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Abstract

Preventing contagion in networks is an important prob-
lem in public health and other domains. Targeting
nodes to immunize based on their network interactions
has been shown to be far more effective at stemming
infection spread than immunizing random subsets of
nodes. However, the assumption that selected nodes
can be rendered completely immune does not hold for
infections for which there is no vaccination or effective
treatment. Instead, one can confer fractional immu-
nity to some nodes by allocating variable amounts of
infection-prevention resource to them. We formulate the
problem to distribute a fixed amount of resource across
nodes in a network such that the infection rate is mini-
mized, prove that it is NP-complete and derive a highly
effective and efficient linear-time algorithm. We demon-
strate the efficiency and accuracy of our algorithm com-
pared to several other methods using simulation on real-
world network datasets including US-MEDICARE and
state-level interhospital patient transfer data. We find
that concentrating resources at a small subset of nodes
using our algorithm is up to 6 times more effective
than distributing them uniformly (as is current prac-
tice) or using network-based heuristics. To the best of
our knowledge, we are the first to formulate the prob-
lem, use truly nation-scale network data and propose
effective algorithms.

1 Introduction

Given a graph and vaccines which provide partial (‘frac-
tional’) protection, how to distribute them to maximize
lives saved? Networks carry harmful agents, e.g. dis-
ease, computer viruses, and even misinformation. The
networks’ structure dictates how rapidly the malicious
agent will spread. One can take advantage of this struc-
ture to identify specific nodes for infection control, such
that the spread of the disease is significantly curtailed.
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In selecting nodes for infection control, previous work
has assumed that nodes can be rendered completely
immune. However, in many cases the complete immu-
nization of a node is not an option. Bacteria present
in hospitals have developed resistance to most antibi-
otics. Vaccines take time to be developed for both hu-
man and computer viruses, prompting other measures
to prevent epidemics. However, one can provide par-
tial (‘fractional’) protection by allocating resources to
render nodes less susceptible.

In this paper we formulate the problem of distribut-
ing resources to minimize the spread of infection on a
network. Previously devised models, which assume that
allocating a single unit of resource to a node renders
it completely immune are a special case of this more
general problem. We illustrate the problem in two set-
tings: the spread of infection between hospitals through
patient transfers, and the spread of malicious code be-
tween individuals through transfers of computer code
between users in an electronic setting.

Consider the problem of prevention of hospital-to-
hospital transfer of drug resistant bacteria. Critically
ill patients are frequently and routinely transferred be-
tween hospitals in order to provide necessary special-
ized care [15]. While such interhospital transfers are
an essential part of routine patient care, they also en-
able the transfer from hospital to hospital of highly vir-
ulent micro-organisms resistant to many or all antibi-
otics [23]. As an example, recent work [24] implicates
inter-hospital patient transfers as an important vehicle
for spread of “superbug” MRSA (methicillin-resistant
Staphylococcus aureus). There is no existing technol-
ogy, short of isolating a hospital, that can completely
prevent the spread of such micro-organisms. To disrupt
transfers by removing a hospital from the system can
only be done under truly extraordinary circumstances
(such as the outbreak of SARS in Toronto [33]). In-
stead, there are large numbers of infection control tech-
nologies (e.g., bottles of disinfectant) that offer partial
prevention and can be applied at individual hospitals
(e.g. [38]). Since such infection control technologies are
costly, how should policy-makers optimally deploy them
in order to minimize the global interhospital spread of



(a) Connections (b) UNIFORM (∼ current) (c) DEGREE (d) SMART-ALLOC

Figure 1: Our proposed SMART-ALLOC method minimizes number of infections (red circles): (a) The US-
MEDICARE network overlayed on a map (b-d) Infected hospitals after a year (365 days) under different
immunization algorithms. The same amount of resources (k = 200) were distributed by the algorithms. UNIFORM
is the largely current practice of distributing evenly across all hospitals, while DEGREE distributes according to the
number of connections of a hospital.

highly resistant micro-organisms via patient transfers?
We also consider the spread of malicious content in

an electronic setting. In the Second Life virtual world,
nearly all content, from the landscape, to clothing, to
the avatars’ movements, are created and distributed as
scripts by the users themselves. This is part of the
interactivity that has made the enterprise a success.
However these virtual environments create the potential
for malicious scripts to be inadvertently picked up and
dispersed by unwitting users [1]. Without shutting
down a users’ account, it is not possible to confer
complete immunity upon that node. However, one could
allocate resources differentially to a subset of nodes,
in the form of educating users and auditing their code
inventories.

Motivated by the above applications, and the many
other instances where complete immunization is not fea-
sible (e.g. HIV transmission, or H1N1 flu transmission
prior to availability of vaccine) we study the problem
of effective and efficient fractional immunization on di-
rected weighted graphs. In fractional immunization, one
allocates differing amounts of resource to nodes from a
fixed total budget. Nodes which receive more infection-
prevention resource have a smaller likelihood of becom-
ing infected when exposed than nodes receiving no or lit-
tle resource. A straightforward approach that tests each
possible allocation would very quickly become computa-
tionally intractable (e.g., for a network with 2000 nodes,
it will take more time than the age of the universe to
examine all the possibilities on a 2GHz processor ma-
chine). Instead, we give an effective and efficient linear-
time (in nodes and edges) algorithm SMART-ALLOC in
this paper. Our extensive experiments show that we
may achieve significant benefits if nodes coordinate their
allocation of resources, rather than making allocations
independently, as is current practice in many settings.
See Figure 1 for an illustration, where our algorithm
outperforms other alternatives by up to 6x fewer infec-

tions.
The rest of the paper is organized as follows: § 2

reviews related work, § 3 gives the problem formulation
and the hardness result, § 4 and § 5 explain our proposed
method and § 6 presents extensive experiments on
datasets. Finally, we conclude the paper in § 7.

2 Related Work

In short, all the existing immunization strategies men-
tioned below assume: (1) full immunity - once a node
is immunized, it is completely removed from the graph;
(2) binary allocation (i.e., each node would need at most
1 antidote); and (3) symmetric immunization - once ap-
plied, an antidote affects both incoming and outgoing
edges. These assumptions might be too strong for the
inter-hospital patient transfers applications. To the best
of our knowledge, we are the first to address the more
realistic and challenging setting, where the effect of an
antidote could be partial and asymmetric and the same
node can receive multiple antidotes. In addition, w.r.t.
the medical world, we are the first to use truly nation-
scale network data and study alternative approaches to
fractional immunization.

We review related work in the context of networks
here, which can be categorized into three parts: epi-
demic thresholds, immunization algorithms and infor-
mation diffusion.

Epidemic Thresholds/Conditions Much work
has been done in finding epidemic thresholds (minimum
virulence of a virus which results in an epidemic) for a
variety of networks [3, 25, 2, 17, 27, 36, 8, 28, 26]. It
should be pointed out that, with the exception of [26]
most if not all of the existing work assumes symmetry
in virus propagation. That is, the probability that A
infects B or B infects A is the same, assuming either
A or B are infected. The inter-hospital patient transfer
graph is asymmetric; a hospital that is better equipped
to treat a critical care patient is more likely to be on



the receiving end of a transfer. Asymmetries in transfer
are also present in e.g. email networks.

Immunization Cohen et al. [6] studied the ac-
quaintance immunization policy, and showed that it is
much better than random, for both the SIS as well as
the SIR model on random power-law graphs. Hayashi
et al. [14] modeled e-mail viruses and studied random
and targeted immunization. [35] proposed an effective
immunization strategy in the SIS model also motivated
by preventing the spread of computer viruses, while [9]
give a simplified strategy for the IC model. Briesemeis-
ter et al. [5] studied immunization policies on power-
law graphs. There also has been work on remotely re-
lated problems like ‘outbreak-detection’ [22] and finding
most-likely ‘culprits’ of an infection [20, 29]. In the med-
ical literature, most theoretical work on the spread of
highly resistant organisms has focused on spread within
a single hospital or population [37].

General information diffusion processes
There is a lot of research interest in studying dy-
namic processes on large graphs, (a) blogs and propaga-
tions [13, 19, 16, 30], (b) information cascades [4, 10, 12]
and (c) marketing and product penetration [31, 21].
These dynamic processes are all closely related to virus
propagation. For example, one may wish to allocate
third-party “fact checking” resources to content posted
on specific blogs in order to minimize the spread of mis-
information in the network. Although no blog could be
completely immune to spreading misinformation, such
efforts would dampen its spread.

3 Problem Formulation and Hardness result

We first formulate the problem explicitly. Let A be the
adjacency matrix of the directed weighted graph (of N
nodes and E edges) on which the virus is spreading—
entry A(i, j) in the matrix denotes the weight on the
edge between nodes (hospitals) i and j (e.g., the weight
can be the average number of patient-transfers per day).
We assume an infection can in principle reach any
node from any other node (i.e. the graph is strongly-
connected). The infection spreading model can be de-
scribed by a flu-like model with no immunity, technically
the SI model (‘susceptible-infected’) of epidemiology [2]
(as once infected, it is very hard to completely erad-
icate a drug-resistant strain). Briefly, at every time-
step, any healthy node can get the infection from one
of its currently infected neighbors. The probability of
becoming infected by any particular neighbor during a
period of time is independent and proportional to the
weight of the connecting edge. Also, once infected, a
node always stays infected. Any node gets partial im-
munity upon getting an antidote. Any amount x of an-
tidote cuts the transmissibility of the virus by a factor

f(x) (called the utility function). For example, under
function f(x) = 0.5x, each additional antidote to hospi-
tal i decreases the probability of transmission from any
neighbor j of i by a fixed percentage (50%). Our results
hold for any utility function f(x) with a diminishing
marginal returns property typical of infection-control
techniques (c.f. [38]). Also note the inherent asymmet-
ric nature of the effect of an antidote, it only effects the
incoming edges of any node. The infection starts with
some initially infected ‘seed’ nodes. We want to dis-
tribute the antidotes so that the expected “footprint”
(the expected number of infections at some given time
t) is minimized. To summarize, we are given:

• The SI model as the virus-spreading process
• A fixed directed weighted connected graph A (each

edge e having weight we with 0 < we ≤ 1 e.g.,
the weight can be the average number of patient-
transfers per day between hospitals)

• A total of k antidotes having partial effect e.g.,
bottles of disinfectant

• A weakening function f(x), denoting how beneficial
are x units of antidote, typically with diminishing
marginal returns property

Using popular epidemiological assumptions, we assume
that the virus and the underlying graph do not change.1

The problem can be stated as:

Problem 1. (MAX-HEALTH) Distribute the anti-
dotes such that for an infection process spreading over
the resulting graph after the antidote-allocation, we min-
imize the “footprint” (the expected number of infections
at time t, for some given t).

The current practice in allocating varying amounts
of antidote across a network is effectively uniform, e.g.
hospitals independently tackle infection control [32].
However, this makes no use of the connected network
we are given. As mentioned in the introduction, a
computationally prohibitively expensive method is to
estimate the footprint through computer simulations.
How can we get a practical and effective algorithm?

3.1 Our proposed problem—MIN-CONN
Main Idea Our observation is that the footprint

depends on the connectivity of the underlying network
and as we show next, the best single measure of connec-
tivity is λA, the so-called ‘largest eigenvalue’ of the ad-
jacency matrix of the network. Roughly, it describes the
number of paths between pairs of nodes in a graph, dis-
counting for longer paths. Earlier results [36, 8, 28] have
also shown that the epidemic threshold (maximum virus

1Relaxing these assumptions is a promising research direction.



strength so that there is no epidemic) on unweighted,
undirected graphs depends on the largest eigenvalue of
the adjacency matrix. Instead of MAX-HEALTH, we
then propose to minimize the largest eigenvalue of the
weighted adjacency matrix while distributing the anti-
dotes.

Justification Unfortunately, note that unlike
other models, our virus spreading model is SI and thus
has no epidemic threshold - any initial infection will
eventually infect everyone in the graph. But still, as
our next lemma shows, we can upper-bound the ex-
pected number of infected nodes in the graph at any
time t:

Lemma 1. In the SI virus spreading model on a graph:

σ(t) ≤ (1 + λA)tσ(0)

where σ(t) is the expected num. of infected nodes at time
t > 0 and σ(0) is a scalar depending just on the initial
conditions (independent of t).

Proof. In the appendix.

Thus, we propose to minimize the upper-bound on
the expected number of infected nodes at any time t, by
minimizing the largest eigenvalue λA.

We call our proposed problem MIN-CONN. Sup-
pose the vector which gives us the distribution for k
antidotes is ~m = {m1,m2, . . . ,mN} (where mi is the
number of antidotes given to node i), with the con-
straint that

∑
mi = k. Denoting A′ as the resulting

adjacency matrix after distributing the antidotes, our
transformed problem can be stated as:

Problem 2. (MIN-CONN) Distribute the antidotes
such that the largest eigenvalue of the resulting adja-
cency matrix is minimized i.e.

minimize λA′ s.t.
∑
i

mi = k, ∀i mi ∈ {0, 1, ..}

It is easy to see that if we define a matrix F =
diag(f(~m)) (f(~m) just applies the function f on each
element of the vector ~m), then A′ = A× F .

3.2 MIN-CONN is NP-complete Unfortunately,
MIN-CONN is NP-complete. Consider the decision
version of MIN-CONN:

Problem 3. (MIN-CONN Decision Version)
Given a directed and weighted graph G = (V,E),
k ≥ 0, t ≥ 0, and non-increasing f(x) (hence, in-
stance (G, k, t, f(x))) is there an assignment ~m with∑

imi = k, ∀i mi ∈ Z∗ such that λAF ≤ t where A is
the adjacency matrix of G and F = diag(f(~m))?

We will prove MIN-CONN (Decision version) is NP-
complete next.

Theorem 1. MIN-CONN (Decision Version) is NP-
complete.

Proof. In the appendix.

4 Proposed Method—Overview

As MIN-CONN is NP-complete, we resort to heuristics.
A simple and intuitive heuristic is to disrupt the con-
nectivity of the network by distributing the antidotes
according to the number of neighbors (‘degree’) of a
hospital. Thus a hospital involved in a larger number of
total patient transfers will receive more resources than
small isolated hospitals. This appears to be a reason-
able approach until we realize that this does not directly
attack the exact connectivity metric: λA. For example,
this method will allocate most of the resources to the
big coastal hospitals, and may miss out on a critical
but mid-sized central hospital acting as a ‘bridge’ be-
tween the coasts. Hence, our heuristic should directly
try to optimize the drop in λA. Next we present two
such heuristics in improving speed: (a) EXHAUSTIVE, (b)
SMART-ALLOC.

4.1 Algorithm EXHAUSTIVE Algorithm EXHAUSTIVE

greedily tries to find the best hospital to allocate each
additional antidote to. Clearly, the best node is the
one in the graph which, when given the extra antidote,
decreases λA the most at that step. Hence, we need to
compute the largest eigenvalue N times for making only
a single allocation decision (so for k antidotes, it will be
done k×N times). This is very expensive e.g., for a US-
wide network of about 2000 hospitals, it took about a
day to distribute only 1500 antidotes. The total running
time would O(kNE) (using the Lanczos algorithm for
computing the eigenvalue which is O(#edges) for sparse
graphs). For larger graphs (such as our Second-Life
network), this would be too slow to be feasible.

4.2 Algorithm SMART-ALLOC We give an overview of
our approach here, and the theoretical under-pinnings
in the next section.

Best single allocation Following from the discus-
sion above, instead, we can give each additional anti-
dote to the currently most ‘important’ (central) hospi-
tal, with the hope that it is also the hospital reducing
λA the most. Fortunately, we can show that the mea-
sure of centrality which allows us to closely approximate
the drop in λA is the so-called Eigenvector centrality
adapted to directed graphs (a combination of the so-
called ‘hub’-ness and ‘authority’-ness scores [18] of each
node). We just give the next antidote to the hospital



which has the highest such centrality score currently.
This would be faster than EXHAUSTIVE, though with
some approximation. Note that we still have to perform
the eigenvalue computation (to update the centralities
of all the nodes) after each allocation decision. Can we
do better?

Batched allocation The answer is yes - in fact, we
can make r times fewer updates (for a suitably chosen
r) to node centralities by carefully allocating r antidotes
in one go, using only the old centrality values. Thus we
need to update and ‘resync’ the centralities only every
r allocations. We call this algorithm SMART-ALLOC: it is
much faster (linear on number of nodes and edges) than
the other methods with minimal loss of accuracy at the
same time (a point we illustrate using experiments as
well—see Sections 6.2 and 6.3).

5 Proposed Method—Theorems and proofs

Here we give details of the two main ideas we mentioned
above. Jumping ahead, our effective and efficient
algorithm SMART-ALLOC is given in § 5.2.2.

5.1 Best single allocation—Details Let ~u =
[u1, u2, . . . , uN ]T and ~v = [v1, v2, . . . , vN ]T be right and
left eigenvectors of A corresponding to λA. In a nutshell,
the best node i∗ to give a single antidote is the one with
the maximum value of uivi i.e. i∗ = arg maxi uivi. We
can prove the following lemma to justify it.

Lemma 2. Assuming the current adjacency matrix is
A, the change in the in the largest eigenvalue ∆λA after
distributing one antidote to a node, say i, approximated
to the first order is given by:

∆λA = λA

(
f(1)uivi
vTu

− 1

)
Proof. In the appendix.

This requires the computation of ~u and ~v, which
is O(E). We can continue giving the antidotes in this
way, but as discussed above, we will need to re-compute
~u and ~v after each allocation decision.

5.2 Batched allocation—Details In sum,
SMART-ALLOC uses Algorithm 1 to batch-allocate
and resync till we have exhausted total budget k (see
§ 5.2.2). We now show how we can batch-allocate
r antidotes in one-go. Suppose the distribution of
allocations as before is given by the vector ~m. In this
case, we can prove the following lemma, similar to
Lemma 2.

Lemma 3. The change in the largest eigenvalue ∆λA
after distributing r antidotes according to ~m (so

∑
imi = r) approximated to the first order is given by:

∆λA = λA(
vTFu

vTu
− 1)

where v and u are the left and right eigenvectors of A
corresponding to λA and F = diag(f(~m)).

Proof. In the appendix.

Subsequently, for the best allocation of r antidotes, it
is easy to see that we have the following optimization
problem now, analogous to MIN-CONN:

Problem 4. (MAX-DROP) Distribute antidotes
such that:

minimize

N∑
i=1

f(mi) · ui · vi s.t.
∑
i

mi = r

(of course, ∀i mi ∈ {0, 1, ..}). Clearly, it is an integer
optimization problem, which in general is NP-complete.

5.2.1 GreedyDrop: An optimal greedy algo-
rithm Consider the following greedy algorithm: intu-
itively, at each iteration, we pick the index (node) j
which maximizes the drop in the value of the objective
at that step (see Algorithm 1).

Algorithm 1 GreedyDrop

Input: Directed Weighted Adjacency matrix A, batch-
size r, monotone non-increasing convex function
f(x)

1: u = first right eigenvector of A
2: v = first left eigenvector of A
3: ~m = ~0
4: for i = 1 to r do
5: j = maxh [f(mh)− f(mh + 1)]uhvh
6: mj = mj + 1
7: end for
8: return ~m

Surprisingly, we can in fact prove that this achieves
the optimal solution for MAX-DROP, when f(x) is
monotone non-increasing convex. Clearly, the running
time of the algorithm is O(E + kN). We prove the
optimality of GreedyDrop in Theorem 2.

Theorem 2. GreedyDrop returns the optimal integral
~m for MAX-DROP when f(x) is monotone non-
increasing and convex.

Proof. In the appendix.



5.2.2 SMART-ALLOC Finally, we are ready to describe
our algorithm SMART-ALLOC: use GreedyDrop (Algo-
rithm 1) to batch-allocate a small number (r) of re-
sources and then ‘re-sync’ (re-compute) the first left and
right eigenvectors and continue similarly till our budget
k is exhausted.

One may ask why can not we directly allocate
all k antidotes in one-go using GreedyDrop? This is
because, unfortunately, the accuracy of the first-order
approximation in Lemma 3 is only good when the
number of antidotes k is small w.r.t. the graph i.e when
k � N . But that is not the case in general - for e.g.
in our motivating problem one may want to distribute
200 infection control resources among 2000 nationwide
hospitals. In fact, k can be arbitrarily high, since the
units of resource in this problem are set with arbitrary
granularity. It is easy to see the next lemma:

Lemma 4. (Running time of SMART-ALLOC) The
running time of the algorithm SMART-ALLOC is
O(kE/r + kN) i.e. linear in the size of the graph.

Clearly, we want to use as large r as possible. Our
proposed rule-of-thumb is to choose r proportional to
the spectral-gap (|λA|− |λA,2|) of the graph. Larger the
spectral-gap, lesser is the sensitivity of the spectrum of
A [11], lesser is the need to re-sync often and hence
larger is the r we can use e.g. in our experiments on
hospital graphs, which had a small spectral-gap, we
found that r = 6 performed very well.

6 Experiments

We designed experiments to answer the following ques-
tions about our algorithm SMART-ALLOC: (i) Effective-
ness for reducing the rate of infection, (ii) Effective-
ness for MIN-CONN and (ii) Scalability. In short,
SMART-ALLOC proves to be a fast and effective algorithm
for both reducing the rate of infection and solving MIN-
CONN and is very close to EXHAUSTIVE, at a fraction of
the running cost, while others are much worse.

6.1 Setup For answering the above questions we ran
extensive simulation experiments and compared against
many other resource allocation methods (see Table 1) on
multiple real-world datasets (see Table 2). We ran par-
allel experiments on a Condor [34] cluster of 58 cores
each being a generic Fedora 7 machine. All the algo-
rithms and the SI infection process were coded in C++.
We use f(x) = 0.50x and r = 6 for all our experi-
ments. The choice of the function f(x) captures the
diminishing marginal utility of infection control based
on a wide-range of studies in the medical literature of
existing infection control techniques (c.f. [38]).

Table 1: Various Algorithms used for comparison

Method Name Method Description Speed O(·)
UNIFORM Distribute uniformly

among the nodes,
breaking ties ran-
domly.

kN

DEGREE Distribute randomly
proportional to the
‘degree’† of the nodes.

E + kN

EXHAUSTIVE Allocate each addi-
tional antidote to that
node which decreases
the largest eigenvalue
λA the most in that
step.

kEN

SMART-ALLOC Allocate r antidotes in
one go based on node
centralities and only
then recompute.

kE/r + kN

† As the graphs are directed, we use degree centrality [7]

- geometric mean of in-degree (the number of transfers the

hospital receives) and out-degree (the number of transfers

the hospital sends out).

6.2 Effectiveness for MIN-CONN problem
MIN-CONN aims to decrease the largest eigenvalue the
most - how do the algorithms perform in that measure?
In short, SMART-ALLOC comes very close to EXHAUSTIVE

while others are much worse. Figure 2 shows the largest
eigenvalue of the resulting graph after giving k an-
tidotes according to various algorithms vs k on the
US-MEDICARE and PENN-ALL networks. UNIFORM

and DEGREE perform poorly, although DEGREE is bet-
ter (sometimes marginally) than UNIFORM. SMART-ALLOC
and EXHAUSTIVE are much better at achieving the low-
est eigenvalue for all k. EXHAUSTIVE is expected to
be near-optimal as it does an exhaustive search via re-
peated eigenvalue computation for the node which de-
creases the eigenvalue the most. On the other hand,
SMART-ALLOC performs well due to our careful approxi-
mation and algorithm-design.

6.3 Effectiveness for MAX-HEALTH problem
We ultimately want to test how the algorithms perform
for MAX-HEALTH. In short, again, as also demon-
strated by Figure 1 in the introduction, SMART-ALLOC
proves to be an effective algorithm and is very close to
EXHAUSTIVE while others are much worse. See Figures 3
and 4 - they show the expected number of infected nodes
(hospitals) vs. time tick after running the infection pro-
cess on the partially immunized US-MEDICARE and



Table 2: Various real-world datasets used in our work

Dataset Name Nodes (N) Edges (E) Description

US-MEDICARE 2138 10241‡ All critical patient transfers among US hospitals based on all
Medicare Provider Analysis and Review (MedPAR) final action
claims between Sept. 1, 2004 - Sept. 1, 2005 [15]. See also Fig. 1(a).

PENN-ALL 137 1121‡ Critical patient transfers within Pennsylvania hospitals based on
all discharges (not just Medicare) between July 1, 2004 - June 30,
2006 [15].

GESTURE 166,774 1.5 million Second-Life transfer-network of ‘gestures’ among users. Gestures
can include anything from animation, chat to playing sounds.

‡Weight for each edge u → v was the average number of transfers from hospital u to v per day.

(a) US-MEDICARE (b) PENN-ALL

Figure 2: Largest Eigenvalue after allocation vs Budget k of resources used for different algorithms. (a) US-
MEDICARE Network (b) PENN-ALL Network. Lower is better and SMART-ALLOC is near-optimal in both cases.
(plots use color)

PENN-ALL networks for different budget k of antidotes.
The different curves represent the different algorithms
used for allocation. As the edge-weights represent the
average number of transfers per day, the curves repre-
sent the average footprint for each day after the infec-
tion starts. Each curve is an average of 21380 and 1370
simulation runs for US-MEDICARE and PENN-ALL
respectively - in this way we ensured that we seeded the
infection from each hospital for 10 different runs. We
ran the simulations till 365 time-ticks (= 1 year) and
took the average over all runs for each time-tick. Finally,
the range of values of k for US-MEDICARE and PENN-
ALL were chosen according to the network sizes and
the function f(x) = 0.50x. Our algorithm SMART-ALLOC

clearly is very close to EXHAUSTIVE and has the low-
est footprints everyday compared to the rest. For e.g.
in Figure 3(c), after an year with k = 200 antidotes,
EXHAUSTIVE and SMART-ALLOC have an expected total
of 42 and 46 hospitals infected, while the other meth-
ods end with about 2.5 times worse at around 110. It is
even more pronounced in PENN-ALL (Figure 4(c)): af-
ter an year with k = 120, EXHAUSTIVE and SMART-ALLOC

have an expected footprint of ∼ 8, while the next closest
method is about 3 times worse at around 23. This shows
the dramatic impact an effective allocation algorithm
can have on the number of infected nodes. Moreover

note that all algorithms essentially mimic their perfor-
mance w.r.t. MIN-CONN (Figure 2) i.e. larger the cor-
responding drop in the first eigenvalue λA, lower is the
number of expected infections, validating our reduction
of MAX-HEALTH to MIN-CONN.

The current practice is for each hospital to inde-
pendently manage infection control [32], which may
be no better from the network perspective than us-
ing UNIFORM. But note that compared to UNIFORM,
SMART-ALLOC can be up to 6 times better (see Fig-
ure 4(c)). Interestingly, for the US-MEDICARE net-
work, we found that to achieve the same level of in-
fection control as SMART-ALLOC and k = 120, we need
a budget of about k = 800 resources if distributed ac-
cording to UNIFORM.

6.4 Scalability As discussed before, SMART-ALLOC is
much faster than its chief competitor EXHAUSTIVE (see
Table 1). For example, it took more than 10 hours to
distribute 200 resources using EXHAUSTIVE on the US-
MEDICARE network while it took just ∼ 14 seconds to
run SMART-ALLOC for the same budget - a 2500x speed-
up. As a further comparison, the näıve simulation-
based algorithm ran for a week and still had not finished
for the same budget - a more than 30, 000x speed-up.
Additionally, on the GESTURE network, we had to stop



(a) k = 100 (b) k = 150 (c) k = 200

Figure 3: US-MEDICARE network for different algorithms and budget k of resources: Expected Number of
Infections vs Time ticks (≈ days). Again EXHAUSTIVE and SMART-ALLOC perform the best and are close to each
other, as expected. Each curve average of 21380 runs and lower is better (plot uses color)

(a) k = 75 (b) k = 100 (c) k = 120

Figure 4: PENN-ALL network for different algorithms and budget k of resources: Expected Number of Infections
vs Time ticks (≈ days). Again EXHAUSTIVE and SMART-ALLOC perform the best (they are almost on top of each
other), as expected. Each curve average of 1370 runs and lower is better (plot uses color)

EXHAUSTIVE after it took 3 days to allocate a single
resource; SMART-ALLOC took ∼ 150 mins to allocate 2000
resources.

6.5 Generality To demonstrate the utility of
SMART-ALLOC in many other scenarios other than
epidemiology, we also compare performance on the
GESTURE network of asset transfers between virtual
world users. More details and a plot can be found in
the appendix; in short, SMART-ALLOC has the fewest
users infected, while others have up to ∼ 2.5 times
more users infected. Also, EXHAUSTIVE didn’t even
complete after 3 days whereas SMART-ALLOC allocated
2000 resources in only ∼ 150 mins, demonstrating its
superiority.

7 Conclusion

This paper addresses the problem of allocation of
infection-control resources with fractional and asym-
metric impact among nodes in a network. It is a more
general problem than that of selecting a subset of nodes
to be immunized completely via a vaccine. The po-
tential applications are broad—from curbing spread of
infection between hospitals from patient transfers, to
preventing spread of malicious code in virtual world set-
tings.

We formulated the problem, proved it is NP-
complete, and gave a highly efficient and effective
algorithm SMART-ALLOC, which we also demonstrated
through extensive experiments on multiple real-world
datasets, including nation-wide patients-transfer net-
works and electronic virtual-world social transfer-
networks. SMART-ALLOC runs in seconds (as opposed
to weeks), on commodity hardware; more importantly,
applied on real hospital-transfer networks (2005 U.S.
Medicare data, 2004-2006 PA all-payer data) it results
to up to 6x fewer infections, compared to current prac-
tice and other heuristics.

The current practice in control of highly resistant
organisms via patient transfers has been largely focused
within individual hospitals. Hence, the public health
policy is missing an opportunity to significantly reduce
infection rates with an infection prevention strategy
that accounts for the potential transfer of bacteria
along the network of inter-hospital patient transfers.
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Appendix: Fractional Immunization in Networks

B. Aditya Prakash∗ Lada Adamic† Theodore Iwashyna‡ Hanghang Tong§

Christos Faloutsos¶

1 Proofs from Section 3

Lemma 1. In the SI virus spreading model on a graph:

σ(t) ≤ (1 + λA)tσ(0)

where σ(t) is the expected num. of infected nodes at time
t > 0 and σ(0) is a scalar depending just on the initial
conditions (independent of t).

Proof. Suppose the discrete-time SI process is running
on graph A and pi(t) denotes the probability that node
i is infected at time t after the process started. Then,

(1) pi(t+ 1) = pi(t) + (1− pi(t)) · Γi

where Γi is the probability that node i receives some
infection from any of its infected neighbors during the
time t to t+ 1. Let R be an indicator random variable
for the event that node i gets the infection during t to
t+ 1. Clearly,

R = 1⋃
j∈neighbor(i) Tj

where Tj is the event that node j transferred an infec-
tion between time t and t+1; 1j(t) is the corresponding
indicator random variable. Using the well-known rela-
tion that expectation of an indicator random variable is
just the p.d.f. of the random variable:

Γi = E[R] = E[1⋃
j∈neighbor(i) Tj

]

≤
N∑
j=1

E[1j(t)] =

N∑
j=1

A(j, i)pj(t)

where the second step follows because for any two events
A and B, 1A∪B = 1A + 1B − 1A1B ⇒ E[1A∪B ] ≤
E[1A] + E[1B ]. Thus using Equation 1 and above:

pi(t+ 1) ≤ pi(t) + (1− pi(t))
N∑
j=1

A(j, i)pj(t)
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Letting ~P (t) = [p1(t), p2(t), . . . , pN (t)]T , we can write
the entire system as:

~P (t+ 1) ≤ ~P (t) + [I − diag(~P (t))]×AT × ~P (t)

= ~P (t) +AT ~P (t)− diag(~P (t))AT ~P (t)

≤ (I +AT )~P (t)

≤ (I +AT )t ~P (0)

Consider the all ones vector ~e. Then for any t > 0,
~eT ~P (t) = σ(t), the expected number of infected nodes
at time t. Hence,

σ(t+ 1) ≤ ~eT (I +AT )t ~P (0)

= ~eT (

N∑
j=1

(1 + λA,i)
t~vi~u

T
i )~P (0)

≤ (1 + λA,1)t~eT (

n∑
j=1

~vi~u
T
i )~P (0)

where we used the spectral decomposition of matrix
I + AT in the second step. Denoting λA,1 as λA, we
have that

σ(t+ 1) ≤ (1 + λA)tσ(0)

where σ(0) = ~eT (
∑n

j=1 ~vi~u
T
i )~P (0) (a scalar depending

just on the initial conditions independent of t). �

Theorem 1. MIN-CONN (Decision Version) is NP-
complete.

Proof. Clearly, MIN-CONN (Decision Version) is in NP:
given an integral assignment ~m as witness, we can check
in poly-time if the largest eigenvalue is less than the
threshold. Hence we just need to prove that it is poly-
time reducible from an NP-complete problem.

We reduce from INDEPENDENT-SET, a well-
known NP-complete problem [1].

Problem. (INDEPENDENT-SET) Given a undi-
rected, unweighted graph G = (V,E) and a number
k > 0 (i.e. instance (G, k)), is there a set of k vertices,
no two of which are adjacent?



Say the size of G is n. Given an instance of
INDEPENDENT-SET (G, k) we create an instance I ≡
(G,n− k, 0, f(x)) of MIN-CONN where f(x) is defined
as

f(x) =

{
1, if x = 0

0, if x > 0

Note that such a f(x) forces any algorithm for MIN-
CONN to essentially choose k vertices whose all incom-
ing edges will be deleted. Clearly this construction takes
polynomial time. We now need to prove two things:
1. If there is an independent set S in G, the instance I
has a YES answer.
This is true, because we can set mi = 1 for all n − k
nodes i not in S (i.e. V \ S). Consider the resulting
graph G′. There will not be any edges from vertices in
S to any other vertex. Also, there will not be any edges
from vertices in set V \ S to each other. These follow
because of the antidote distribution and the fact that
S was an independent set for G. Hence, the adjacency
matrix AF of G′ will look like:

AF =

[
0n−k,n−k C

0k,n−k 0k,k

]
where C is a size (n − k) × k matrix representing the
edges from V \S to S. It is easy to check that the largest
eigenvalue of AF is 0 (since the lower-triangle part as
well as the diagonal elements in AF are all zeros, all
the eigenvalues of AF are zeros). Hence I has a YES
answer.
2. If G does not have an independent set of size k, then
instance I has a NO answer.
Suppose the algorithm for MIN-CONN selects n − k
vertices whose all incoming edges will be deleted. Call
the un-selected vertices set S (|S| = k) and the resulting
graph G′ (adjacency matrix AF ). Consider GS and G′S ,
the subgraph induced by the vertices of S in G and G′

respectively. Clearly GS ≡ G′S , as the algorithm didn’t
select any vertex in S. Also, as G does not have an
independent set of size k, GS is not a null graph (with
no edges) and thus has some connected sub-graph H.
Applying the Perron-Frobenius theorem [2], the largest
eigenvalue of the adjacency matrix for H is positive.
Denoting the adjacency matrix of G′S (or GS) as D, the
matrix AF will look like:

AF =

[
0n−k,n−k C

0k,n−k D

]
where like before C is a size (n − k) × k matrix
representing the edges from V \ S to S. We know
that the largest eigenvalue of AF is at least the largest
eigenvalue of D and the largest eigenvalue of D is at
least the largest eigenvalue of the adjacency matrix of H

(eigenvalue interlacing). Hence, D has at least one non-
zero eigenvalue. Thus for any S, the largest eigenvalue
of AF is non-zero and hence instance I has a NO answer.

Hence, MIN-CONN (Decision version) is NP-
complete. �

2 Proofs from Section 4

Lemma 2. Assuming the current adjacency matrix is
A, the change in the in the largest eigenvalue ∆λA after
distributing one antidote to a node, say i, approximated
to the first order is given by:

∆λA = λA

(
f(1)uivi
vTu

− 1

)
Proof. We know that Au = λAu and vTA = λAv

T

(right and left eigenvectors). As A is strongly-
connected, according to the Perron-Frobenius theo-
rem [2], λA is real and non-negative and the components
of the corresponding eigenvectors v and u all are posi-
tive. After a small modification due to the medicine:

(A+ ∆A)(u+ ∆u) = (λA + ∆λA)(u+ ∆u)

Premultiplying by vT and neglecting second order
terms:

∆λA ≈
vT ∆Au

vTu
(2)

Clearly, after distributing one antidote to node i, ∆A
is:

(3) ∆A = AFi −A

where Fi = diag([f(0), . . . , f(1), . . . , f(0)]) (i.e. the i-th
position on the diagonal is f(1)). Using it in Equation 2:

∆λA ≈ vTAFiu

vTu
− vTAu

vTu

=
λAv

TFu

vTu
− λA

= λA

(
f(1)uivi
vTu

− 1

)
(4)

Proved. �

Lemma 3. The change in the largest eigenvalue ∆λA
after distributing r antidotes according to ~m (so∑

imi = r) approximated to the first order is given by:

∆λA = λA(
vTFu

vTu
− 1)

where v and u are the left and right eigenvectors of A
corresponding to λA and F = diag(f(~m)).



Proof. (Details Omitted for brevity) The main change
from Lemma 2 is that ∆A = AF −A now. �

Theorem 2. GreedyDrop returns the optimal integral
~m for MAX-DROP when f(x) is monotone non-
increasing and convex.

Before proving this theorem, we need the following
lemma.

Lemma 4. Given a convex non-increasing function
f(x), define function g(x) = f(x) − f(x + 1). Then
g(x) is non-increasing.

Proof. As f(x) is monotone non-increasing and convex,
from the property of convex functions:

(5) f(x)− f(y) ≥ f ′(y)[x− y] ∀x, y

Using Equation 5 with x = x, y = x + 1 and
x = x+ 1, y = x, we get:

−f ′(x+ 1) ≤ g(x) ≤ −f ′(x)

Similarly,

−f ′(x+ 2) ≤ g(x+ 1) ≤ −f ′(x+ 1)

Clearly, from the preceding inequalities, we have that
∀x g(x+1) ≤ g(x) i.e. g(x) is a non-increasing function.
�

We are now ready to prove Theorem 2.

Proof. Say GreedyDrop returns mG as the answer, but
m∗ is the true optimal. Then there was some first step
(say t) where we incremented some mj from sj to sj +1
in mG but m∗ has mj = sj . Because we have a fixed
batch-budget r, m∗ also has some mk as sk + 1 while
mG has mk which is at most sk.

Consider another assignment m′ which is identical
to m∗ except mk = sk and mj = sj + 1. Note that we
are still satisfying our constraint and hence it is a valid
assignment. The score of this assignment is:

Score(m′) =

N∑
i=1

f(mi) · ui · vi

= Score(m∗) + [f(sk)− f(sk + 1)]ukvk

−[f(sj)− f(sj + 1)]ujvj(6)

where the last step is due to the construction of m′.
Recall that while computing mG, GreedyDrop had

chosen j at step t i.e.,

j = maxh [f(mh)− f(mh + 1)]uhvh

at step t. At that instant, suppose mk = s′k. Hence
from the above equation we can conclude that:

(7) [f(s′k)− f(s′k + 1)]ukvk ≤ [f(sj)− f(sj + 1)]ujvj

In addition, we know that s′k ≤ sk. But from Lemma 4,
g(s′k) ≥ g(sk) i.e.

(8) f(s′k)− f(s′k + 1) ≥ f(sk)− f(sk + 1)

So, from Equations 7 and 8:

[f(sk)− f(sk + 1)]ukvk ≤ [f(sj)− f(sj + 1)]ujvj

Coupled with Equation 6, the above inequality implies
that Score(m′) ≤ Score(m∗). If Score(m′) < Score(m∗),
then m∗ is not optimal as we started with the assump-
tion that m∗ is optimal and hence has the lowest score.
If Score(m′) = Score(m∗), then we can conclude that
GreedyDrop did not make an error at step t and made it
at some other point. Continuing similarly, finally, either
m∗ is not optimal or GreedyDrop is correct. Hence, a
contradiction, mG is optimal and GreedyDrop gives the
optimal integral answer. �

3 Additional Experiments: Generality

Figure 1: Expected number of infections vs time-
ticks for different algorithms, budget k = 2000 on the
GESTURE network. SMART-ALLOC is the best. Each
curve average of 1000 runs. (plot uses color)

As mentioned in the introduction of the paper,
although our problem was originally motivated on
hospital-transfer networks, the problem of fractional
immunization arises in many other scenarios, and is
arguably more realistic than complete immunization.
To demonstrate the utility of SMART-ALLOC in domains
other than epidemiology, we also compare performance
on the GESTURE network of asset transfers between
virtual world users. Figure 1 (in the appendix) shows
the the expected number of infected users vs. time,
if a malicious asset were to be created and transferred
between users. We budget k = 2000 antidotes, and



select the infection source randomly. We don’t show
EXHAUSTIVE because, as mentioned before, it didn’t
complete even after 3 days whereas SMART-ALLOC al-
located all 2000 resources in ∼ 150 mins. As expected,
SMART-ALLOC has the fewest users infected, while others
have up to ∼ 2.5 times more users infected, demonstrat-
ing the efficacy of our algorithm in a completely different
domain.
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