
1

Automatic Segmentation of Dynamic Network
Sequences with Node Labels

Sorour E. Amiri, Liangzhe Chen, and B. Aditya Prakash

Abstract—Given a sequence of snapshots of flu propagating over a population network, can we find a segmentation when the
patterns of the disease spread change, possibly due to interventions? In this paper, we study the problem of segmenting graph
sequences with labeled nodes. Memes on the Twitter network, diseases over a contact network, movie-cascades over a social
network, etc. are all graph sequences with labeled nodes.
Most related work on this subject is on plain graphs and hence ignores the label dynamics. Others require fix parameters or feature
engineering. We propose SNAPNETS, to automatically find segmentations of such graph sequences, with different characteristics of
nodes of each label in adjacent segments. It satisfies all the desired properties (being parameter free, comprehensive and scalable) by
leveraging a principled, multi-level, flexible framework which maps the problem to a path optimization problem over a weighted DAG.
Also, we develop the parallel framework of SNAPNETS which speeds up its running time. Finally, we propose an extension of
SNAPNETS to handle the dynamic graph structures and use it to detect anomalies (and events) in network sequences.
Extensive experiments on several diverse real datasets show that it finds cut points matching ground-truth or meaningful external
signals and detects anomalies outperforming non-trivial baselines. We also show that the segmentations are easily interpretable, and
that SNAPNETS scales near-linearly with the size of the input. Finally, we show how to use SNAPNETS to detect anomaly in a
sequence of dynamic networks.

Index Terms—Segmentation, Graph, Sequence.

F

1 INTRODUCTION

S UPPOSE we have a sequence of Ebola infections and the
associated contact network of who-can-infect-whom. Can we

quickly tell a public health expert when the infection patterns
change possibly due to a virus mutation? By itself, it is crucial
for public health to understand the virus propagation and to
design a good immunization strategy. One possible approach is to
segment the sequence based on some manually selected features,
such as the rate of infections. However by directly analyzing
the underlying social network, and using both the infected and
uninfected nodes, we can improve the segmentation as well as its
interpretability (e.g. ‘disease spread in a tree like fashion among
elderly till Monday, and changed to clique-like fashion among the
young’ and so on).

Segmenting a graph sequences is an important problem
which can help us in better understanding the evolution of the
dataset. This problem has numerous applications from epidemi-
ology/public health to social media (rumors/memes on social
networks like Twitter), anomaly detection and cyber security
(malware on computer networks). In this paper, we study the
problem of segmenting a graph sequence with varying node-label
distributions. First, we assume binary labels and fixed structure for
graphs. Next, we propose an extension to our algorithm to handle
dynamic graphs with varying nodes and edges then leverage it to
detect anomalies and important events. For diseases/memes, the
labels can be ‘infected’/’active’ (1) & ‘healthy’/’inactive’ (0), and
the network can be the underlying contact-network. Our problem
is:

PROBLEM 1: SEGMENTATION

• Sorour E. Amiri, Liangzhe Chen and B. Aditya Prakash are with the
Department of Computer Science, Virginia Tech.
E-mail: {esorour, liangzhe, badityap}@cs.vt.edu

N
et

w
o

rk
 S

eq
.

S
u

m
m

ar
iz

ed
 S

eq
.

1 2 3 4 5

Figure 1: TOY EXAMPLE: SNAPNETS automatically identifies
four significant steps of the network sequence. The extracted
time series (e.g. #active nodes) can not capture a proper
segmentation. Gray nodes are inactive (i.e. label 0), and black
nodes are active (i.e. label 1).

Given: a sequence G of networks G1, G2, . . . , GT with labeled
nodes,

Find: best segmentation c∗, which captures different patterns of
node labels in G such that adjacent segments have different
characteristics of nodes with the same label.

TOY EXAMPLE. Suppose G = {G1, G2, G3, G4, G5} with 0, 1
labeled nodes (Fig. 1 top row). There are four main steps in G:
First a central node in a star and some of its spokes have the
label 1; next, low degree nodes in a chain-shaped manner get
label 1 (structural change). In the third segment, the label moves
to another community of the graph (community change). Finally,



2

Properties SNAPNETS Feature eng. and
time series [1],
[2], [3]

Plain-graph-
based [4], [5],
[6], [7]

Parameter free
Comprehensive
Scalable

Table 1: Comparison of SNAPNETS with alternative ap-
proaches. A dashed cross means most approaches does not
satisfy the property; similarly for the dashed check.

the whole graph gets label 1 which indicates an activation rate
increase in the network (rate changes). Hence c∗ = {1, 2, 3, 5}.
Note that even though the ‘active’ sub-graphs in time-step 2 and 3
are both chains, their roles in the entire graph are different and so
they should belong in different segments. In time-step 2 the active
chain is a bridge between two parts while the chain in time-step
3 is part of a near-clique community (role change). Therefore, to
get c∗ we must consider the entire graph at each time stamp.

Based on the above example, any ideal segmentation algorithm
should have the following desired properties:

P1. Parameter free: Find the best number of segments and
segmentation without use of parameters i.e. change threshold,
time window, and number of desired segments.

P2. Comprehensive: Use the entire snapshot for segmentation,
instead of merely active subgraphs.

P3. Scalable: The method must be scalable (i.e. scales sub-
quadratically with the input size which can be millions of
edges and nodes in the sequence).

This problem has been barely (if at all) studied in literature.
Unlike most methods that we can adopt to solve this problem,
SNAPNETS has all the above mentioned properties. (Table 1
shows a brief comparison; more discussion in Section 3.1).
SNAPNETS is a novel multi-level approach which summarizes
the given networks/labels in a very general way at multiple
different time-granularities, and then converts the problem into
an appropriate optimization problem on a data structure. We
give a novel efficient algorithm for the optimization problem as
well. A strong advantage of this framework is that it allows us
to automatically find the right number of segments avoiding over
or under segmentation in a very systematic and intuitive fashion.
Further it gives naturally interpretable segments, enhancing its
applicability. Also, we easily extend SNAPNETS to segment
dynamic graph sequences which can be used to detect anoma-
lies and important events. Finally, we demonstrate SNAPNETS’s
usefulness via multiple experiments for segmentation and anomaly
detection on diverse real-datasets.

The rest of the paper is organized as follows: We first go
over useful preliminaries in Section. 2, then give an overview
of our approach in Section 3. Then we describe SNAPNETS in
detail in Section 4 and propose its extension to handle dynamic
graph sequence and it application to detect anomalies in Section 5
followed by empirical results in Section 6. Finally, we discuss
related work and conclude in Sections 7 and 8.

2 PRELIMINARIES

In this section, we go over useful preliminaries, in particular
diffusion models and plain graph summarization algorithms. Table
2 summarizes the notations that we use throughout this paper to
describe the segmentation problem and SNAPNETS algorithm.

Table 2: Some of the notations used

Symbol Description
G·, Gc

· The original and the summarized graph.
G A sequence of T Act-snapshots (i.e. AS-Sequence)
T The last time stamp in AS-Sequence G
c A valid segmentation of time interval [1, T ]
c∗ The best segmentation of time interval [1, T ]
C The set of all possible segmentations.
si,j A segment [i, j).
S The set of all possible segments.
F· The feature vector of each C-graph
F̂· The feature vector of each segment.
d(·, ·) Distance between two segments.
Gs Segmentation graph
s , t Source and target nodes of the segmentation graph
λG The leading eigenvalue of graph G
lx· The label of a node x
ρ The compression ratio to summarize graph G
nop Number of processors

2.1 Diffusion models

Node labels (i.e. active:1 and inactive:0 ) usually come from diffu-
sion process in networks. Different models are distinguished based
on how they define the activation cycle on a node in a network G.
We categorize diffusion models into two main groups: (1) Progres-
sive: such as Independent Cascade (IC) and Susceptible-Infected
(SI) models where nodes can not get inactive. (2) Non-progressive:
such as the ‘flu-like’ Susceptible-Infected-Susceptible (SIS), and
Susceptible-Infected-Recovered (SIR) models where active node
can get inactive again. [8], [9].

In diffusion models, initially, a node is susceptible (inactive).
Overtime, that node can get infected (active) according to some
probability. Finally, depending on the diffusion model, the node
may remain infected or become susceptible (inactive) again or
be removed (immunized). For example, in the IC model a vertex
v ∈ V is called active if it has been influenced and inactive
otherwise. Each active node has a single chance to activate
each currently inactive neighbor with an independent probability
over the edge. This diffusion process continues until no more
activations are possible.

2.2 Summarizing plain graphs

We leverage graph summarization in our proposed algorithm.
Our summarization is inspired by CoarseNet [10] method, an
algorithm for coarsening a graph while preserving the propa-
gation characteristics of the graph as much as possible. The
algorithm takes a weighted graphG(V,E,w) and a target fraction
0 < α < 1 as input, and coarsens a fraction 1− α of total nodes
such that the coarsened graph G′ = (V ′, E′, w′) approximates
graph G with respect to its diffusive properties.

CoarseNet uses the leading eigenvalue of the adjacency matrix
as an indicator of the graph’s diffusion properties, and greedily
merges adjacent nodes such that the drop in the first eigenvalue is
minimized. It evaluates the quality of merging each edge based on
a score they define as follows,

score(a, b) = |λG−(a,b) − λG| = ∆λ(a,b) (1)

Where, λ in the leading eigenvalue of the adjacency matrix of a
graph. score(a, b) measure the change of leading eigenvalue after



3

merging a and b. It is shown that the estimation of score(a, b) is
as follows,

score(a, b) ' −λ(uava + ubvb) + va
−→u T−→co + β2uavb + β1ubva

−→v T−→u − (uava + ubvb)
(2)

Where −→u and −→v are the right and left eigenvectors of graph G.
ua denotes the component of −→u corresponding to vertex a and

−→
co

is the vector of outgoing edges from the supernode c (i.e. the node
is generated after merging a and b).

3 OVERVIEW AND MAIN IDEAS

For sake of simplicity, we focus on the case when nodes have
binary labels1 i.e. active: 1 or inactive: 0. Also, for ease of
description, first we assume that the network remains constant
through time and we treat the problem as one with a series of graph
snapshots. Next, we show a natural extension of SNAPNETS to
work with dynamic graph sequences (See sections 5 and 6.8).

Finally, we allow that nodes can even switch between labels
freely (c.f. Figure 1). This means that we can handle both
progressive/non-progressive scenarios: e.g. SI, IC, and SIS mod-
els. Next we give some useful definitions:
Definition 1 (Act-snapshot). G(V,E,L) is an Act-snapshot. V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em} are sets of nodes
and edges ofG. L = [l1, l2, . . . , ln] shows the labels of nodes.
lx is 1 if vx is active and 0 otherwise.

Definition 2 (AS-Sequence). G = {G1, G2, . . . , GT } is sequence
of T Act-snapshots with Gi at time-step i.

Definition 3 (Segment). A segment si,j is a time interval between
Act-snapshots Gi and Gj i.e. si,j = {[i, j) | i < j}. Set of
all possible segments is S = {s1,2, s1,3, . . .}.

Definition 4 (Segmentation). A segmentation c of size q is a
partition of time interval [1, T ] with q time stamps i.e. c =
{a1, a2, . . . , aq} where ai ∈ {1, 2, . . . , T}. The set of all
possible segmentations is C.

Definition 5 (Act-seti). Act-seti contains the active nodes in Act-
snapshot Gi i.e. Act-seti = {vx|lx = 1}.

Hence our problem is to automatically segment a given AS-
Sequence. We next explain the shortcomings of alternative ap-
proaches, and then give the big picture of our framework.

3.1 Shortcomings of alternative approaches
Two natural ways to adapt existing algorithms for this task are: (a)
extract complex features from Act-snapshots and use time-series
segmentation; and (b) extract Act-sets and use plain-graph-based
methods.
Feature Eng. and Time Series. Converting graphs sequences to
time series has several drawbacks. First of all, it needs laborious
feature-engineering: designing the right features to capture the
pattern of graphs is a complicated task, usually requires a large
set of expensive features and the best choice of features may
differ for different sequences [11]. For example, we may need
to extract the number of stars in a sequence of social networks to
identify the structure of graphs. However, we may need to count
the number of ladders in infrastructure networks. Second, typical

1. Extending to multiple labels is interesting future work.

time series segmentation algorithms, which use “local” change
detection, do not satisfy our desired properties. They usually need
a threshold [2] (which usually depends on knowing the number of
desired segments) to detect a change; or they fix one aggregation
time period for the tracking [1]. All of these can be problematic,
as it is fundamentally hard to set these parameters.
Plain-graph-based analysis. Instead of manually designing
complicated features, an alternative is to use plain-graph-based
methods on induced subgraphs from Act-snapshots. However,
these approaches do not satisfy P2, as they typically track only
the Act-set in each Act-snapshot [4], [5], [7]. As we show in
Figure 1, using only the active sub-graphs leads to less meaningful
segmentation: the active sub-graphs at time-step 2 and 3 are both
a chain of a same size, nevertheless, as discussed before the roles
of these chains are different in the two snapshots. If we just track
active sub-graphs, we cannot detect this difference.

3.2 Overview of our method SnapNETS

In order to overcome the disadvantages we discussed before,
we propose a “global” framework which looks at the entire
AS-Sequence G and computes the correct segmentation. Due to
P1, we want to examine all possible segmentations C over all
granularities. How to do this efficiently? Our first main idea is to
use a graph data structure (called the segmentation graph Gs) to
efficiently represent the exponential number of all segmentations
in space polynomial with respect to the sequence length. The
nodes mainly represent the segments in S , while the edge weights
indicate the distance (‘difference’) between adjacent segments.
Hence any segmentation is mapped to a path between start and
end time in Gs.

How to compute the distance between any adjacent segments
w(si,j , sj,k) (each segment will contain sets of Act-snapshots
Gi)? Note that we want to use the entire graph due to P2. This
is related to the problem of graph isomorphism. It is natural
to compare the segments by examining extracted features such
as number of nodes, cliques, diameter and so forth. This will
require complex feature construction to correctly and sufficiently
represent each graph snapshot. Nevertheless, despite the size of the
graphs, patterns in the real-world are usually much less complex.
Hence, our second main idea is to develop a smaller summary Gci
which maintains important information in an efficient manner. As
a result, we only need a few standard features to represent these
summaries.

Finally, how to find the best path in Gs? We need to define this
best path and design an efficient algorithm to find it in Gs. Our
third main idea is to use the average longest path optimization
problem on Gs, as it intuitively regularizes the length of the path
(number of segments) with the weight (difference between seg-
ments). We also develop the efficient novel algorithm LAYERED-
ALP to find this path.

In short, we pursue 3 main goals:

Goal 1. Summarizing Gi: summarize each Gi to capture the
structural and label dependent properties (Section 4.1).

Goal 2. Constructing Gs: extract the features of summarized
graphs and compute the distance between adjacent segments;
and then construct Gs (Section 4.2).

Goal 3. Defining and extracting the best segmentation: define the
best segmentation (path) and develop an efficient algorithm
to find it (Section 4.3).



4

Figure 2 shows an overview of SNAPNETS (Snapping
NETwork Sequences). Our careful design and parallel implemen-
tation help to satisfy P3: SNAPNETS is sub-quadratic in running
time with respect to the size of the sequence and our experiments
show its effectiveness and scalability.

In
p

u
t

G
o

al
 2

O
u

tp
u

t
G

o
al

 1
G

o
al

 3

Summary graphs

Segmentation graph

Defining and extracting 
the best 

segmentation

c* = {1, 3, 4, …,T}

Figure 2: SNAPNETS overview (Best viewed in color).

4 SNAPNETS: DETAILS

4.1 Goal 1: Summarizing Act-snapshots
We first propose finding a C-graph (i.e. Gci ), which summarizes
the structural properties and the nodes labels of each Act-snapshot
Gi. Popular methods for graph summarization include graph spar-
sification [12] which try to carefully remove edges to reduce the
graph’s density while maintaining some properties. Nevertheless,
these methods are typically designed for plain graphs and it is not
straightforward to modify them for Act-snapshots. So we adopt
a different, merging-based approach which reduces the number
of nodes instead while maintaining an intuitive and important
property.
Role of Eigenvalues: In many real datasets node labels come from
a diffusion/propagation process. Recent work [13] shows that im-
portant diffusion characteristics of a graph (including the so-called
‘epidemic threshold’) are captured by the leading eigenvalue of the
adjacency matrix, for almost all cascade models. This naturally
suggests that if the leading eigenvalue of the adjacency matrix of
the summarized graph Gci and Act-snapshot are close, Gi and Gci
will have similar properties.
Summarizing Act-snapshots via Coarsening: Motivated by the
above, we want to successively merge connected nodes into
‘super-nodes’ (i.e. ‘coarsen’) while maintaining the leading eigen-
value of the adjacency matrix. Also, we want to keep the same set
of labels (0/1) in the C-graph to keep it consistent with the Act-
snapshot and help interpretability and make it easier to compare
C-graphs. Thus, we define the summarization problem as follows,

PROBLEM 2: Act-snapshot SUMMARIZATION

Algorithm 1: Act-snapshot summarization
Data: Act-snapshot (V,E,L), ρ
Result: summary graph C-graph

1 for (x, y) ∈ E do
2 Compute score(x, y);

3 π ← Sort the edges base of their scores in increasing order;
4 r = 0, Gc

· = G;
5 while r ≤ (1− ρ) · |V | do
6 (x, y) = π(r);
7 if lx == ly then
8 Gc

· ← mergeGc
· (x, y);

9 r ← r + 1;

Given: an Act-snapshot Gi(Vi, Ei, Li), and remained fraction of
nodes ρ.

Find: a coarsened graph Gci (V
c
i , E

c
i , L

c
i ) such that

minimizes
|V c

i |=ρ|Vi|
|λGi

− λGc
i
| subject to

∑
(x,y)∈Eiis merged |lx − ly| = 0

Here λG is the leading eigenvalue of graph G and lx is the label
of node x. This formulation allows us to be model-free and not
assume any specific model (such as IC/SIS, etc.). The constraint in
PROBLEM 2 maintains the ‘frontier’ between active and inactive
nodes to help consistency and interpretability. PROBLEM 2 is
similar to the graph coarsening problem (GCP [10]) whose only
goal is to maintain λG, but without any constraint—they give an
efficient algorithm for this purpose which merges edges based on
a quality score. Hence, we modify that algorithm by prohibiting
merging of node-pairs with different labels. Algorithm 1 shows
our algorithm to solve the PROBLEM 2. We compute the scores
of edges based on Equation 2 and sort them in lines 1-3. Then,
gradually merge edges with end nodes with same labels from the
ordered list (lines 5-9). This algorithm works very well in practice
and gives near-linear running time. Note that a better algorithm
for PROBLEM 2 will only improve our results. A desired value
for ρ is the lowest value which maintain λG. We use the same
amount of coarsening (ρ = 0.1) as in [10]. If the ρ value is too
large, the summary will be basically similar to the original graph,
and we need more complicated features to identify its properties
(similar to the original graphs). Also, too small ρ value (i.e., lower
than 0.1) is not desirable since all the nodes collapse into few
super-nodes and the λ will deteriorate fast.

Figure 1 shows our summaries via PROBLEM 2 for the TOY

EXAMPLE: the C-graphs clearly show the important non-trivial
pattern changes in both the structural and label properties of the
original graphs succinctly.

4.2 Goal 2: Constructing the segmentation graph

After summarizing the Act-snapshots, each segment in the AS-
Sequence contains a set of C-graphs. How to find the distance
between two such segments? In general, computing distances
between unlabeled graphs is itself a challenging problem [5].
Fortunately, in our case, we can just extract simple features from
the C-graphs due to their small size and complexity; and use them
to compute the distance. Subsequently, we build the segmentation
graph Gs to store the segments and distances information. Recall
that Gs can efficiently represent all the exp. number of possible
segmentations in poly. space.
Feature extraction of C-graphs Extracting features from Gci is



5

Type ID Name Features description
St

ru
ct

ur
al

f1 Largest eigenvalue of the adja-
cency matrix

It indicates the structural and label dependent properties of C-graphs. We expect changes
in eigenvalues of C-graphs in AS-Sequence due to the restriction of maintaining the frontier
(Sec 4.1). Hence this feature will encode how the labels are distributed with respect to the
Act-snapshot.

f2 Number of edges It measures the density of each C-graph which indicates how nodes got merged due to the
label distribution in the Act-snapshot

f3 Entropy of the edge weight dis-
tribution

It encodes which edges in the original graph got merged. During CoarseAct, the edge
weights change to maintain the leading eigenvalue (see Sec 4.1). Therefore, the distribution
of edge weights contains information about which edges are merged and how much
merging happens.

f4 Average clustering coefficient It measures the relative frequency of triangles in a C-graph. It shows when a new
community get activated.

L
ab

el
ba

se
d f5 Number of active nodes It counts the remaining active nodes after summarizing an Act-snapshot.

f6 Average PageRank of active
nodes

It measures the structural importance of active nodes in C-graphs.

f7 Average degree of active nodes It measures centrality among active nodes in C-graphs.
f8 Average degree of active neigh-

bors of active nodes
It indicates the role and importance of active nodes.

Table 3: Features extracted to represent each summarized Act-snapshot (i.e. C-graph).

much more efficient primarily because of their smaller size. Fur-
ther our summarization maintains the relevant important properties
effectively. So we do not need complex features such as “number
of particular substructures” (e.g. stars, maximal cliques, ladders,
etc.) used in related work.

We extracted multiple standard features [14] and eliminate
correlated ones to get eight features for each Gci (See Table 3
for a description). Feature vector Fi contains: Structural features
(f1-f4); and Label dependent features (f5-f8) (label-dependent
properties). Finally, we normalize them by range normalization
for a meaningful comparison between the features [14]. Thanks to
our careful design, we can use very simple features for our task.
Segmentation graph We now describe how to construct Gs to
compactly store and represent segmentations. Gs(Vs, Es) is a
unique weighted DAG where:
Nodes (Vs): For each segment si,j ∈ S , there is one node in the
graph Gs. We also add two extra nodes to the graph: a source node
s and a target node t. Therefore, Vs = S ∪ {s, t}.
Edges (Es): There is a directed edge from node si,j to any node
sj,k. Also, the source node s links to all nodes with starting time
stamp 1 and all nodes with ending time stamp T links to the
target node t. Hence, Es = {e(si,j , sj,k)}∪ {e(s, si,j)|i = 1}∪
{e(si,j , t)|j = T}.
Edge Weights (w(e)): The weight of all edges from s or to t
are zero. The weight of an edge from si,j to sj,k is equal to the
distance between sets of C-graphs in their corresponding segments
i.e. w(e(si,j , sj,k)) = d(si,j , sj,k).

How to get this distance? Using the Fi for each Gci , we com-
pute the average feature vector over all the C-graphs in a segment
as the segment’s representative i.e. F̂si,j =

∑j
a=i Fa

(j−i+1) , where Fa is
the feature vector of Gca in si,j . This representation has a natural
interpretation as it captures the average ‘pattern’ of C-graphs of
the segment. Then the distance d(si,j , sj,k) between ‘si,j’ and
‘sj,k’ can be defined as d(si,j , sj,k) = ||F̂si,j − F̂sj,k ||2.

Figure 3 shows the Gs for our TOY EXAMPLE. Edge weights
are not shown for clarity. Note that Gs is a DAG since its edges are
directed and there is no cycle in it (as we cannot go back in time).
Further, note that we can compute the distance for every edge in
Gs independently and in parallel. Also, we need to compute the
summary just once for each Gi, not for each segment in Gs.

S1,2 S2,3 S3,4 S4,5 S5,6

S1,3 S2,4 S3,5 S4,6

S1,4 S2,5 S3,6

S1,5 S2,6

S1,6

s t. . . . . . ...

...

Figure 3: The segmentation graph Gs of the TOY EXAMPLE.
The red path from s to t represent the best segmentation c∗.

4.3 Goal 3: Finding the best segmentation

Let P be the set of all paths in Gs from s to t. Then,

Lemma 1. Each path p ∈ P corresponds to a valid segmentation
c ∈ C and for each c ∈ C there is a path p ∈ P .

Proof 1. It is obvious based on construction of Gs.

Hence to get the best segmentation, we only need to define and
find the best path in Gs; which we discuss next.
Average longest path Note that defining the best path is a different
and independent question to that of defining edge weights. We
define the best segmentation as follows:

PROBLEM 3: FINDING THE BEST SEGMENTATION

Given: a segmentation graph Gs

Find: the average longest path from s to t in Gs i.e.

c∗ = arg max
c∈P

∑
si,j ,sj,k∈S

w(e(si,j , sj,k))

|c|
(3)

Thus, PROBLEM 3 is the Average-Longest Path (ALP) problem on
Gs (restricted to the path set P). ALP defines the path (segmen-
tation) quality as the average value of edge weights in the path
(distance between its segments). Note that ALP is parameter-free
and importantly, it also naturally balances the ‘length’ (weight) of
the path (difference between segments) with number of nodes in
the path (number of segments).

An alternative ‘parameter-free’ optimization would have been
the Longest Path (LP) problem: which will try to find the longest



6

(heaviest) path in P (Equation 3, without the denominator). How-
ever, the LP formulation will suffer from over-segmentation—it is
biased by the number of segments in the path, in the sense that
it tends to prefer longer paths with more nodes, irrespective of
the edge weights [15]. In practice our observations confirm that
LP contains unnecessary edges with low weight (see Sec 6). Our
ALP objective is intuitive and overcomes the disadvantage of LP.
Figure 3 shows the ALP for TOY EXAMPLE in red.

4.3.1 LAYERED-ALP

ALP can be solved in polynomial time on DAGs (recall Gs

is a DAG)2. Current state-of-the-art algorithm [15] can solve
PROBLEM 3 in O(V 2

s · Es). This is too slow for our purposes;
hence, we propose a new and more efficient O(Es) algorithm for
ALP on DAGs called LAYERED-ALP.

The main observation we use is that the ALP from s to t is the
longest (‘heaviest’) path among all paths with the same number
of nodes (the ‘length’) as the ALP. This fact leads us to calculate
all the heaviest paths with different lengths in P and find the one
which gives the maximum average edge weight. In LAYERED-
ALP (Algorithm 3) we build a queue of layers of Gs (lines 5 - 7).
Each layer i contains nodes which can reach t by i steps. When
we iterate through layers (lines 10 - 15), we maintain the weight
(Pi(v, t)) of the heaviest path from v to t in i steps, as well as the
next node of v in this path (κiv). If s is in layer i, it means there is a
path from s to t. We store the PCL(s, t) as the longest (‘heaviest’)
path with i nodes from s to t. After iterating over all layers, we
have a set of longest paths with various number of nodes. The
ALP is a path among this set which maximizes its weight divided
by its number of nodes. Algorithm 3 shows the pseudo-code of
LAYERED-ALP.

Lemma 2. The LAYERED-ALP algorithm correctly finds the
average longest path Gs.

Proof 2. Assume Pi(a, b) is a path from node a to b with i steps.
First we show that LAYERED-ALP finds all longest paths with
different lengths from P . The longest path problem in Gs has
optimal sub-structures because it is a DAG: If we decompose
the path Ph(s, t) into Ph−h′(s, v) and Ph′(v, t) where v is in
layer h′ in the Queue, and if Ph(s, t) is the longest path form
s to t with h steps, then Ph′(v, t) will be the longest path from
v to t with h′ steps. Second, ALP is a path in the set of longest
paths of different lengths. Assume not, which means there is
a path with the same number of nodes as one of the LPs and
higher weight which is a contradiction. �

Lemma 3. Time complexity of LAYERED-ALP is O(|Es|), where
|Es| is number of edges in Gs.

Proof 3. The time complexity of LAYERED-ALP is equal to
the number of edges visited in the algorithm which can be
calculated as follows:

2. ALP is NP-hard on general graphs

Layer 1: (T − 1) = (T − 1)

Layer 2: (T − 2) + (T − 3) + . . .+ 1 =
(T − 1)(T − 2)

2

Layer 3: (T − 3) + (T − 4) + . . .+ 1 =
(T − 2)(T − 3)

2

Layer 4: (T − 4) + . . .+ 1 =
(T − 3)(T − 4)

4
...

...
Layer T -1: 1 = 1

Therefore, the number of visited edges is,

(T − 1) +
(T − 1)(T − 2)

2
+

(T − 2)(T − 3)

2︸ ︷︷ ︸
(T−2)2

+

(T − 3)(T − 4)

2
+

(T − 4)(T − 5)

2︸ ︷︷ ︸
(T−4)2

+ . . .+ 1

= (T − 1) +

T
2∑

i=1

(T − 2i)2 = O(T 3) = O(|E|). �

4.4 Parallelization
Summarizing different Act-snapshots is an entirely independent
process for each Act-snapshot (Algorithm 2, line 1). Also, we can
extract the segments features and compute the edge weights of
the segmentation graph Gs independently (Algorithm 2 lines 2-3).
These observations motivates us to propose a parallel framework
for SNAPNETS to further scale it up. We divide this frameworks
into two steps: (1) Summarizing Act-snapshots, and extracting fea-
tures of each C-graph (2) Constructing the segmentation graph—
Constructing nodes, and computing edge weights. In the following
we explain each step in detail.

4.4.1 Get C-graphs and their features
If the Act-snapshots in the sequence are large, even the near-
linear time complexity of summarization (Algorithm 1) will be
expensive and time consuming. Therefore, we want to parallelize
this step in Section 4.1 to further scale up SNAPNETS. The
summarization process and extracting features of summary graphs
are independent for each Act-snapshot. Therefore, we consider
the following parallelization scheme to get C-graphs and their
feature vectors: Assume there are nop processors available. (1)
Assign T

nop snapshots of the AS-Sequence to each processor. (2)
In each processor, summarize Act-snapshots into C-graphs. (3)
In each processor, extract the features of C-graphs. Note that the
parallelization scheme needs no synchronization step which makes
it extremely efficient.

4.4.2 Generate the segmentation graph Gs

If the AS-Sequence is long and has many Act-snapshots, merely
using the parallelization suggested in Section 4.4.1 will not be
enough to get the best segmentation fast. Thus, we propose a
method to generate the segmentation graph Gs in parallel. We
consider the following parallelization scheme to generate Gs:
Assume that C-graphs features are global information, there are
nop processors available and S is the set of all possible segments.
(1) Assign |S|

nop segments to each processor. (2) Next, compute
the feature representative F̂ of each segment in each processor.
The F̂ of a segment si,j is the average vector of all the C-graphs
features that are in the segment si,j (4) Synchronize the results
and compute the edge weights of the segmentation graph Gs.



7

Algorithm 2: SNAPNETS
Data: AS-Sequence G
Result: The optimal segmentation c∗

1 For each Gi ∈ G coarsen and get Gci once (Section 4.1);
2 Compute feature F̂ vector of segments in S (Section 4.2);
3 Generate the segmentation graph Gs (Section 4.2);
4 c∗ = LAYERED-ALP (Gs, G, s, t ) (Section 4.3);

4.5 The complete algorithm
In summary SNAPNETS has four main steps:
(1) Summarize Act-snapshots in AS-Sequence.
(2) Extract features from summarized graphs (C-graphs).
(3) Construct the segmentation graph Gs and compute the distance
d(si,j , sj,k) between any adjacent segment based on their repre-
sentatives (F̂si,j and F̂sj,k ) in a parallel manner.
(4) Compute the best segmentation by finding the ALP.

Algorithm 2 shows the final pseudo code of SNAPNETS.
Lemma 4. SNAPNETS has sub-quadratic time complexity O(E ·

logE + E
nop + Es), where E is the total number of edges in

G and nop is number of processors.

Proof 4. In step 1 and 2, feature extraction is very fast due
to small size of the C-graphs compared with Act-snapshots.
Hence the computational cost comes from coarsening which
is O(E logE + E

nop ): O(E logE) to sort edges [10] and
O( E

nop ) for parallel coarsening. Step 3 and step 4 takeO(Es).
Generating the segmentation graph Gs is O(Es+Vs

nop ) and
finding the average longest path is O(Es) which is O(T 3).
In most large real world datasets (e.g. see [4]), the size of each
graph (orders of tens of thousands) is usually much higher
than the length of the sequence (order of 100s). Therefore,
in practice, O(Es) is not the bottleneck of SNAPNETS and
we can assume the last two steps take O(E). Total time
complexity is O(E · logE+ E

nop +Es). Note that it does not
change even if the size and structure of Act-snapshots change
in the AS-Sequence. �

Even though, the time complexity of step 3 and 4 step is
O(T 3) due to generating the Es and LAYERED-ALP, the compu-
tation is fast in practice (i.e., in order of seconds). Hence, it is not
the bottleneck of the SNAPNETS and taking the algorithm as a
whole SNAPNETS is scalable. The reason is in real-world graph
sequences T << E (i.e. T ∼ O(100) while E ∼ O(1e + 6)).
Hence, summarizing real-world graphs takes minutes or hours to
complete while generating the Gs and LAYERED-ALP take only
a few seconds.

5 EXTENDING TO DYNAMIC GRAPHS

SNAPNETS gives Cut-points which capture the change of pattern
in the AS-Sequence G. Even though we assumed the structure of
Act-snapshots in the AS-Sequence is fixed, we propose a procedure
to extend SNAPNETS to handle dynamic structures as well. In the
following we explain this procedure in detail.

5.1 Technical details
If the structures of Act-snapshots are dynamic (i.e. Act-snapshots
have various number of nodes and edges), summarizing them with
the same reduction factor gives C-graphs with different sizes.

Algorithm 3: LAYERED-ALP
Data: Gs, G, s, t
Result: Palp

1 Initialize Queue;
2 Layer0 = {t} and Queue.push(Layer0);
3 Layer1 = {si,j |j = T};
4 Queue.push(Layer1);
5 for k = 2 to T do
6 Layerk = {si,j |T − j + 1 ≥ k} ∪ {s}
7 Queue.push(Layerk);

8 LayerT+1 = s and Queue.push(LayerT+1);
9 LL = Queue.pop(), κ0t = ∅;

10 while Queue is not empty do
11 CL = Queue.pop() for si,j ∈ CL do
12 κCLsi,j = arg max

sj,k
PLL(sj,k, t) + w(e(si,j , sj,k));

13 PCL(si,j , t) = PLL(κCLsi,j , t) + w(e(si,j , κ
CL
si,j ));

14 If s is in CL then lpCL = PCL(s, t);
15 LL = CL;

16 ALP = arg max( lp11 , . . . ,
lpT
T );

17 Extract the Palp using κTs to κ0t ;

Therefore, the feature values (table 3) of C-graphs may be biased
by the size of Act-snapshots. Thus, we can not compare C-graphs
and compute distance between segments by simply comparing
their feature vectors. We want to find an efficient way to make the
C-graphs be in a same size and their feature vectors comparable.
Towards this goal, we need different compression ratios ρ for
each Act-snapshot: We summarize smaller graphs with smaller
reduction factor and larger ones with larger ρ. Algorithm 4 shows
how to compute the compression ratio of each Act-snapshot. First,
we find the minimum and maximum number of nodes in the G.
The largest Act-snapshot in the G is coarsened the most to have
the same size as the other Act-snapshots. The ‘if’ statement in line
2 of the algorithm, makes sure that the size of all C-graphs will
be the same. Finally, in lines 6 to 7 we set the ρi values to get the
number of desired nodes. More complicated methods to compute
the ρi of the dynamic graph snapshots may improve our results
but our approach is a simple and straightforward way to achieve
this goal, and the experiments show it works properly.
Lemma 5. Time complexity of Algorithm 4 to set the ρ values is

O(T ).

Proof 5. Finding the minimum and maximum number of nodes in
the G (line 1) takes O(T ). Also, the if statement (lines 2-5)
take O(1). Finally, the ‘for’ loop runs in O(T ). Therefore, in
overall the time complexity of Algorithm 4 is O(T ). �

In summary, to extend SNAPNETS and handle dynamic G, we
compute the ρ values (Algorithm 4) in the first step of SNAPNETS
and the rest will be the same as in Algorithm 2.

5.2 Sample application: Anomaly and event detection
An example application of the segmentation problem is to solve
the anomaly (and event) detection problem which is defined as
follows,
Given a sequence of graphs {G1, G2, . . . , GT }
Find a list R of time points in 1 ≤ i ≤ T , as anomalies. In the
above problem, nodes do not have labels and there is no restriction



8

Algorithm 4: SET-ρ
Data: G = {G1, G2, . . . , GT }
Result: ρ1, ρ2, . . . , ρT

1 Vmax = max |Vi|
i=1,...,T

, Vmin = min |Vi|
i=1,...,T

;

2 if 0.1 · Vmax ≤ Vmin then
3 Vgoal ← 0.1 · Vmax;

4 else
5 Vgoal ← Vmin;

6 for i = 1, 2, . . . , T do
7 ρi = 1− Vgoal

|Vi| ;

Algorithm 5: ANOMALY-SNAPNETS

Data: {G1, G2, . . . , GT }
Result: R

1 ρ1, ρ2, . . . , ρT =SET-ρ(G1, G2, . . . , GT );
2 For each Gi coarsen with ρi and get Gci in parallel;
3 Compute feature F̂ vector of segments in S in parallel;
4 Generate the segmentation graph Gs;
5 c∗ = Parallel-LAYERED-ALP (Gs, G, s, t );

on the structure of the graphs in the sequence. As a consequence,
graph size may change over time. We build the following frame-
work to solve the same problem using SNAPNETS:

(1) Summarize Act-snapshots. The size of Act-snapshots
can be different. Hence, as we explained in Section 5 we
compute the compression ratio of each graph according to
Algorithm 4. Next, we summarize each graph, assuming all
nodes have the same label, to get C-graphs with the same
size.
(2) Find c∗ as R. We follow the same procedure as SNAP-
NETS to find c∗ as R.

Algorithm 5 indicates the anomaly detection algorithm using
SNAPNETS.
Justification: The detected Cut-points by SNAPNETS is an ac-
curate solution because SNAPNETS detects important time points
in the AS-Sequence where the structure of graphs change which in
turn can be considered as anomalies (or important events).

6 EXPERIMENTS

We design various experiments to evaluate SNAPNETS. We
implemented SNAPNETS in Python. Our experiments were con-
ducted on a 4 Xeon E7-4850 CPU with 512GB of 1066Mhz
main memory and we released our code and datasets for research
purposes3.

6.1 Setup

We design experiments to answer the following questions:
Q1. Is the coarsened graph a good summary for our segmentation

problem?
Q2. How is the quality of our feature set?
Q3. What is the difference between ALP and other path optimiza-

tion algorithms?

3. http://github.com/SorourAmiri/SnapNETS

Q4. What are the segmentations found by SNAPNETS? Do they
discover useful and interesting patterns?

Q5. Can ANOMALY-SNAPNETS find important events and
anomalies in dynamic graph sequences?

Q6. Is SNAPNETS scalable to run on real large datasets?

6.2 Datasets
For our experiments, we collected a number of real-world and
synthetic datasets from various domains such as social and news
media, epidemiology, autonomous system, and co-authorship net-
work to evaluate SNAPNETS. See Table 4 for a summary descrip-
tion.

The ground truth segmentations in these datasets are non-
trivial. They are induced from complex structural changes such
as activation in different parts of the Act-snapshots (AS Oregon
and Higgs), and varying role of active nodes e.g. change of
active nodes centrality (BA-degree), or activation rate changes
(Portland). Moreover, detecting the number of correct cut points
is also a difficult task itself. In datasets without ground truth, we
would like to find how memes/news were adopted by social media
users (IranElect and Memetracker) and when the co-authorship
relation on a specific topic changes over time (DBLP).

Dataset #Nodes #Edges Timesteps GT
BA-degree 500 4,900 240 units X
AS-PA 633 1,086 400 units X
AS-COM 4431 7,609 530 units X
AS-MIX 1899 3261 1000 units X
Higgs 456,626 14,855,843 7 days X
Portland 1,575,861 19,481,626 25 days X
Memetracker 960 5,001 165 days
IranElect 126,915 5,589,083 30 days
DBLP 369,855 1,109,452 13 years
WorldCup 140,336 674,077 30 days X
Security 308,499 1,182,021 90 days X
EnronInc. 82,797 349,780 111 weeks X

Table 4: Datasets details. (GT == Ground Truth)

(1) BA-degree. We activate highest degree and then lowest
degree nodes on a random Barabasi Albert graph [16].

(2) AS Oregon contains an Autonomous Systems (AS) peering
information network collected from the Oregon router views4.
We generate three simulations: AS Oregon-PA, AS Oregon-COM
and AS Oregon-MIX.: (a) AS-PA: First we activate nodes with
Preferential Aattachment process and then uniformly randomly.
In the next two simulations, we created three copies of AS Oregon
and connected them with bridge edges. We assume each copy is
a community in the combined graph. (b) AS-COM: we connect
7 copies of the original network and combine them into a large
network with 7 communities. We start activating 3 communities
at different times with the same PA activation process. (c) AS-
MIX: It is a combination of the above two. Each community gets
activated at different time, and the activation in each community
has two stages with different patterns (i. e. PA and random stages).

(3) Higgs [17] is a related tweets dataset (with the follower-
followee network) when the Higgs particle was discovered. Be-
tween 1st and 7th July 2012 several announcements were made
about the discovery of the Higgs particle. Nodes of the graph (i.e.
twitter users) are active when they participate in related activities

4. http://topology.eecs.umich.edu/data.html



9

(e.g. retweeting, replying). The ground truth cut is the official
release date of the discovery.

(4) Portland. has a contact network among a synthetic pop-
ulation of Portland, and this dataset has been used in national
smallpox modeling studies [18]. We simulate a chain shape
diffusion and then a star shape one in a synthetic contact network
of Portland5.

(5) IranElect contains the tweets and the follower-followee
network of Twitter [19], during the 2009 Iran election. Users are
the nodes of the network and they are active if they post a related
tweet. We want to find how the news were adopted by twitter
users.

(6) DBLP is a co-authorship network [20] related to the topic
“network”. Authors are nodes, and edges show the co-authorship
relations. An author is active if she co-authors a related paper with
”network” or its derivations in its title. We want to find how the
co-authorship of this topic develops over time.

(7) Memetracker. It is the who-copies-from-whom blog and
website network [21]. We consider a blog/website as active if it
adopts the phrase ‘hey can I call you joe’. We want to find how
the adoption pattern changes.

To evaluate ANOMALY-SNAPNETS we collect three real world
temporal graph datasets. The ground truth events of all datasets are
available 6.

(1) WorldCup It is the World Cup twitter dataset (Jun 12
- Jul 13, 2014). Nodes represent entities (i.e. URLs, hashtags,
mentions) and edges show the co-mention relation [22].

(2) Security It is a twitter data of four months (May 2 - August
1, 2014) related to the security and terrorism. Nodes represent
entities (i.e. URLs, hashtags, mentions) and edges show the co-
mention relation [22].

(3)EnronInc. It is the Enron email communication network
from Jan 2000 to March 2002. Nodes represent email addresses
and edges shows the sent/received relations [22].

6.3 Baselines
To the best of our knowledge, there is no existing algorithm
which has all the desired properties (Section 3.2). Hence, we adapt
three alternative approaches that we also mentioned in Section 3.1
as baselines: time series, clustering, and graph summarization
algorithms.

(1) DYNAMMO uses the spike of reconstruction errors to find
change points in time series [1]. It has also been used in other time
series problems [23]. We adapt it for our problem: Extract features
in Table. 3 for each Act-snapshot. Then, use these features to form
a time series and feed DYNAMMO to get the segmentation. The
algorithm requires number of cut points as an input and we set it
to the one SNAPNETS finds.

(2) K-MEANS finds segmentations based on an online “local”
approach [2]. We make the same time series as in DYNAMMO, and
feed it to K-MEANS. We report a new segment when a new cluster
is detected. We consider it as the emergence of a new pattern and
include the corresponding cut point in our final segmentation.

(3) VOG finds succinct descriptions of graphs in terms of
common substructures [5], [4]. It does not work on labeled graphs.
Hence, we extract active sub-graph of Act-snapshots and use
VOG to find the 10 most important sub-structures. We output
a segment if this set of sub-structure changes sufficiently (i.e is

5. http://ndssl.vbi.vt.edu/synthetic-data/
6. http://shebuti.com/SelectiveAnomalyEnsemble/

(a)

1.0 0.9 0.7 0.5 0.3 0.1 0.05 0.01
0

0.5

1

1.5

2

2.5

3

3.5

ρ

λ

(b)

Figure 4: (a) C-graphs capture patterns that are not captured
by the original graphs. (b) λ vs ρ shows 0.1 is the smallest ρ
which maintains λ.

above a threshold which is set to be the one which gives the
best results). Also, we use VOG as a baseline to evaluate the
ANOMALY-SNAPNETS. In this case, the input of VOG is each
snapshot of the temporal graphs.

(4) SELECT is an ensemble approach for anomaly mining. It
leverage novel techniques to rank anomalies in temporal graphs.
We take top k = 5 events as the detected anomalies and compere
its result with ANOMALY-SNAPNETS.
Variations: Besides the above baselines, we design the following
variations to test the functionality of each SNAPNETS’s compo-
nent. These variations are different from SNAPNETS only in one
step.
(1) SN-ORIG extracts features from Act-snapshots and use the
same Gs and ALP optimization to get the segmentation.
(2) SN-LP finds the Longest Path instead of ALP.
(3) SN-GREEDY greedily selects edges with the largest weight
from s to t, instead of ALP.
Metrics. For datasets with ground truth, we measure the per-
formance by calculating the F1 score and precision of the set
of detected cut-points with the ground-truth set (using the same
methodology as [23]). For others, we perform case studies. We
show how SNAPNETS reveals interesting patterns by matching
the results with external news/events, and show how they are easily
interpretable.

6.4 Q1: Usefulness of C-graphs
We compare the performance of SNAPNETS with SN-ORIG

to show the effectiveness of our summarization. See Table 5,
SNAPNETS outperforms SN-ORIG: In most datasets SNAPNETS
discovers the correct cut points (F1 score = 1), while SN-
ORIG misses them. Hence clearly the C-graphs lead to better
segmentation than the original Act-snapshots. Also, the C-graphs
not only maintain the same pattern of the original Act-snapshots,
but also discover important new patterns and help interpretation
via the much simpler graph structure. For example, see figure
4a: the C-graphs of AS-COM (bottom row) capture clearly the
pattern: first one community gets active, then two communities
are active after the ground truth cut point 200. This pattern is
hardly observable in the original Act-snapshots (top row).

Also, we evaluate the largest eigenvalue of summary graphs of
the Memetracker dataset with various compression ratio to show
the effect of ρ on λ. Figure 4b, confirms our intuition behind
selecting the ρ value in section 4.1 that 0.1 is a desired value for
ρ: It is the smallest ρ which does not change the largest eigenvalue
of the graph much.



10

6.5 Q2: Quality of feature set
Here we show that the current feature set F we use is of high
quality. We did the ablation test [24] to study the impact of
each feature in the feature set F. First we run SNAPNETS with
the complete F, we then remove one feature at a time from F
to see the change of performance. In addition, we compute the
correlation between each pair of features in F.

The ablation test on the datasets with ground truth shows
an average F1 decrease of 0.2 (See Figure 5a). We also tried
the same test on datasets without ground truth, and we observe
unreasonable performance when we remove one of the features.
For example, removing any of f2, f5, f6 would lead to over-
segmenting in DBLP; removing f3 leads to an unreasonable cut
point at the end of the sequence in IranElect. These results indicate
the importance of each feature in F. In addition, Figure 5b shows
the correlation between pairs of features in F in all datasets (i.e.
with or without ground-truth). It shows that most of the pairs has
near zero correlation in at least one dataset and there is no pair
with more than 0.5 correlation and on average the correlation is
0.17. These results show the high quality of F.

0

0.2

0.4

0.6

0.8

1

ALL f1 f2 f3 f4 f5 f6 f7 f8

Av
er

ag
e 

F1
 s

co
re

(a)

 

 

f1 f2 f3 f4 f5 f6 f7 f8

f1

f2

f3

f4

f5

f6

f7

f8
  0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 5: (a) The ablation test. (b)The correlation between
features among all datasets. Darker color means less correla-
tion.

6.6 Q3: Finding the best path
Here, we evaluate the quality of ALP by comparing it to SN-
LP and SN-GREEDY. See Table 5: SNAPNETS is much better
than SN-LP and SN-GREEDY in all the datasets. We also check
the number of segments found by SN-LP. As we expected
(Section 4.3), it leads to over-segmentation. For example, in
Memetracker and IranElect SN-LP detects cut point at every
snapshot, whereas SNAPNETS gets the right answer every time.

6.7 Q4: Segmentation Results
Here we show the quality of the final segmentations found by
SNAPNETS.

6.7.1 Quantitative analysis
We see in Table 5 that SNAPNETS has the best performance
among baselines and variations of SNAPNETS. Note that all
the baselines require some input parameters: such as the number
of cut points (DYNAMMO), threshold for new cluster creation
(K-MEANS), and difference threshold for outputting a cut point
(VOG). We test a wide range of these input values and pick the
ones that give the best results. Still, their performance is clearly
worse.
BA-degree: SNAPNETS detects the ground truth segmentation
while three other baselines do not perform as well. , when the

activation starts to target low degree nodes instead of high degree
nodes. As shown in Table 5, the F1 score of SNAPNETS is 1. In
comparison, the three other baselines do not correctly find the cut
points where the pattern changes.
AS Oregon: SNAPNETS performs very well to differentiate
between random and preferential attachment style activation (AS-
PA) and we can accurately detect when different communities
of the network get active (AS-COM and AS-MIX). Figure 6a
visualizes the C-graphs in the c∗, and shows that our results
are easily interpretable. In AS-PA dataset, SNAPNETS finds the
ground truth cut point (F1 score = 1). In the more complicated
AS-COM and AS-MIX, it also does very well, getting F1 score of
0.67, 0.86 respectively. SNAPNETS also aids in interpretation:
we visualize the AS-MIX segmentation in Figure 6a. We see
clearly that the C-graph in the segment 2 captures the fact that
there are two communities activated. As we activate more nodes
in bridge, the active nodes in the two communities are merged
to one node in the C-graph (segment 3). And finally when the
third community gets activated, the C-graph again captures it
as a new community (segment 4). The corresponding feature
values of C-graphs also correctly reflect these changes (while
the features from original graphs do not). Note that although the
active subgraphs are similar in segments 1 and 3, and segments 2
and 4, the segments are actually different if we look at the whole
graph including the inactive nodes (this difference is also seen
in the feature values). These results show that SNAPNETS can
detect non-trivial changes, including node-level, process-level or
community-level changes.
Higgs: SNAPNETS finds the exact ground truth Jul. 4 (F1 = 1).
Note that according to external news, there were rumors about
the Higgs boson discovery from Jul. 2-4, these rumors make
the ground truth harder to detect (for example VOG finds a cut
point on Jul. 2 instead of Jul. 4). Further in the first segment,
C-graphs have multiple near-clique structures of active nodes
(f1 ' 0.9, f5 = 0.2) which demonstrates the existence of a
rumor in the network (multiple small groups adopt the news).
In comparison in the second segment, C-graphs become chain-
like with many active nodes (f1 ' 0.02, f5 = 0.9). It suggests
that many communities adopt the news (with nodes in the same
community merged), and few bridge (inactive) nodes connect
different communities, matching our expectation since the official
announcement is evidently more influential.
Portland: SNAPNETS again detects the ground truth segments
(F1 = 1). Other baselines have worse performance except VOG
and DYNAMMO since the change of the infection pattern in
this dataset is visible in the active subgraphs: an infected chain
first, and then many infected stars (as the disease goes viral).
SNAPNETS shows its power in finding the pattern change in
disease propagation.

6.7.2 Case studies
SNAPNETS finds meaningful segments in multiple datasets from
various domains with varied patterns of evolution (both struc-
turally and in labels) while none of the baselines perform as
well (for example, VOG finds no cut-point in DBLP, K-MEANS

essentially gives one at the end, and DYNAMMO finds no cut-point
in Memetracker).
Memetracker: SNAPNETS finds a cut point on Oct 01, 2008,
which matches the date of the televised debate between Joe Biden
and Sarah Palin. In the first segment, C-graphs (Figure 6c) are
close to the case when all nodes have the same label—suggesting



11

(a) Visualization of C-graphs in the segmentation for AS Oregon-MIX.

Feature Seg. 1 Seg. 2 Seg. 3 Seg. 4
f1 0.32 0.28 0.90 0.76
f2 0.12 0.36 0.57 0.77
f3 0.50 0.65 0.83 0.87
f4 0 0 0 0
f5 0 1 0 1
f6 0.91 0 1 0
f7 0.26 0.14 0.87 0.42
f8 0 0 0 0

(b) The average feature values in each segment
for AS Oregon-MIX.

(c) Visualization of C-graphs in the segmentation for Memetracker.

Feature Seg. 1 Seg. 2
f1 0.93 0.06
f2 0.97 0.02
f3 0.09 0.97
f4 0.12 0.87
f5 0.10 0.95
f6 0.22 0.91
f7 0.45 0.76
f8 0.20 0.95

(d) The average feature values in each
segment for Memetracker.

C
-g

ra
ph

s

Jun 13 Jun 14 Jun 26 Jun 27

(e) Visualization of C-graphs in the segmentation for IranElect.

Feature Seg. 1 Seg. 2 Seg. 3
f1 0.79 0.11 0.85
f2 0.56 0.04 0.81
f3 0.11 0.73 0.047
f4 0.92 0.14 0.82
f5 0.05 0.33 0.92
f6 0.19 0.70 0.01
f7 0.69 0.06 0.63
f8 0.21 0.20 0.89

(f) The average feature values in each
segment for IranElect.

Figure 6: Interpretation of the segmentation results found by SNAPNETS. (a), (c), (e) show the C-graphs for the segmentations
found for AS Oregon-MIX, Memetracker, and IranElect. The vertical lines are the detected cut points. Black nodes are active
and gray ones are inactive. (b), (d), and (f) show the average feature values in each of the segment for AS Oregon-MIX,
Memetracker, and IranElect.

Data w. GT F1 score
SNAPNETS SN-ORIG SN-LP SN-GREEDY DYNAMMO K-MEANS VOG

BA-degree 1 1 0.08 1 0 0.4 0.67
AS-PA 1 0 0.05 0.67 0 0.4 1
AS-COM 0.67 0 0.07 0.5 0.5 0.22 0
AS-MIX 0.86 0 0.07 0.57 0.32 0.4 0
Higgs 1 0 0.15 1 0 0.67 0
Portland 1 0 0.4 1 1 0.67 1

Table 5: F1 score of the segmentation detected by SNAPNETS, variations, and baselines on datasets with ground truth.
SNAPNETS has the best performance among all competitors.

that few nodes randomly got infected (f5 ' 0.1, f8 ' 0.2).
Few active nodes in the first segment of Figure 6c confirms this
fact and its because the meme is not viral yet. In the second
segment, C-graphs are substantially sparser (i.e. f2 dramatically
dropped to 0.02) and contain large stars and leaf nodes with active
centers. The size of the centers in the second segment of Figure 6c
and average PageRank (f6) in the C-graphs shows that important
nodes such as “CNN” and “BBC” websites spread the meme to
many nodes, and they are merged to form hubs.
IranElect: We detect two cut points at Jun. 14 (presidential elec-
tion) and Jun. 27 (vote recount). In the first segment (Figure 6e),
when the election did not get much attention, multiple small near-
clique structures (high f1 ' 0.8 and low f2 ' 0.5) of C-graphs

shows small and highly connected groups of political activists
were active. In the second segment, important nodes (e.g. news
media such as “NYtimes”) in different areas of the graph reported
possible collusion in counting votes and they became active and
formed multiple large stars of active nodes in C-graphs (low
f1 ' 0.1 and high f6 ' 0.7). Finally, after the vote recount and
news reports more people became interested and tweeted about the
election. Hence, C-graphs became densely connected (f1 ' 0.85,
f2 ' 0.8) because the remaining hub and bridge nodes became
active and merged, while a few small/sparse subgraphs remained
inactive.
DBLP: We detect a cut point in the year 1997, which matches
the publication time of the ground-breaking papers in network



12

science [25], [26], [18], [16]. In the first segment, C-graphs are
relatively connected, and few less-central nodes are active (f1 =
0.7, f5 = 0.03, f6 = 0.2) which indicate the “network” topic
did not get much attention. In the second segment, the number of
active nodes in C-graphs increases dramatically, and significant
nodes with high degree are among the active ones (f5 = 0.6,
f6 = 0.8, f7 = 0.83); which suggests influential people became
interested in “network” and made it into a “hot topic”—high f8 =
0.9 also confirms this fact that many nodes got active since one
high degree neighbor of them is active.

6.8 Q5: Anomaly detection: Another application

We measure the quality (precision) of the segmentation by
ANOMALY-SNAPNETS baseline in three real-world datasets to
evaluate its performance in detecting anomalies and important
events. Table 6 shows that ANOMALY-SNAPNETS has the best
performance compared to baselines. Note that SELECT is specif-
ically designed for anomaly detection and VOG needs a threshold
as an input (Also, VOG did not finish and ran out of memory
in two cases). However, we detect the anomaly automatically
without any preset parameter or user interaction, showcasing
SNAPNETS’s usefulness.
WorldCup ANOMALY-SNAPNETS detects Jun 16, July 7 and July
10 as cut-points. Jun 16 is the match between Germany and
Portugal, one of the most important games in group matches
according to the ground truth. The July 7 and 10 cut-points
distinguish the semi-final games and the final game.
Security ANOMALY-SNAPNETS accurately finds the important
events at Jun 11 and July 29, 2014. Jun 11, 2014, matches the date
when large regions of Iraq was seized by Iraqi militants and the
attack of ‘Boko Haram’ in Nigeria and the following kidnapping
of schoolgirls took place. July 29, 2014, matches the date of Ebola
virus outbreak in Liberia.
EnronInc. We detect a cut point on Oct. 15 which matches
the major anomaly when the Enron company announced a third-
quarter loss. This is also recognized in SELECT [22] as a major
anomaly.

Dataset ANOMALY-SNAPNETS VOG SELECT
WorldCup 1 0 1
Security 1 - 0.8
EnronInc. 1 × 0.8

Table 6: The precision of detected anomalies by ANOMALY-
SNAPNETS and other baselines. ‘-’ means the method ran out
of memory and ‘×’ means it did not finish after 4 days.

6.9 Q6: Scalability

Each step of SNAPNETS is carefully designed to be memory
efficient and sub-quadratic or near linear with respect to the size
of data. We extract subgraphs with different sizes from DBLP
(up to 10M edges), then we run SNAPNETS on them. Figure 7a
shows that as expected SNAPNETS scales near-linearly with
respect to the number of edges in the sequence. The running time
of SNAPNETS shown in Figure 7a is reasonable and practical,
especially considering that dynamic graph analysis are typically
time consuming. For example, [4] takes more than 100 hours to
run on a dataset with size 10M while SNAPNETS takes less than
an hour (i.e. it is ∼ 10 times faster).

Also, we evaluate the scalability of generating Gs and
LAYERED-ALP in Figure 7b. We generate a series of G of DBLP
data with various lengths (up to 2000 snapshots), then we run
SNAPNETS on them. Figure 7b confirms that generating Gs and
LAYERED-ALP are not the bottleneck of SNAPNETS. Also, it
shows that our algorithm is much faster than the state-of-the-art
algorithms.

Figure 7c shows the excellent speedup (∼ 9X faster using 10
processors) we get after parallelizing the Act-snapshots summa-
rization and feature extraction. Also, Figure 7d shows the speedup
of making the segmentation graph in parallel (∼ 8X using 10
processors). In summary, SNAPNETS makes it possible to process
a large network sequences with many snapshots.

7 RELATED WORK

We briefly discuss some more related work (besides the most
closely related ones in Sec. 3.1) in Time series and Dynamic graph
analysis. Broadly speaking, unlike these methods, we maintain
both the structural and label dependent properties of a graph.
Time series analysis: The research community has made great
efforts in developing algorithms for different problems on time
series data. These include algorithms for mining multivariate time
series [27], summarizing time series with missing values [1], a
generative analysis of time series [28], and many others. Among
them, there is also much work about time series segmentation [29],
[30], [31], rule and dimension discovery [32], [33], and other
specialized algorithms like motion capture sequences mining [23].

However, our problem is fundamentally different because we
deal with sequences of Act-snapshot. And converting graphs (even
without labels) to multivariate feature values while preserving the
desired patterns is already a nontrivial task [34], [35]. Hence time
series segmentation algorithms cannot be easily applied for our
problem to get meaningful segmentations.
Graph summary and sparsification: It aims to find compact
representations of graphs which maintain desired properties. The
properties can be defined based on specific user queries [36],
action logs [12], weights of nodes and edges [7], the drop of
the leading eigenvalue [10], or more generally the encoding
cost [37]. These algorithms help reducing the processing cost
of large graphs, and maintain (sometimes amplify) the patterns.
Unlike these methods our algorithm maintains the structural as
well as label dependent properties of a graph.
Dynamic graph analysis: As many natural networks evolve, this
area is gaining much interest because of the evolutionary nature of
many networks we see nowadays (see [38] for an overview). Many
traditional machine learning tasks on static graphs have been ex-
tended to dynamic ones, such as the clustering problem [39], [40],
classification problem [41], [42], link prediction [43], anomaly
detection [11], trend mining [44]. There is also work finding time
cut points according to the change of patterns in the dynamic
graph. For plain dynamic graphs, [6], [45], [46], [47] detect the
cut points when communities/partitions change suddenly, Ferlez
et al. [6] use MDL principle to detect the cut points when
communities in the evolving network change abruptly. Sun et
al. [45] use MDL principles to find partition and segmentation
of graph streams. Araujo et al. [48] use tensor decomposition
with MDL to discover temporal communities in dynamic graphs.
Their work is community-based while in our problem, we study
the patterns in a more general way which is not restricted to
communities or clusters.



13

0 2 4 6 8 10 12
x 10

6

0

500

1000

1500

2000

2500

Number of Edges (size of data)

R
un

ni
ng

 ti
m

e 
(s

ec
)

 

 

SnapNETS
Y = (2.5e−4)X − 240

(a) Scalability W.R.T the size of G

0 500 1000 1500 2000

0

5

10

15

20

25

Length of data

R
un

ni
ng

 ti
m

e 
(h

r)

 

 

SnapNETS

Y = (1e−5)X3 −(1e−3)x2+0.5x − 24

(b) Scalability W.R.T length of G

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

Number of Processors

S
pe

ed
up

 

 

Experimental
Ideal

(c) Parallel summarization speedup.

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

Number of Processors

S
pe

ed
up

 

 

Experimental
Ideal

(d) Parallel Gs speedup.

Figure 7: (a) and (b) shows the scalability of SNAPNETS with respect to the size and length of the G. (c) and (b) show the
speedup by parallelizing summarizing Act-snapshots and constructing Gs.

In contrast, we study the patterns in a more general way taking
labels, not restricted to communities or clusters.

8 DISCUSSION AND CONCLUSIONS

We presented SNAPNETS, an intuitive and effective method to
segment AS-Sequences with binary node labels and extended it to
work with dynamic graph sequences as well. It is the first method
to satisfy all the desired properties P1, P2, P3. It efficiently
finds high-quality segmentations, detects anomalies and events and
gives useful insights in diverse complex datasets. Also, we propose
ANOMALY-SNAPNETS as an expansion of SNAPNETS to detect
anomalies and important events in dynamic graph sequences.
Finally we parallelize SNAPNETS and ANOMALY-SNAPNETS to
accelerate the computations.
Patterns it finds: In short, SNAPNETS finds segmentations where
adjacent segments have different characteristics of nodes with the
same label i.e. the ‘placement’ and ‘connection’ of active/inactive
nodes are different. This includes both structural (e.g. commu-
nity/role/centrality) and rate changes. As a non-trivial example, we
can detect both a random-vs-targeted activation and a faster-vs-
slower one. Also, ANOMALY-SNAPNETS detects segments with
different structural characteristics such as the density, the growing
speed of the network, etc.
Global method: It is useful to note that SNAPNETS is a ‘global’
method and not simply a change-point detection method. We
are not just looking for local changes; rather we track the ‘total
variation’ using Gs. Hence this allows to find important cut-points
automatically and without any specification (which is useful for
anomaly detection as well).
Flexibility: The SNAPNETS framework is very flexible, as our
formulations are very general. Thanks to our careful design
we easily expand our method to handle dynamic graphs with
varying nodes and edges and propose ANOMALY-SNAPNETS.
The eigenvalue characterization is general; similarly, the Gs-ALP
formulation should be also useful for other segmentation-like
problems; and LAYERED-ALP can be of independent interest too.
Future work: Parallelizing LAYERED-ALP and extending our
work to streaming graphs, and handling more general node/edge
level features and partially observed graphs will be interesting.
Also, analyzing the effect of using different compression ratio in
ANOMALY-SNAPNETS is an interesting future work.
Acknowledgments. This paper is based on work partially sup-
ported by the National Science Foundation (IIS-1353346), the
National Endowment for the Humanities (HG-229283-15), ORNL
(Task Order 4000143330) and from the Maryland Procurement
Office (H98230-14-C-0127), and a Facebook faculty gift. Any
opinions, findings and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily
reflect the views of the respective funding agencies.

REFERENCES

[1] L. Li, J. McCann, N. S. Pollard, and C. Faloutsos, “Dynammo: Mining
and summarization of coevolving sequences with missing values,” in
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2009, pp. 507–516.

[2] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[3] K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li,
K. Maruhashi, B. A. Prakash, and H. Tong, “Metric forensics: a multi-
level approach for mining volatile graphs,” in Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 2010, pp. 163–172.

[4] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos, “Timecrunch:
Interpretable dynamic graph summarization,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2015, pp. 1055–1064.

[5] S. Shih, “Vog: summarizing and understanding large graphs.” SIAM,
2014.

[6] J. Ferlez, C. Faloutsos, J. Leskovec, D. Mladenic, and M. Grobelnik,
“Monitoring network evolution using mdl,” in 2008 IEEE 24th Interna-
tional Conference on Data Engineering. IEEE, 2008, pp. 1328–1330.

[7] Q. Qu, S. Liu, C. S. Jensen, F. Zhu, and C. Faloutsos, “Interestingness-
driven diffusion process summarization in dynamic networks,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2014, pp. 597–613.

[8] R. M. Anderson, R. M. May, and B. Anderson, Infectious diseases of
humans: dynamics and control. Wiley Online Library, 1992.

[9] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2003, pp. 137–146.

[10] M. Purohit, B. A. Prakash, C. Kang, Y. Zhang, and V. Subrahmanian,
“Fast influence-based coarsening for large networks,” in Proceedings
of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2014, pp. 1296–1305.

[11] K. Henderson, T. Eliassi-Rad, C. Faloutsos, L. Akoglu, L. Li,
K. Maruhashi, B. A. Prakash, and H. Tong, “Metric forensics: a multi-
level approach for mining volatile graphs,” in KDD, 2010.

[12] M. Mathioudakis, F. Bonchi, C. Castillo, A. Gionis, and A. Ukkonen,
“Sparsification of influence networks,” in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2011, pp. 529–537.

[13] B. A. Prakash, D. Chakrabarti, N. C. Valler, M. Faloutsos, and C. Falout-
sos, “Threshold conditions for arbitrary cascade models on arbitrary
networks,” Knowledge and information systems, vol. 33, no. 3, pp. 549–
575, 2012.

[14] G. Li, M. Semerci, B. Yener, and M. J. Zaki, “Effective graph classifi-
cation based on topological and label attributes,” Statistical Analysis and
Data Mining, vol. 5, no. 4, pp. 265–283, 2012.

[15] D. Salvi, J. Zhou, J. Waggoner, and S. Wang, “Handwritten text segmen-
tation using average longest path algorithm,” in Applications of Computer
Vision (WACV), 2013 IEEE Workshop on. IEEE, 2013, pp. 505–512.

[16] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[17] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi, “The anatomy
of a scientific rumor,” Scientific reports, vol. 3, 2013.



14

[18] S. Eubank, H. Guclu, V. A. Kumar, M. V. Marathe, A. Srinivasan,
Z. Toroczkai, and N. Wang, “Modelling disease outbreaks in realistic
urban social networks,” Nature, vol. 429, no. 6988, pp. 180–184, 2004.

[19] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 591–600.

[20] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila, “Finding effectors in
social networks,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2010, pp.
1059–1068.

[21] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the
dynamics of the news cycle,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2009, pp. 497–506.

[22] S. Rayana and L. Akoglu, “Less is more: Building selective anomaly
ensembles with application to event detection in temporal graphs,”
SDM15, vol. 17, 2015.

[23] Y. Matsubara, Y. Sakurai, and C. Faloutsos, “Autoplait: Automatic
mining of co-evolving time sequences,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, 2014,
pp. 193–204.

[24] S. Sundereisan, A. Bhadriraju, M. S. Khan, N. Ramakrishnan, and
B. A. Prakash, “Sanstext: Classifying temporal topic dynamics of twitter
cascades without tweet text,” in Advances in Social Networks Analysis
and Mining (ASONAM), 2014 IEEE/ACM International Conference on.
IEEE, 2014, pp. 649–656.

[25] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[26] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in ACM SIGCOMM computer communi-
cation review, vol. 29, no. 4. ACM, 1999, pp. 251–262.

[27] I. Batal, D. Fradkin, J. Harrison, F. Moerchen, and M. Hauskrecht,
“Mining recent temporal patterns for event detection in multivariate time
series data,” in Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2012, pp.
280–288.

[28] P. Wang, H. Wang, and W. Wang, “Finding semantics in time series,”
in Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data. ACM, 2011, pp. 385–396.

[29] A. Samé and G. Govaert, “Online time series segmentation using tempo-
ral mixture models and bayesian model selection,” vol. 1, pp. 602–605,
2012.

[30] X. C. Chen, K. Steinhaeuser, S. Boriah, S. Chatterjee, and V. Kumar,
“Contextual time series change detection.” in SDM. SIAM, 2013, pp.
503–511.

[31] M. Mendoza, B. Poblete, F. Bravo-Marquez, and D. Gayo-Avello,
“Long-memory time series ensembles for concept shift detection,” in
Proceedings of the 2nd International Workshop on Big Data, Streams
and Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications. ACM, 2013, pp. 23–30.

[32] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E. Keogh,
“Discovering the intrinsic cardinality and dimensionality of time series
using mdl,” in 2011 IEEE 11th International Conference on Data Mining.
IEEE, 2011, pp. 1086–1091.

[33] M. Shokoohi-Yekta, Y. Chen, B. Campana, B. Hu, J. Zakaria, and
E. Keogh, “Discovery of meaningful rules in time series,” in Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2015, pp. 1085–1094.

[34] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “D elta c on: A principled
massive-graph similarity function,” in Proceedings of the SIAM Interna-
tional Conference in Data Mining. Society for Industrial and Applied
Mathematics. SIAM, 2013, pp. 162–170.

[35] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similar-
ity for anomaly detection,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 19–30, 2010.

[36] W. Fan, J. Li, X. Wang, and Y. Wu, “Query preserving graph com-
pression,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data. ACM, 2012, pp. 157–168.

[37] W. Liu, A. Kan, J. Chan, J. Bailey, C. Leckie, J. Pei, and R. Kotagiri,
“On compressing weighted time-evolving graphs,” in Proceedings of
the 21st ACM international conference on Information and knowledge
management. ACM, 2012, pp. 2319–2322.

[38] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A survey,”
ACM Computing Surveys (CSUR), vol. 47, no. 1, p. 10, 2014.

[39] M.-S. Kim and J. Han, “A particle-and-density based evolutionary
clustering method for dynamic networks,” Proceedings of the VLDB
Endowment, vol. 2, no. 1, pp. 622–633, 2009.

[40] M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun, “Evolutionary clustering
and analysis of bibliographic networks,” in Advances in Social Networks
Analysis and Mining (ASONAM), 2011 International Conference on.
IEEE, 2011, pp. 63–70.

[41] C. C. Aggarwal and N. Li, “On node classification in dynamic content-
based networks.” in SDM. SIAM, 2011, pp. 355–366.

[42] İ. Güneş, Z. Çataltepe, and Ş. Gündüz-Öğüdücü, “Ga-tvrc-het: genetic
algorithm enhanced time varying relational classifier for evolving het-
erogeneous networks,” Data Mining and Knowledge Discovery, vol. 28,
no. 3, pp. 670–701, 2014.

[43] P. Sarkar, D. Chakrabarti, and M. Jordan, “Nonparametric link prediction
in dynamic networks,” 2012.

[44] E. Desmier, M. Plantevit, C. Robardet, and J.-F. Boulicaut, “Trend mining
in dynamic attributed graphs,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 2013, pp. 654–669.

[45] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, “Graphscope:
parameter-free mining of large time-evolving graphs,” in Proceedings
of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2007, pp. 687–696.

[46] C. C. Aggarwal and S. Y. Philip, “Online analysis of community
evolution in data streams.” in SDM. SIAM, 2005, pp. 56–67.

[47] K. S. Xu, M. Kliger, and A. O. Hero III, “Tracking communities
in dynamic social networks,” in International Conference on Social
Computing, Behavioral-Cultural Modeling, and Prediction. Springer,
2011, pp. 219–226.

[48] M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu,
A. Swami, E. E. Papalexakis, and D. Koutra, “Com2: fast automatic
discovery of temporal (comet) communities,” in Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 2014, pp. 271–
283.

Sorour E. Amiri received the bachelors degree
in computer engineering from Shahid Beheshti
University and masters degrees in Algorithms
and Computation from the University of Tehran,
Iran. She is working toward the Ph.D. degree in
the Department of Computer Science, Virginia
Tech. Her current research interests include
graph mining and social network analysis with a
focus on segmentation of graph sequences and
summarizing graphs. She has published papers
in AAAI conference and ICDM workshops.

Liangzhe Chen received the bachelor’s degree
in computer science from Shanghai Jiao Tong
University, China. He is working towards the PhD
degree in the Department of Computer Science
in Virginia Tech. His research interests include
data mining, social network analysis, network
vulnerability analysis, with a current focus on
data sequence mining. He has published several
papers in top conferences and journals such as
ICDM, Data Mining and Knowledge Discovery
Journal, AAAI.

B. Aditya Prakash is an Assistant Professor in
the Computer Science Department at Virginia
Tech. He graduated with a Ph.D. from the Com-
puter Science Department at Carnegie Mellon
University in 2012, and got his B.Tech (in CS)
from the Indian Institute of Technology (IIT) –
Bombay in 2007. He has published more than 50
refereed papers in major venues, holds two U.S.
patents and has given three tutorials (SIGKDD
2016, VLDB 2012 and ECML/PKDD 2012) at
leading conferences. His work has also received

a best paper award and two best-of-conference selections (CIKM 2012,
ICDM 2012, ICDM 2011) and multiple travel awards. His research in-
terests include Data Mining, Applied Machine Learning and Databases,
with emphasis on big-data problems in large real-world networks and
time-series. His work has been funded through grants/gifts from the
National Science Foundation (NSF), the Department of Energy (DoE),
the National Security Agency (NSA), the National Endowment for Hu-
manities (NEH) and from companies like Symantec. He received a
Facebook Faculty Gift Award in 2015. He is also an affiliated faculty
member at the Discovery Analytics Center at Virginia Tech. Aditya’s
homepage is at: http://www.cs.vt.edu/ badityap.


