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Abstract

Given a sequence of snapshots of flu propagating over a popu-
lation network, can we find a segmentation when the patterns
of the disease spread change, possibly due to interventions?
In this paper, we study the problem of segmenting graph se-
quences with labeled nodes. Memes on the Twitter network,
diseases over a contact network, movie-cascades over a social
network, etc. are all graph sequences with labeled nodes.
Most related work is on plain graphs (and hence ignore the
label dynamics) or fix parameters or require much feature en-
gineering. Instead, we propose SNAPNETS, to automatically
find segmentations of such graph sequences, with different
characteristics of nodes of each label in adjacent segments. It
satisfies all the desired properties (being parameter-free, com-
prehensive and scalable) by leveraging a principled, multi-
level, flexible framework which maps the problem to a path
optimization problem over a weighted DAG.
Extensive experiments on several diverse real datasets show
that it finds cut points matching ground-truth or meaningful
external signals outperforming non-trivial baselines. We also
show that SNAPNETS scales near-linearly with the size of
the input.

1 Introduction
Suppose we have a sequence of Ebola infections and the as-
sociated contact network of who-can-infect-whom. Can we
quickly tell a public health expert when the infection pat-
terns change possibly due to a virus mutation? By itself, it is
crucial for public health to understand the virus propagation
and to design a good immunization strategy. One possible
approach is to segment the sequence based on some manu-
ally selected features, such as the rate of infections. How-
ever by directly analyzing the underlying social network,
and using both the infected and uninfected nodes, we can
improve the segmentation as well as its interpretability (e.g.
‘disease spread in a tree like fashion among elderly till Mon-
day, and changed to clique-like fashion among the young’
and so on).

Segmenting a graph sequences is an important problem
which can help us in better understanding the evolution of
the dataset. It has numerous applications from epidemiol-
ogy/public health to social media (rumors/memes on social
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Figure 1: TOY EXAMPLE: SNAPNETS automatically
identifies four significant steps of the network sequence.
The extracted time series (e.g. #active nodes) can not
capture a proper segmentation. Gray nodes are inactive
(i.e. label 0), and black nodes are active (i.e. label 1).

networks like Twitter), anomaly detection and cyber security
(malware on computer networks). In this paper, we study
the problem of segmenting a graph sequence with varying
node-label distributions. We assume binary labels and can
handle dynamic graphs with varying nodes and edges. For
diseases/memes, the labels can be ‘infected’/’active’ (1) &
‘healthy’/’inactive’ (0), and the network can be the underly-
ing contact-network. Our problem is:

PROBLEM 1: SEGMENTATION

Given: a sequence G of networks G1, G2, . . . , GT with la-
beled nodes,

Find: best segmentation c∗, which captures different pat-
terns of node labels in G such that adjacent segments have
different characteristics of nodes with the same label.

TOY EXAMPLE. Suppose G = {G1, G2, G3, G4, G5} with
0, 1 labeled nodes (Fig. 1 top row). There are four main
steps in G: First a central node in a star and some of its
spokes have the label 1; next, low degree nodes in a chain-
shaped manner get label 1 (structural change). In the third
segment, the label moves to another community of the graph
(community change). Finally, the whole graph gets label 1
which indicates an activation rate increase in the network
(rate changes). Hence c∗ = {1, 2, 3, 5}. Note that even
though the ‘active’ sub-graphs in time-step 2 and 3 are both



SNAPNETS	

Feature	eng.	and	2me	series	
(E.g.	Li	et	al.	2009,	
Likas	et	al.	2003,	
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Plain-graph-based	
(E.g.	Shah	et	al.	2015,	
Koutra	et	al.	2014,	
Ferlez	et	al.	2008,	
Qu	et	al.	2014)	

Parameter	free	

Comprehensive	
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ProperLes	

Approaches	

Table 1: Comparison of SNAPNETS with alternative ap-
proaches. A dashed cross means most approaches does
not satisfy the property; similarly for the dashed check.

chains, their roles in the entire graph are different and so
they should belong in different segments. In time-step 2 the
active chain is a bridge between two parts while the chain in
time-step 3 is part of a near-clique community (role change).

Any algorithm should have these desired properties:
P1. Parameter-free: Find the best number of segments and

segmentation without use of parameters such as change
threshold and time window.

P2. Comprehensive: Use the entire snapshot for segmenta-
tion, instead of merely active subgraphs.

P3. Scalable: The method must be scalable (i.e. scales sub-
quadratically with the input size which can be millions of
edges and nodes in the sequence).
This problem has been barely (if at all) studied in litera-

ture. Most methods that we can adapt to solve this problem
do not satisfy the above three properties—instead we pro-
pose SNAPNETS which does (Tab. 1 shows a brief com-
parison; more discussion in Sec. 2.1). SNAPNETS is a
novel multi-level approach which summarizes the given net-
works/labels in a very general way at multiple different time-
granularities, and then converts the problem into an appro-
priate optimization problem on a data structure. We give
a novel efficient algorithm for the optimization problem as
well. A strong advantage of this framework is that it allows
us to automatically find the right number of segments avoid-
ing over or under segmentation in a very systematic and in-
tuitive fashion. Further it gives naturally interpretable seg-
ments, enhancing its applicability. Finally, we also demon-
strate SNAPNETS’s usefulness via multiple experiments on
diverse real-datasets.

The rest of the paper is organized in the standard way with
first an overview and then details.

2 Overview and main ideas
For sake of simplicity, we focus on the case when nodes have
binary labels1 i.e. active: 1 or inactive: 0. Also, for ease of
description, we assume that the network remains constant
through time and we treat the problem as one with a series
of graph snapshots: though our ideas can be easily used for
other types of dynamic graphs, including with varying net-
work structure (also shown in experiments).

Finally, we allow that nodes can even switch between
labels freely (c.f. Fig. 1). This means we can han-

1Extending to multiple labels is interesting future work.

dle both progressive/non-progressive scenarios: e.g., in
the fundamental Susceptible-Infected (SI) or Independent
Cascade (IC) propagation models (where nodes once ac-
tive, can not get inactive) and the ‘flu-like’ Susceptible-
Infected-Susceptible (SIS) model where infected nodes can
get healthy again. Next we give some useful definitions:

Definition 1 (Act-snapshot) G(V,E,L) is an Act-
snapshot. V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}
are sets of nodes and edges of G. L = [l1, l2, . . . , ln] shows
the labels of nodes. lj is 1 if vj is active and 0 otherwise.

Definition 2 (AS-Sequence) G = {G1, G2, . . . , GT } is se-
quence of T Act-snapshots with Gi at time-step i.

Definition 3 (Segment) A segment si,j is a time interval be-
tween Act-snapshots Gi and Gj i.e. si,j = {[i, j) | i < j}.
Set of all possible segments is S = {s1,2, s1,3, . . .}.

Definition 4 (Segmentation) A segmentation c of size m is
a partition of time interval [1, T ] with m time stamps i.e.
c = {a1, a2, . . . , am} where ai ∈ {1, 2, . . . , T}. The set of
all possible segmentations is C.

Definition 5 (Act-seti) Act-seti contains the active nodes in
Act-snapshot Gi i.e. Act-seti = {vj |lj = 1}.

Hence our problem is to automatically segment a given AS-
Sequence. We next explain the shortcomings of alternative
approaches, and then give the big picture of our framework.

2.1 Shortcomings of alternative approaches
Two natural ways to adapt existing algorithms for this task
are: (a) extract complex features from Act-snapshots and use
time-series segmentation; and (b) extract Act-sets and use
plain-graph-based methods.
Feature Eng. and Time Series. Converting graphs se-
quences to time series has several drawbacks. First of all, it
needs laborious feature-engineering: designing the right fea-
tures to capture the pattern of graphs is a complicated task
and the best choice of features may differ for different se-
quences (Henderson et al. 2010). Second, typical time series
segmentation algorithms, which use “local” change detec-
tion, do not satisfy our desired properties. They usually need
a threshold (Likas, Vlassis, and Verbeek 2003) (which usu-
ally depends on knowing the number of desired segments) to
detect a change; or they fix one aggregation time period for
the tracking (Li et al. 2009). All of these can be problematic,
as it is fundamentally hard to set these parameters.
Plain-graph-based analysis. Instead of manually de-
signing complicated features, an alternative is to use plain-
graph-based methods on induced subgraphs from Act-
snapshots. However, these approaches do not satisfy
P2, as they typically track only the Act-set in each Act-
snapshot (Shah et al. 2015; Koutra et al. 2014; Qu et al.
2014). As we show in Fig. 1, using only the active sub-
graphs leads to less meaningful segmentation: the active
sub-graphs at time-step 2 and 3 are both a chain of a same
size, nevertheless, as discussed before the roles of these
chains are different in the two snapshots. If we just track
active sub-graphs, we cannot detect this difference.



2.2 Overview of our method SnapNETS
In order to overcome the disadvantages we discussed before,
we propose a “global” framework which looks at the entire
AS-Sequence G and computes the correct segmentation. Due
to P1, we want to examine all possible segmentations C over
all granularities. How to do this efficiently? Our first main
idea is to use a graph data structure (called the segmentation
graph Gs) to efficiently represent the exponential number of
all segmentations in space polynomial with respect to the
sequence length. The nodes mainly represent the segments
in S , while the edge weights indicate the distance (‘differ-
ence’) between adjacent segments. Hence any segmentation
is mapped to a path between start and end time in Gs.

How to now compute the distance between any adjacent
segments w(si,j , sj,k) (each segment will contain sets of
Act-snapshots Gi)? We want to use the entire graph (due to
P2), while avoiding extracting complex features. Note that
despite the size of the graphs, patterns in the real-world are
usually much less complex. Hence, our second main idea is
to develop a smaller summary Gci which maintains impor-
tant information in an efficient manner. As a result, we only
need a few standard features to represent these summaries.

Finally, how to find the best path in Gs? We need to de-
fine this best path and design an efficient algorithm to find
it in Gs. Our third main idea is to use the average longest
path optimization problem on Gs, as it intuitively regular-
izes the length of the path (number of segments) with the
weight (difference between segments). We also develop an
efficient novel algorithm LAYERED-ALP to find this path.

In short, we pursue 3 main goals: (1) Summarize Gi; (2)
Construct Gs and (3) Define and find the best segmentation.

3 SnapNETs: Details
3.1 Goal 1: Summarizing Act-snapshots
We first propose finding a C-graph (i.e. Gci ), which summa-
rizes the structural properties and the nodes labels of each
Act-snapshot Gi. Popular methods for graph summariza-
tion include graph sparsification (Mathioudakis et al. 2011)
which try to carefully remove edges to reduce the graph’s
density while maintaining some properties. Nevertheless,
these methods are typically designed for plain graphs and
it is not straightforward to modify them for Act-snapshots.
So we adopt a different, merging-based approach which re-
duces the no. of nodes instead while maintaining an intuitive
and important property.
Role of Eigenvalues: In many real datasets node la-
bels come from a diffusion/propagation process. Recent
work (Prakash et al. 2012) shows that important diffusion
characteristics of a graph (including the so-called ‘epidemic
threshold’) are captured by the leading eigenvalue of the ad-
jacency matrix, for almost all cascade models. This natu-
rally suggests that if the leading eigenvalue of the adjacency
matrix of the summarized graph Gci and Act-snapshot are
close, Gi and Gci will have similar properties.
Summarizing Act-snapshots via Coarsening: Motivated
by the above, we want to successively merge connected
nodes into ‘super-nodes’ (i.e. ‘coarsen’) while maintaining
the leading eigenvalue of the adjacency matrix. Also, we

Type ID Name

S
tr
u
ct
u
ra
l f1 Largest eigenvalue of the adjacency matrix

f2 Number of edges
f3 Entropy of the edge weight distribution
f4 Average clustering coefficient

L
a
be
l
ba
se
d f5 Number of active nodes

f6 Average PageRank of active nodes
f7 Average degree of active nodes
f8 Average degree of active neighbors of active nodes

Table 2: Features extracted to represent each summa-
rized Act-snapshot (i.e. C-graph).

want to keep the same set of labels (0/1) in the C-graph to
keep it consistent with the Act-snapshot. Thus, we define
the summarization problem as follows,

PROBLEM 2: Act-snapshot SUMMARIZATION

Given: an Act-snapshot Gi(Vi, Ei, Li), and remained frac-
tion of nodes ρ.

Find: a coarsened graph Gci (V
c
i , E

c
i , L

c
i ) such that

minimizes
|V c

i |=ρ|Vi|
|λGi − λGc

i
| subject to ∑

(a,b)∈Eiis merged |la − lb| = 0

Here λG is the leading eigenvalue of graph G and la is the
label of node a. This formulation allows us to be model-free
and not assume any specific model (such as IC/SIS, etc.).
The constraint in PROBLEM 2 maintains the ‘frontier’ be-
tween active and inactive nodes to help consistency and in-
terpretability. PROBLEM 2 is similar to the graph coarsening
problem (GCP (Purohit et al. 2014)) whose goal is to main-
tain just λG, but without any constraint—they give an effi-
cient algorithm for this purpose which merges edges based
on a quality score. Hence, we modify that algorithm by not
allowing merging of node-pairs with different labels. This
works very well in practice and gives near-linear running
time. Note that a better algorithm for PROBLEM 2 will only
improve our results. We use the same amount of coarsening
(ρ = 0.1) as in (Purohit et al. 2014).

Fig. 1 shows our summaries via PROBLEM 2 for the TOY
EXAMPLE: the C-graphs clearly show the important non-
trivial pattern changes in both the structural and label prop-
erties of the original graphs succinctly.

3.2 Goal 2: Constructing the segmentation graph
After summarizing the Act-snapshots, each segment in the
AS-Sequence contains a set of C-graphs. How to find the
distance between two such segments? In general, computing
distances between unlabeled graphs is itself a challenging
problem (Koutra et al. 2014). Fortunately, in our case, we
can just extract simple features from the C-graphs due to
their small size and complexity; and use them to compute
the distance. Subsequently, we build the segmentation graph
Gs to store the segments and distances information. Recall
that Gs can efficiently represent all the exponential number
of possible segmentations in polynomial space.
Feature extraction of C-graphs

Extracting features from Gci is much more efficient pri-
marily because of their smaller size. Further our summariza-
tion maintains the relevant important properties effectively.



So we do not need complex features such as “number of par-
ticular substructures” (e.g. stars, maximal cliques, ladders,
etc.) used in related work.

We extracted multiple standard features (Li et al. 2012)
and eliminate correlated ones to get eight features for each
Gci (See Tab. 2 for a description). Feature vector Fi con-
tains: Structural features (f1-f4); and Label dependent fea-
tures (f5-f8) (label-dependent properties). Finally, we nor-
malize them by range normalization for a meaningful com-
parison between the features (Li et al. 2012). Thanks to our
careful design, we can use very simple features for our task.
Segmentation graph We now describe how to construct Gs

to compactly store and represent segmentations. Gs(Vs, Es)
is a unique weighted DAG where:
Nodes (Vs): For each segment si,j ∈ S , there is one node in
the graph Gs. We add two extra nodes to the graph: a source
node s and a target node t. Therefore, Vs = S ∪ {s, t}.
Edges (Es): There is a directed edge from node si,j to any
node sj,k. Also, the source node s links to all nodes with
starting time stamp 1 and all nodes with ending time stamp
T links to the target node t. Hence, Es = {e(si,j , sj,k)} ∪
{e(s, si,j)|i = 1} ∪ {e(si,j , t)|j = T}.
Edge Weights (w(e)): The weight of all edges from s or to
t are zero. The weight of an edge from si,j to sj,k is equal to
the distance between sets of C-graphs in their corresponding
segments i.e. w(e(si,j , sj,k)) = d(si,j , sj,k).

How to get this distance? Using the Fi for each Gci ,
we compute the average feature vector over all the C-graphs
in a segment as the segment’s representative i.e. F̂si,j =∑j

a=i Fa

(j−i+1) , where Fa is the feature vector of Gca in si,j .

S1,2 S2,3 S3,4 S4,5 S5,6

S1,3 S2,4 S3,5 S4,6

S1,4 S2,5 S3,6

S1,5 S2,6

S1,6

s t. . . . . . ...

...

Figure 2

This representation has a natu-
ral interpretation as it captures
the average ‘pattern’ of C-graphs
of the segment. Then the dis-
tance d(si,j , sj,k) between ‘si,j’
and ‘sj,k’ can be defined as
d(si,j , sj,k) = ||F̂si,j − F̂sj,k ||2.

Fig. 2 shows the Gs for our
TOY EXAMPLE. Edge weights
are not shown for clarity. Note
that Gs is a DAG since its edges

are directed and there is no cycle in it (as we cannot go back
in time). Also, we need to compute the summary just once
for eachGi, not for each segment in Gs. We can compute the
distance for every edge in Gs independently. Hence, we sum-
marize Act-snapshots and construct the segmentation graph
in parallel.

3.3 Goal 3: Finding the best segmentation
Let P be the set of all paths in Gs from s to t. Then,

Lemma 1 Each path p ∈ P corresponds to a valid segmen-
tation c ∈ C and for each c ∈ C there is a path p ∈ P .

Hence to get the best segmentation, we only need to define
and find the best path in Gs; which we discuss next.
Average longest path Note that defining the best path is a
different and independent question to that of defining edge
weights. We define the best segmentation as follows:

PROBLEM 3: FINDING THE BEST SEGMENTATION

Given: a segmentation graph Gs

Find: the average longest path from s to t in Gs i.e.

c∗ = argmax
c∈P

∑
si,j ,sj,k∈

w(e(si,j , sj,k))

|c|
(1)

Thus, PROBLEM 3 is the Average-Longest Path (ALP) prob-
lem on Gs (restricted to the path setP). ALP defines the path
(segmentation) quality as the average value of edge weights
in the path (distance between its segments). Note that ALP
is parameter-free and importantly, it also naturally balances
the ‘length’ (weight) of the path (difference between seg-
ments) with # nodes in the path (# segments).

An alternative ‘parameter-free’ optimization would have
been the Longest Path (LP) problem: which will try to find
the longest (heaviest) path in P (Eq. 1, without the denom-
inator). However, the LP formulation will suffer from over-
segmentation—it is biased by the number of segments in the
path, in the sense that it tends to prefer longer paths with
more nodes, irrespective of the edge weights (Waggoner et
al. 2013). In practice our observations confirm that LP con-
tains unnecessary edges with low weight (see Sec. 4). Our
ALP objective is intuitive and overcomes the disadvantage
of LP. Fig. 2 shows the ALP for TOY EXAMPLE in red.

LAYERED-ALP ALP can be solved in poly. time on
DAGs (recall Gs is a DAG)2. Current state-of-the-art algo-
rithm (Waggoner et al. 2013) can solve PROBLEM 3 in
O(V 2

s .Es). This is too slow for our purposes; hence, we
propose a new and more efficient O(Es) algorithm for ALP
on DAGs called LAYERED-ALP.

The main observation we use is that the ALP from s to t is
the longest (‘heaviest’) path among all paths with the same
number of nodes (the ‘length’) as the ALP. This fact leads
us to calculate all the heaviest paths with different lengths
in P and find the one which gives the maximum average
edge weight. In LAYERED-ALP we build a queue of layers
of Gs. Each layer i contains nodes which can reach t by
i steps. When we iterate through layers, we maintain the
weight (Pi(v, t)) of the heaviest path from v to t in i steps,
and the next node of v in this path (κiv). Alg. 2 shows the
pseudo-code of LAYERED-ALP.

Lemma 2 The LAYERED-ALP algorithm correctly finds
the average longest path Gs (Proof omitted).

Lemma 3 Time complexity of LAYERED-ALP is O(|Es|),
where |Es| is number of edges in Gs (Proof omitted).

3.4 The complete algorithm
Alg. 1 shows the final pseudo code of SNAPNETS.

Lemma 4 SNAPNETS has sub-quadratic time complexity
O(E · logE + E

p ), where E is the total number of edges in
G and p is number of processors to parallelize constructing
the segmentation graph Gs.

2ALP is NP-hard on general graphs



Algorithm 1: SNAPNETS
Data: AS-Sequence G
Result: The optimal segmentation c∗

1 For each Gi ∈ G coarsen and get Gc
i once (Sec. 3.1);

2 Compute feature F̂ vector of segments in S (Sec. 3.2);
3 Generate the segmentation graph Gs (Sec. 3.2);
4 c∗ = LAYERED-ALP (Gs, G, s, t ) (Sec. 3.3);

Algorithm 2: LAYERED-ALP
Data: Gs, G, s, t
Result: Palp

1 Initialize Queue;
2 Layer0 = {t} and Queue.push(Layer0);
3 Layer1 = {si,j |j = T};
4 Queue.push(Layer1);
5 for k = 2 to T do
6 Layerk = {si,j |T − j + 1 ≥ k} ∪ {s}
7 Queue.push(Layerk);

8 LayerT+1 = s and Queue.push(LayerT+1);
9 LL = Queue.pop(), κ0

t = ∅;
10 while Queue is not empty do
11 CL = Queue.pop() for si,j ∈ CL do
12 κCL

si,j = argmax
sj,k

PLL(sj,k, t) + w(e(si,j , sj,k));

13 PCL(si,j , t) = PLL(κ
CL
si,j , t) + w(e(si,j , κ

CL
si,j ));

14 If s is in CL then lpCL = PCL(s, t);
15 LL = CL;

16 ALP = argmax( lp1
1
, . . . , lpT

T
);

17 Extract the Palp using κT
s to κ0

t ;

4 Experiments
We design various experiments to evaluate SNAPNETS. We
implemented SNAPNETS in MATLAB and Python. Our ex-
periments were conducted on a 4 Xeon E7-4850 CPU with
512GB of 1066Mhz main memory and our code is avail-
able for research purposes3.
Datasets. We collected a number of datasets from vari-
ous domains such as social and news media, epidemiology,
autonomous system, and co-authorship network to evaluate
SNAPNETS. See Tab. 3 for a summary description.

The ground truth segmentations in these datasets are non-
trivial. They are induced from complex structural changes
such as activation in different parts of the Act-snapshots (AS
Oregon4 and Higgs (De Domenico et al. 2013) ), and vary-
ing role of active nodes e.g. change of active nodes cen-
trality (BA-degree), or activation rate changes (Portland5).
Moreover, detecting the number of correct cut points is also
a difficult task itself. In datasets without ground truth, we
would like to find how memes/news were adopted by social
media users (IranElect and Memetracker (Leskovec, Back-
strom, and Kleinberg 2009)) and when the co-authorship re-
lation on a specific topic changes over time (DBLP (Lappas

3http://github.com/SorourAmiri/SnapNETS
4http://topology.eecs.umich.edu/data.html
5http://ndssl.vbi.vt.edu/synthetic-data/

et al. 2010)).

Dataset #Nodes #Edges Timesteps GT
BA-degree 500 4,900 240 units X
AS-PA 633 1,086 400 units X
AS-COM 4431 7,609 530 units X
AS-MIX 1899 3261 1000 units X
Higgs 456,626 14,855,843 7 days X
Portland 1,575,861 19,481,626 25 days X
Memetracker 960 5,001 165 days
IranElect 126,915 5,589,083 30 days
DBLP 369,855 1,109,452 13 years

Table 3: Datasets details. (GT == Ground Truth)

Baselines. To the best of our knowledge, there is no existing
algorithm which has all the desired properties. Hence, we
adapt two time series based algorithm, and one plain-graph-
based algorithm as baselines. We show the details in Tab. 4.
Variations: We also designed the following three variations
of SNAPNETS for comparison. (1) SN-ORIG extracts fea-
tures from Act-snapshots. (2) SN-LP finds the Longest Path
instead of ALP. (3) SN-GREEDY greedily selects edges with
the largest weight from s to t, instead of ALP.
Metrics. For datasets with ground truth, we measure the
performance by calculating the F1 score of the set of de-
tected cut-points with the ground-truth set. For others, we
perform case studies. We show how SNAPNETS reveals
interesting patterns by matching the results with external
news/events, and show how they are easily interpretable.

4.1 Segmentation Results
We give representative results here.

Quantitative analysis We see in Tab. 5 that SNAPNETS
has the best performance among baselines and variations of
SNAPNETS. Note that all the baselines require some input
parameters: such as the number of cut points (DYNAMMO),
threshold for new cluster creation (K-MEANS), and differ-
ence threshold for outputting a cut point (VOG). We test a
wide range of these input values and pick the ones that give
the best results. Still, their performance is clearly worse.
AS Oregon: SNAPNETS performs very well to differentiate
between random and preferential attachment style activation
(AS-PA) and we can accurately detect when different com-
munities of the network get active (AS-COM and AS-MIX).
Fig. 3a visualizes the C-graphs in the c∗, and shows that our
results are easily interpretable.
Higgs: SNAPNETS finds the exact ground truth Jul. 4
(F1 = 1). Note that according to external news, there were
rumors about the Higgs boson discovery from Jul. 2-4, these
rumors make the ground truth harder to detect (for example
VOG finds a cut point on Jul. 2 instead of Jul. 4).
Portland: SNAPNETS again detects the ground truth seg-
ments (F1 = 1). Other baselines have worse performance
except VOG and DYNAMMO since the change of the infec-
tion pattern in this dataset is visible in the active subgraphs:
an infected chain first, and then many infected stars (as the
disease goes viral). SNAPNETS shows its power in finding
the pattern change in disease propagation.



(a) AS-MIX (b) Memetracker

Figure 3: Visualization of C-graphs for the segmentations found by SNAPNETS for AS-MIX and Memetracker. The
vertical lines are the detected cut points. Black nodes are active and gray ones are inactive.

Baseline Description
DYNAMMO
(Li et al.
2009)

Construct time series using features in Tab. 2, then feed
the time series and the no. of cut points (detected by
SNAPNETS) to DYNAMMO, and use reconstruction er-
rors to find change points.

K-MEANS
(Likas et al.
2003)

Construct time series similarly as in DYNAMMO, then
it finds segmentations based on an online “local” ap-
proach, and reports a segment when a new cluster is
detected.

VOG
(Koutra et
al. 2014)

Extract active sub-graph (VOG does not work on la-
beled graphs) and use VOG to find the 10 most im-
portant sub-structures. When the set of important sub-
structures changes sufficiently (above a threshold which
is set to be the one with the best performance), we out-
put a segment.

Table 4: Baselines description

Data w. GT F1 score
SNAPNETS SN-

ORIG
SN-
LP

SN-
GREEDY

DYNAMMO K-
MEANS

VOG

BA-degree 1 1 0.08 1 0 0.4 0.67
AS-PA 1 0 0.05 0.67 0 0.4 1
AS-COM 0.67 0 0.07 0.5 0.5 0.22 0
AS-MIX 0.86 0 0.07 0.57 0.32 0.4 0
Higgs 1 0 0.15 1 0 0.67 0
Portland 1 0 0.4 1 1 0.67 1

Table 5: F1 score of the segmentation detected by SNAP-
NETS, variations, and baselines on datasets with GT.

Case studies SNAPNETS finds meaningful segments in
multiple datasets from various domains with varied patterns
of evolution (both structurally and in labels) while none of
the baselines perform as well (for example, VOG finds no
cut-point in DBLP, K-MEANS essentially gives one at the
end, and DYNAMMO finds no cut-point in Memetracker).
Memetracker: SNAPNETS finds a cut point on Oct 01,
2008, which matches the date of the televised debate be-
tween Joe Biden and Sarah Palin. In the first segment,
C-graphs (Fig. 3b) are close to the case when all nodes
have the same label—suggesting that few nodes randomly
got infected (f5 ' 0.1, f8 ' 0.2). In the second seg-
ment, C-graphs are substantially sparser (i.e. f2 dramati-
cally dropped to 0.02) and contain large stars and leaf nodes
with active centers. The size of the centers and average
PageRank (f6) in the C-graphs shows that important nodes
such as “CNN” and “BBC” websites spread the meme to
many nodes, and they are merged to form hubs.
IranElect: We detect two cut points at Jun. 14 (presiden-
tial election) and Jun. 27 (vote recount). In the first seg-

ment, multiple small near-clique structures (high f1 ' 0.8
and low f2 ' 0.5) of C-graphs shows small and highly con-
nected groups of political activists were active. In the second
segment, important nodes such as “NYtimes” in different ar-
eas of the graph became active and formed multiple large
stars of active nodes in C-graphs (low f1 ' 0.1 and high
f6 ' 0.7). Finally, C-graphs became densely connected
(f1 ' 0.85, f2 ' 0.8) because the remaining hub and bridge
nodes became active and merged, while a few small/sparse
subgraphs remained inactive.

4.2 Scalability
We performed scalability tests, and as expected SNAPNETS
scales near-linearly w.r.t the no. of edges in G and the run-
ning time is reasonable and practical—it is∼ 10 times faster
than dynamic graph analysis methods such as (Shah et al.
2015). Also, we get excellent speed-ups (∼ 9X faster using
10 processors) after parallelization.
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Figure 4: (a) Scalability of SNAPNETS. (b) Speedup by
parallelizing construction of Gs.

5 Related Work
We discuss some related work (besides the most closely re-
lated ones in Sec. 2.1) in Time series and Dynamic graph
analysis. Generally, unlike these methods, we maintain both
the structural and label dependent properties of a graph.
Time series analysis: There has been much work for time-
series (TS) data: including algorithms for mining multivari-
ate TS, summarizing TS with missing values (Li et al. 2009),
segmenting TS (Chen et al. 2013), rule and dimension dis-
covery (Hu et al. 2011; Shokoohi-Yekta et al. 2015), and
many others. However, our problem is fundamentally dif-
ferent because we deal with AS-Sequence; hence these algo-
rithms cannot be easily applied for our task.



Dynamic graph analysis: As many natural networks
evolve, this area is gaining interest: see (Aggarwal and
Subbian 2014) for an overview. Many traditional machine
learning tasks on static graphs have been extended to dy-
namic ones (Aggarwal and Li 2011; Sarkar, Chakrabarti,
and Jordan 2012). For plain dynamic graphs, (Ferlez
et al. 2008; Sun et al. 2007; Aggarwal and Philip 2005;
Xu, Kliger, and Hero 2011) detect the cut points when
communities/partitions change abruptly, while (Araujo et al.
2014) uses tensor decomposition to discover temporal com-
munities. In contrast, we study the patterns in a more general
way taking labels, not restricted to communities or clusters.

6 Discussion and Conclusions
We presented SNAPNETS, an intuitive and effective method
to segment AS-Sequences with binary node labels. It is first
method to satisfy all the desired properties P1, P2, P3. It ef-
ficiently finds high-quality segmentations, detects anomalies
and gives useful insights in diverse complex datasets.
Patterns it finds: In short, SNAPNETS finds segmenta-
tions where adjacent segments have different characteris-
tics of nodes with the same label i.e. the ‘placement’ and
‘connection’ of active/inactive nodes are different. This in-
cludes both structural (e.g. community/role/centrality) and
rate changes. As a non-trivial example, we can detect both a
random-vs-targeted activation and a faster-vs-slower one.
Global method: It is useful to note that SNAPNETS is a
‘global’ method and not simply a change-point detection
method. We are not just looking for local changes; rather
we track the ‘total variation’ using Gs. Hence this allows
to find important cut-points automatically and without any
specification.
Flexibility: The SNAPNETS framework is very flexible, as
our formulations are very general. The eigenvalue character-
ization is general; similarly, the Gs-ALP formulation should
be also useful for other segmentation-like problems; and
LAYERED-ALP can be of independent interest too. Adapt-
ing SNAPNETS to handle dynamic graphs with varying
nodes and edges is useful as the next step. Also, extending
our work to streaming and partially observed graphs, and
handling more general node/edge level features will be in-
teresting.
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