ends at timestamp 𝑇 . For 𝑖 = 1, 𝑘 = 𝑇 there is only

one path possible (the whole segmentation). For 1 < 𝑗 < 𝑇 − 1, the

first node of all other paths in𝐺 has to start from some 𝑠1𝑗 . Consider

𝑗 = 𝑘 , using Lemma 3.1 we find 𝑝
1𝑘𝑘 . Thus, 𝐾 = 1 +∑𝑇−1

𝑘=2
𝑝
1𝑘𝑘 =

1 + 2
𝑇−2 − 1 = 2

𝑇−2
. □

(B) Optimizing r𝑗 . To add the constraint to the objective of Eq. 2,

we use Lagrange multiplier 𝜆2. We solve Eq. 2 using gradient de-

scent learning, considering the gradient −𝚫𝝅 + 𝜆1𝑠𝑖𝑔𝑛(𝜶 ) + 𝜆2𝜶 .

To find hyper-parameters 𝜆1, 𝜆2 we use gridsearch technique and

principally choose 𝜶 for which L2 norm (second term in Eq. 2) is

closer to 1. We calculate the importance weight r𝑗 for an edge 𝑒𝑖 𝑗𝑘
in 𝝅𝐵 using Eq. 3. To select the most important time-series at every

𝑒𝑖 𝑗𝑘 , we sort r𝑗 in descending order and principally select the top 𝑘

time-series, when cumulative fraction of their total rationalization

weight >= 0.95.

Algorithm Find-RaTSS. We next give the pseudo-code for our

Algorithm 1.

Input: X: a set of time-series, C: a segmentation

Result: r𝑗 = {𝑟1, ..., 𝑟𝑚}, rationalization weight of X for

every 𝑐 𝑗 in 𝐶

Consider 𝐹 : a function for characterizing time-series. Given

a segment, it returns a feature matrix𝑚 × 𝑓
1. Construct nodes in segment Graph 𝐺

2. Construct edges in 𝐺

3. foreach 𝑒𝑖 𝑗𝑘 ∈ E do

Calculate total number of paths 𝑝𝑖 𝑗𝑘 in 𝑒𝑖 𝑗𝑘 using

Lemma 3.1

Calculate edge weight w𝑖 𝑗𝑘 = | |𝐹 (𝑠𝑖 𝑗 ) − 𝐹 (𝑠 𝑗𝑘 ) | |1,2
Edge cost: 𝝅𝑖 𝑗𝑘

rest
= 𝑝𝑖 𝑗𝑘w𝑖 𝑗𝑘

end

4. 𝝅 rest =
∑
𝑒𝑖 𝑗𝑘 ∈E 𝝅𝑖 𝑗𝑘

rest

5. Compute 𝝅𝐵
6. 𝐾 = 2

𝑇−2

7. Solve 𝜶 using Eq. 2, hyper-parameters 𝜆1, 𝜆2
8. foreach 𝑐 𝑗 ∈ C do

Compute r𝑗 using Eq. 3

end

Algorithm 1: Algorithm Find-RaTSS.

Implementation Details. For faster computation and handling

large data for Algorithm 1, we adopt several techniques, such as (i)

parallelization, (ii) floating point precision, and (iii) normalization.

(i) Parallelization: For efficient and fast computation of 𝝅 rest,

we parallelize Algorithm 1. We divide the task of calculating

number of paths for edges among a set of processors 𝑛. Also

we use a shared memory from Python Multiprocessing library

to compute 𝝅 rest.

(ii) Floating point precision: To efficiently store large value of 𝑝𝑖 𝑗𝑘

and 𝐾 (for 𝑇 > 900), we rearrange Eq. 2 as
𝚫𝝅
𝐾

= 𝝅𝐵 − 𝝅 rest

𝐾
.

And we ignore
𝝅 rest

𝐾
for a very small value.

(iii) Normalization of 𝚫𝝅 : For efficient optimization and better 𝜶
convergence, we normalize on

𝚫𝝅
𝐾

by their max value and

rearrange as 𝚫𝝅 = 𝚫𝝅
𝐾𝑀

,𝑀 = max(
𝚫𝝅
𝐾

).
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Lemma 3.2 (Time and Space Complexity). The worst-case
time complexity of our algorithm is as follows:

• Case serial: 𝑂 (𝑇 3𝑚𝑓 ) +𝑂 (𝐼 ) +𝑂 (C𝑚𝑓 ), 𝐼= number of itera-
tions in the gradient descent phase.

• Case parallel: 𝑂 (𝑇 3

𝑛 𝑚𝑓 ) + 𝑂 (𝐼 ) + 𝑂 (C𝑚𝑓 ), 𝑛 = number of
processors.

The space complexity of Find-RaTSS is 𝑂 (𝑚 +𝑚𝑛).

Proof. We discuss separate proof for time and space complexity.

Time complexity: (i) Case serial: The first term is to calculate 𝜋rest
for each 𝑒𝑖 𝑗𝑘 . Total 𝑒𝑖 𝑗𝑘 in 𝐺 is 𝑂 (𝑇 3). The second term is to solve

𝛼 using Gradient Descent learning, and the third term is to solve

r𝑗 for every cutpoint 𝑐 𝑗 .

(ii) Case Parallel: Parallelization can be applied in Find-RaTSS for
𝜋rest computation, then the total time complexity will be distributed

among 𝑛 processors and hence this is 𝑂 (𝑇 3

𝑛 𝑚𝑓 ). However, time

complexity of gradient descent and r𝑗 computation is similar as in

serial cases.

Space complexity: (i) Case serial: The first term 𝑂 (𝑚) is to store

𝜋rest and 𝜋𝐵 . Since we need 𝑂 (𝑚) 𝜋rest and 𝑂 (𝑚) 𝜋𝐵 for𝑚 time-

series. Hence 𝑂 (𝑚) +𝑂 (𝑚) = 𝑂 (2𝑚) ≈ 𝑂 (𝑚).
(ii) Case parallel: To store final computation of 𝜋rest and 𝜋𝐵 it

takes𝑂 (𝑚). Whereas the second term𝑂 (𝑚𝑛) is to store temporary

𝝅 rest computation for each processor among 𝑛 processors, 𝑂 (𝑚𝑛)
is the number of possible edges in a segment graph 𝐺 . Hence tem-

porary space for 𝑛 processor and final computation of 𝝅𝐵 and 𝝅 rest

is 𝑂 (𝑚𝑛) +𝑂 (𝑚) = 𝑂 (𝑚 +𝑚𝑛). □

Find-RaTSS is clearly linear in the number of time-series 𝑚. Al-

though the serial version is also cubic in𝑇 , in practice we found that

we were able to run the parallel version easily for all our datasets

and it was quadratic in terms of 𝑇 .

4 EXPERIMENTS

We implement RaTSS in Python and Matlab. All codes and datasets

used in the paper have been released for research purposes[5]. Our

experiments were conducted on a 4 Xeon E7-4850 CPU with 512 GB

of 1066Mhz main memory. We collect both general data and domain

Table 2: Datasets Used.

SI Dataset Time Time Cut Black GT

# stamps series points box (𝐵)

1) Gaussian 350 8 3 [12] ✓
2) Insect 5000 4 2 [11] ✓
3) Chicken Dance 322 4 7 [21] ✓
4) Great Barbet 2200 2 2 [11] ✓
5) Sudden Cardiac 7000 2 3 [11] ✓
6) Wikipedia 803 3000 3 [12]

7) Hurricane 264/169 250/271 3/4 [23]

Harvey/Irma
8) COVID-19 53 104 11 state

emer-

gency

date
1

9) Diptheria/TB 52/41 90/60 4/4 [12]

specific urban data, to quantitatively and qualitatively evaluate the

performance of Find-RaTSS. The detail description of the datasets

with ground-truth (GT) rationalizations are discussed here. An

overview of the datasets and the segmentation algorithm (𝐵) used

on each dataset are shown in Table 2. We use 𝐵 which gives the

most meaningful cutpoints (based on GT or historical events).

General datasets:We use a variety of datasets (both synthetic and

real) where we infer the ground-truth TOIs (Table 2 SI 1-6).

(1) Gaussian: We generate a synthetic data, where each time-

series is a univariate Gaussian. We select three cutpoints and

change the parameter of the Gaussian for specific 2− 3 time-

series at those cutpoints. Ground-truth (GT) rationalizations

are the time-series whose Gaussian parameters change at a

cutpoint.

(2) Insect [11]: EPG recording of insect vector feeding, where

each time-series represents an insect. Each cutpoint is an

event when feeding state of the insect changes and GT is the

insect whose feeding state changes at that event.

(3) ChickenDance [21]: Motion capture sequences of a set of

sensors (left-right hands/legs) in a chicken dance originally

collected by CMU
2
. An event occurs, when is a change of

dance state, e.g., wings, tail feather, etc. GT are the set of

sensors which have high change of motion while changing

a dance state.

(4) Great Barbet [11]: Voice recordings of same species Barbet

birds in MFCC format. Each recording is a mixture of two

different birds with approximately half-a-minute snippet of

their song. The cutpoints are set of events when snippet of

one bird ends and other starts. GT are the set of birds, whose

call ends or starts at an event.

(5) Sudden Cardiac [11]: ECG channel reading of hearts of pa-

tients. Events occur when heart state changes, e.g., normal

heart to sudden heart failure or contraction. GT are the pa-

tient whose heart activity changes at an event.

(6) Wikipedia: Web traffic count of various Wikipedia articles

collected daily from the July 2015- October 2017 [1].

Domain specific urban datasets: Next, we describe our domain

specific datasets from urban analytics. Here as there is no ground

truth, we discuss the qualitative performance our algorithm.

(7) Hurricane Outage: Oak Ridge National Laboratory (ORNL)

has developed situational awareness tool EAGLE-I to collect

power outage distribution of all the customers from utility

websites every 15 minutes. We collect this power outage

distribution of different counties for Hurricanes Irma and

Harvey in the hurricane-affected areas used by [23]. Rational-
izations on such data can help DE with retrospective analysis

for emergency management planning.

(8) COVID-19 : COVID cases of different states are collected

daily from Jan-May by New York Times
3

(9) Diptheria and TB: Diptheria and Tuberculosis (TB) cases col-

lected bi-weekly from the year 1900-2014 by Project Tycho
4
.

Time-series are different cities of US representing Diptheria

2
http://mocap.cs.cmu.edu

3
https://github.com/nytimes/covid-19-data

4
https://www.tycho.pitt.edu/
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(TB) cases over time period (years). We run Dynammo [19]

to replace the missing values of original data.

Baselines: We compare Find-RaTSS against plausible approaches.

Our intuition is to find out the effect, by considering each cutpoint

independent of the overall segmentation and without principally

considering any optimization. Following we describe each baseline

model.

(i) Feature-based: We calculate the change across every 𝑐 𝑗 using

basic features, i.e.,𝑤𝑖 𝑗𝑘 and select 𝑥𝑢 which have high𝑤𝑢
𝑖 𝑗𝑘

.

(ii) Magnitute-based: We calculate rate of change of time-series

values across 𝑐 𝑗 for a window (5% of the timestamp). Our

intuition is to pick the time-series easily figured out by visual-

ization.

(iii) Forecast error-based: For every time-series 𝑥𝑢 , we train an

LSTM forecast model based on the segment before 𝑐 𝑗 and test

the model for the segment after 𝑐 𝑗 . We select the time-series

whose forecasting error is high. Since high forecasting error

denotes high measure of unpredictability on the time-series

magnitude after the cutpoint. In other words change of time-

series is high across the cutpoint.

We do not compare against a baseline method of interpreting the

internal change of state of segmentation algorithm (as described in

Sec. 1) since our algorithm is general for a black-box segmentation,

whereas each dataset is a practitioner of a different segmentation

algorithm.

4.1 Quantitative evaluation

We compare Find-RaTSS with the baselines on the ground-truth

data. For rationalizations we select top 𝑘 as the maximum number

of GT in the segmentation. Table 3 shows F1-measures of all the

baselines mentioned above. From the table, we observe that Find-
RaTSS consistently performs better than all the baselines (upto

41%).

Table 3: F1-scores of Find-RaTSS and baselines on the

datasets with ground-truth

Dataset Find- Feature Magnitude Forecast

RaTSS

Gaussian 1.0 0.27 0.42 0.17

Insect [11] 0.83 0.33 0.83 0.5

Chicken Dance [21] 0.86 0.81 0.71 0.5

Great Barbet [11] 1.0 1.0 0.5 0.5

Sudden Cardiac [11] 1.0 0.67 0.67 0

4.2 Case-Studies in domain-specific urban data

Next, we show TOIs by Find-RaTSS in hurricane power failures,

COVID-19 interventions, and epidemiology. Additionally to show

that our algorithm correctly captures rationalizations even for a

large number of time-series (3000), we provide results onWikipedia

articles data.

Hurricane Harvey: We already explained how our rationaliza-

tions are actionable for cutpoint 𝑐2 (See Fig. 1 in Sec. 1 for detail).

The segmentation of Harvey is given during hurricane landfall

(a) (b) (c)

Figure 3: (a) 2017 Hurricane Harvey time-series. (b) A snip-

pet of our rationalizations 𝑟 𝑗 for cutpoint 𝑐3 and (c) Heatmap

plot of 𝑟 𝑗 for 𝑐3. Find-RaTSS finds non-obvious rationaliza-

tions separate from Hurricane trajectory (see detail in the

text).

(around Aug. 26), change of hurricane trajectory((around Aug. 28),

and end time of hurricane (around Aug. 30). Fig. 3(b) shows our

rationalizations for cutpoint 𝑐3. Note that, this is the cutpoint when

hurricane is ending. Along with the decrease of the power failures

of other counties, Find-RaTSS correctly highlights sudden increase

of power failures of Orange, Jefferson, Hardin (Fig. 3(c) South-east

corner). However, the main reason of this increase is due to rising

water of Neches river due to which city lose service from major

pump stations [3]. Note that, finding these non-obvious counties

by visualizing the time-series (Fig. 3(a)) across the cutpoint when

power failures of all other counties are decreasing is hard. These

TOIs can help DEs prioritize resource allocation for quick recovery.

Both the hurricane power failure datasets, and the segmentation

on these datsets are collected from the same source [23]. Our non-

trivial rationalizations are very similar with the results provided

by [23] even though the segmentation is black-box.

Figure 4: Covid-19 pandemic: (a) Time-series and segmenta-

tion (interventions). (b) Majority of the states for the first

cutpoint 𝑐1 inferred by Find-RaTSS had interventions in the

past 2 weeks. (c) Types of interventions that happened be-

fore 2 weeks.

COVID-19 Interventions: For the current COVID-19 pandemic,

our goal is to extract which states had interventions (like school

closures, etc.) using Find-RaTSS and the disease trajectories. We

collect (https://covidvis.github.io/) daily COVID incidences from

Jan-early May and consider cutpoints as the state emergencies after

2 weeks (mean incubation period of COVID is 2-14 days). For 𝑐1
(Fig. 4(b)), Find-RaTSS infers all the states which had some inter-

vention around 2 weeks back (Jan 19). Fig. 4(c) shows an example

of different interventions happened for the rationalizations across

𝑐1 before 2 weeks. Overall, across all cutpoints, Find-RaTSS infers
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87% states with interventions >= 2 weeks. For most rationalized

states (60%), the interventions happened exactly 2 weeks back. This

is very useful as in real-time it is very hard to have a complete

knowledge of interventions, e.g., indeed, there is no centralized

database of such acts. Hence epidemiologists need to use indirect

methods (knowing which interventions are in place is crucial for

modeling the disease spread). Find-RaTSS can potentially give such

a method to the epidemiologists to direct attention to such states.

Diptheria (DIP): For Diphtheria and TB segmentation, we con-

(a) DIP segmentation

0 5 10 15 20 25 30 35 400
200
400
600
80010001200140016001800

(b) TB segmentation

(c) DIP 𝑟1 (d) DIP 𝑟2 (e) DIP 𝑟3 (f) DIP 𝑟4

(g) TB 𝑟1 (h) TB 𝑟2 (i) TB 𝑟3 (j) TB 𝑟4

Figure 5: Find-RaTSS finds rationalizations in Diptheria and

TB. Fig.(c)-(f) are our rationalizations (larger size by higher

weight in r𝑗 ) in US map found by Find-RaTSS for the second

and third cutpoint. Similar results for TB are also shown in

Fig.(g)-(j).

sider the time period from 1900 to 1950. This segmentation includes

some historical significant events, i.e., campaign (𝑐1), outbreak (𝑐3),

and invention of vaccination (𝑐4)
5
.

Our rationalizations across 𝑐1 gives actionable insights on the

cities where Diptheria cases fluctuate the most after the campaign

started. If we compare rationalization weights from Fig 5(c)-5(f)

with Fig 5(g)-5(j) we observe, Find-RaTSS finds an interesting as-

sociation between TB and Diptheria. 𝑟𝑢
𝑗
weights of the affected

cities are positively correlated for both Diptheria and TB across the

cutpoints. The same report (mentioned above) suggests this associ-

ation is mainly due to presence of an iron-repressor gene. Clearly,

by providing these insights, rationalizations can help DE under-

stand the correlation between the diseases and design vaccination

policies[28, 29].

4.3 Additional Case-study in general dataset

(Wikipedia)

Here we provide a case-study showing that our algorithm can suc-

cessfully identify culprits also in a general dataset even in a high

5
https://timelines.issarice.com/wiki/Timeline_of_diphtheria

(a) Time-series with segmentation (b) Rationalization

Figure 6: Find-RaTSS finds the rationalization from

Wikipedia during the period 2015-2017.

dimensional time-series. To understand the importance of content

and improve advertisement strategies, we consider the web traffic

of 3000Wikipedia articles from 2015 July-2017 October. The seg-

mentation mark a different season of a year (around the end of 2015,

middle of 2016, and beginning of 2017 in Fig. 6(a)). We find over-

all, the majority of articles/rationalizations (64%) by Find-RaTSS
are eventful. Fig. 6(b) shows an example of the rationalizations by

Find-RaTSS across the first cutpoint 𝑐1. We observe Find-RaTSS
considers some low-traffic articles, e.g., ‘World’s largest companies

by sector’ within top 10 along with the high traffic ones. The reason

is, ‘Forbes Global 2000’ for worlds largest companies was published

around June 2016 after 𝑐1
6
. This is not easy to find such low traffic

easily by visualizing the time-series or using any other baselines

from Table. 3 (as buried with other high traffic articles).

5 RELATEDWORK

In this section, we explore our closest line of research in time-series

mining. We also discuss in brief some remotely related work in

interpretable AI models. To the best of our knowledge, no methods

have been proposed so far for identifying actionable TOIs that can
work for any black-box segmentation on multivariate time-series.

Urban Analytics: Several urban analytics applications in energy

and public health domain have been stated for past years [31, 32].

Oak Ridge National Laboratory (ORNL) has developed a real-time

situational awareness tool Eagle-I [8] to monitor and analyze the

nation’s energy infrastructure. TheORNL EARSS team [6] has an au-

tomated model to take wind speed and location estimates provided

by hurricane experts a geospatial assessment on the impact to the

electric grid in terms of projected duration of the outage. [22] shows

how GPS mobility data can imply a spatial spread of influenza-like

infectious diseases. Various works have been discussed recently

on understanding and quantifying the impact of Covid-19 from

different types of Non-pharmaceutical (NPI) interventions and exit

strategies taken in Europe and China. [17, 25]. [33] developed an

interactive visualization tool to observe mobility and sociability

trends in different regions in the US due to Covid-19. [30] ana-

lyzed on time-series Tuberculosis (TB) data to characterize the

demographic and temporal trends of the impact of the disease. [10]

designed a change point detection process to detect the transition

in multidimensional environmental crowdsensing data.

6
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the-worlds-biggest-public-companies-2/#21ca87643c44
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Time-seriesmining: For explaining time-series classificationmod-

els, [27] proposed how to discover the significant characteristic

pattern of time-series using TF-IDF approach in vector space. Karls-

son et al. developed an algorithm to find out the minimum number

of tweaks in time-series data that can change a classifier decision

like random shapelet forest classifier [14]. Jain et al. [13] proposed

a problem to identify repeated sequences of pattern or motifs in

time-series segmentation. There has been a couple of works on

time-series segmentation algorithm to fulfill the objective in vari-

ous domains [15]. Chen et al. designed an algorithm to automati-

cally segment the sequences of any multivariate data without any

prior knowledge of data distribution using information bottleneck

principle [7]. Multivariate time-series segmentation algorithms,

such as using distance-based measure [11] on domain- agnostic

data, correlation network and variational EM [12] on automobile

sensors, multilevel Hidden Markov Model (HMM) [21] on motion

capture data, temporal mixture model [26] on railway data, and

Kalman filters [19] on motion capture and chlorine data. [18] pro-

posed a deep-learning approach for segmentation which automati-

cally learns the features of the time-series using Autoencoder and

detects a cutpoint when the difference of the features between

two consecutive windows reach local maximum. Recently a novel

spatio-temporal joint segmentation and explanation model has

been proposed to identify failure phases in cyber-physical data [23].

However their explanation can only explain based on the internal

state change of their segmentation model and their explanation

model assumes each cutpoint in the segmentation as independent.

Interpretable AI models: Recently, various explainability models

have been proposed to analyze influence of input features locally on

model agnostic Machine Learning (ML) classifiers [16, 24]. [20] pro-

posed to measure importance of instances considering the Shapley

global effect of the model prediction. [9] first proposed AI rational-

ization to interpret autonomous agents on a game environment in

terms of natural language entirely different from rationalization on

time-series segmentation. On time-series there are several works on

discovering characteristics of pattern [13, 27] and finding minimum

number of tweaks to change a classifier decision [14].

6 CONCLUSION

In this paper, we introduce a novel problem Rationalizing time-

series segmentation in terms of constituent time-series (RaTSS), to
identify actionable time-series of interests for urban domain experts

in a set of events found by time-series segmentation algorithms. We

propose an algorithm Find-RaTSS to solve RaTSS in terms of a novel

graph optimization problem using a segment graph data structure.

Find-RaTSS successfully finds TOIs in several domains such as

emergency management and the recent COVID-19. In addition we

compare its performance with non-trivial baselines using synthetic

and real-life general datasets with inferred ground-truth. As future

work, we plan to explore other formulations for rationalizations

like the average longest path instead of the longest path on the

segment graph. We also intend to explore more complex TOIs (like
scoring groups of time-series instead of individual ones as we do)

which may be more suitable for some other applications.
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