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Abstract Surveillance of epidemic outbreaks and spread from social media
is an important tool for governments and public health authorities. Machine
learning techniques for nowcasting the flu have made significant inroads into
correlating social media trends to case counts and prevalence of epidemics in
a population. There is a disconnect between data-driven methods for forecast-
ing flu incidence and epidemiological models that adopt a state based under-
standing of transitions, that can lead to sub-optimal predictions. Furthermore,
models for epidemiological activity and social activity like on Twitter predict
different shapes and have important differences.

In this paper, we propose two temporal topic models (one unsupervised
model as well as one improved weakly-supervised model) to capture hidden
states of a user from his tweets and aggregate states in a geographical region
for better estimation of trends. We show that our approaches help fill the gap
between phenomenological methods for disease surveillance and epidemiolog-
ical models. We validate our approaches by modeling the flu using Twitter
in multiple countries of South America. We demonstrate that our models can
consistently outperform plain vocabulary assessment in flu case-count predic-
tions, and at the same time get better flu-peak predictions than competitors.
We also show that our fine-grained modeling can reconcile some contrasting
behaviors between epidemiological and social models.

Keywords Syndromic Surveillance · Social Media · Topic Model · Hidden
Markov Model

E-mail: {liangzhe, tozammel, pabutler, naren, badityap}@cs.vt.edu
Tel.: +1-540-231-0906
Fax: +1-540-231-4240
Address: 114 McBryde Hall (0106)
Department of Computer Science
Virginia Tech.
Blacksburg, VA 24061, USA



2 Liangzhe Chen et al.

1 Introduction

Web searches and social media sources, such as Twitter and Facebook, have
emerged as surrogate data sources for monitoring and forecasting the rise of
public health epidemics. The celebrated example of such surrogate sources is
arguably Google Flu Trends where user query volume for a handcrafted vo-
cabulary of keywords is harnessed to yield estimates of flu case counts. Such
surrogates thus provide an easy-to-observe, indirect, approach to understand-
ing population-level health events.

The recent research has brought intense scrutiny on Google Flu Trends, of-
ten negative. Lazer et al. (2014) provide explanations for Google Flu Trend’s
lackluster performance. Some of the reasons are institutional (e.g., a cloud of
secrecy about which keywords are used in the model, affecting reproducibil-
ity and verification), some are operational (e.g., lack of periodic re-training),
while others could be indicative of more systemic problems, e.g., that the vo-
cabulary for tracking might evolve over time, or that greater care is needed to
distinguish which aspects of search query volume should be used in modeling.
These problems are not unique to Google Flu Trends; they would resurface
with any syndromic surveillance strategy, e.g., developing a flu count modeler
using Twitter.

Motivated by such considerations, we aim to better bridge the gap between
syndromic surveillance strategies and contagion-based epidemiological model-
ing. such as SI, SIR, and SEIS (Anderson and May, 1991). In particular, while
models of social activity have been inspired by epidemiological research, recent
work (Matsubara et al., 2012; Yang and Leskovec, 2011; Romero et al., 2011)
has shown that there are key aspects along which they differ from biological
contagions. Specifically, evidence from Matsubara et al. (2012); Crane and Sor-
nette (2008) shows that the activity profile (or the number new people using
a hashtag/keyword) shows a power-law drop—in contrast standard epidemi-
ological models exhibit an exponential drop (Hethcote, 2000). Also, there is
some evidence that hashtags of different topics show an exposure curve which
is not monotonic, resembling a complex contagion (Romero et al., 2011).

In this paper, we show that we can reconcile the apparently contrasting
behaviors with a finer-grained modeling of biological phases as inferred from
tweets. For example, sample tweets “Down with flu. Not going to school.”
and “Recovered from flu after 5 day, now going to the beach” denote different
states of the users (also see Figure 1). We argue that correcting for which
epidemiological state a user belongs, the social and biological activity time-
series are actually similar. Hashtags and keywords merge users belonging to
different epidemiological phases. We separate these states by using a temporal
topic model in our paper. In addition, thanks to the finer-grained modeling,
our approach gets better predictions of the incidence of flu-cases than direct
keyword counting and also sometimes gets better predictions of flu-peaks than
sophisticated methods like Google Flu Trends.

Our contributions are:
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S/RE IS

Had good sleep this morning!

Going to see my favourite band

My neck hurts

No word can describe the 

amount of pain I am in

I am in bed with the worst flu
I should have gotten the vaccine

Starting to feel better

Going to the concert tonight

Fig. 1 A toy example showing possible user states and a tweet pattern associated with each
state when a user is infected with flu for a time period

1. We propose temporal topic models (HFSTM and HFSTM-A) for inferring
hidden biological states for users, and an EM-based learning algorithm for
modeling the hidden epidemiological state of a user. The HFSTM-A model
is robust to noisy and large vocabularies.

2. We show via extensive experiments using tweets from South America that
our learners indeed learn meaningful word distributions and state tran-
sitions. Further, our methods can better forecast the flu-trend as well as
flu-peaks by aggregating user states in a region over a time period.

3. Finally, we show that the state information learned by our models reconciles
the social contagion activity profile with standard epidemiological models.

Our work can be seen as a stepping stone to better understanding of conta-
gions that occur in both biological and social spheres. The rest of the paper is
organized as follows: we review the related work in Section 2. We introduce our
initial HFSTM model and its limitation, then we propose an improved model
HFSTM-A to address this issue in Section 3. We describe our experiments in
Section 4, and finally make conclusion and future work plan in Section 5 and
Section 6.

2 Related Work

This is an extended work of our previous conference publication (Chen et al.,
2014). In this study, we propose an improved model (HFSTM-A) to capture
the latent health states of twitter users (Sec. 3.3). This model can handle
documents with large and noisy vocabularies, which is not achievable with the
initial HFSTM model. We show the inference algorithm for the new HFSTM-
A model (Sec. 3.4). We further expand our test cases to include data from
Argentina and Chile, and illustrate how HFSTM-A achieves as good results as
HFSTM with a much larger and noisier vocabulary (Sec. 4). We also include
the latest related work (Sec. 2), expand our future work (Sec. 6), and polish
the overall writing.
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2.1 Epidemiology

In the epidemiological domain, various compartmental models (which explic-
itly model states of each user) are employed to study the characteristics of flu
diffusion (Hethcote, 2000). Some of the best known examples of such mod-
els are SI (Jacquez and Simon, 1993), SIR (Beretta and Takeuchi, 1995),
and SEIS (Li and Muldowney, 1995), which are regularly used to model true
flu case counts. Recently, several papers (Matsubara et al., 2012; Yang and
Leskovec, 2011) show that the social activity profiles do not exactly follow
these models, and propose several other variants. Note that different epidemi-
ological models are used for different diseases, in this paper we focus our work
on flu since it is very common disease.

2.2 Social Media

In the social media domain, related research has observed many strides in
the last decade. Extensive data generated by these social networking sites
(SNS) are being used to predict and forecast various societal events (Zhao
et al., 2011), finding user interests (Spasojevic et al., 2014), or finding trending
topics (Yang et al., 2014b). In particular the study of topic and word trends has
become an important predictor for real world events and news. These trends
are much easier and faster to get from social media than from traditional
methods (e.g. reliable CDC case counts typically have lags of more than a
month) (Glance et al., 2004). For disease prediction and forecasting, especially
for flu, various methods have been proposed for large-scale (Ginsberg et al.,
2008) and small-scale predictions (Christakis and Fowler, 2010). Furthermore,
there are prediction methods that are solely based on Twitter (Lee et al.,
2013; Culotta, 2010). Sadilek et al. (2012) and Brennan et al. (2013) studied
the impact of different kinds of interactions to personal health–they calculate
several features and predict the infection cases by classifications– in contrast,
we directly model the overall state transitions for all users. Lamb et al.
(2013) discriminate tweets that express awareness of the flu from those with
actual infections, and train a classifier by which a user can tell if the author of a
tweet is really infected. Aramaki et al. (2011) also trained classifiers for similar
purposes. While their work is single-tweet-based, ours takes the tweet history
into account. A tweet completely non-flu related is possible to be labeled as
infected by our method if the tweets before and after both show signs of
infection. Achrekar et al. (2011), Culotta (2010), and Lampos et al. (2010) fit
a flu trend by analysing tweets via various methods including keyword analysis,
and compare their flu trend fitting with CDC results. Lampos et al. (2010)
present an automated tool using keywords to track the prevalence of Influenza-
like Illness (ILI). These methods are very coarse-grained—they do not provide
understanding on how the health state of a user changes over time, while we
link the change of tweet pattern with standard epidemiological models. The
unpublished recent work by Li and Cardie (2013) builds a Markov network to
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capture the spatio and temporal relations between different locations. Their
definition of states is based on the number of infections in a location (such as
rising state, declining state), but states in our work are epidemiological states
and they are learned directly from the tweet corpus.

2.3 Topic Model

In this paper, we use a variation of topic models for our purposes. The earli-
est topic modeling using LDA (Latent Dirichlet Allocation) (Blei et al., 2003)
gained popularity for modeling a large amount of text documents (see (Blei
et al., 2010) for review). Many variations of LDA have been proposed to model
various problems. For modeling health related topics Paul et al. proposed the
Ailment Topic Aspect Model (ATAM+) (Paul and Dredze, 2011) to capture
various ailments from a corpus of tweets. This model is based on a topic aspect
model (Paul and Girju, 2010), author-topic model (Steyvers et al., 2004), and
it does not consider the temporal information of the text messages (as we do
in this paper). Another variant of LDA is temporal topic models which can
be categorized into two groups: Markovian and non-Markov. Wang and Mc-
Callum (2006) propose a non-Markov continuous time model for topic trends
which can not be used to predict the user states. Gruber et al. propose a
hidden topic Markov model (HTMM) (Gruber et al., 2007), which assumes
that all the words in a sentence have the same topic and there may be a
topic transition between two consecutive sentences. In the paper (Andrews
and Vigliocco, 2010), Andrews et al. proposes a hidden Markov topic model
(HMTM) that assumes that there is a topic transition between two consecutive
words within a document. In the paper (Blasiak and Rangwala, 2011), Blasiak
et al. uses a hidden Markov model to capture topic transition within docu-
ments which are subsequently used to classify new messages. These methods
only capture transition of topics within a document or a message, they do not
capture state transition of users across tweets. There are two other variants
of LDA (Blei and Lafferty, 2006; Hong et al., 2011) studying the evolution of
topic distributions over time, while our model studies the transition between
a set of topic distributions which does not evolve over time. Moreover, their
models do not capture the topic changes between consecutive messages of a
user. Another recent related work is by Yang et al. (2014a) who combine key-
word distributions with a shortest path algorithm to find out a monotonically
increasing stage progression of an event sequence. In our problem, flu states
are not monotonic, and have transition probabilities, which their method does
not learn.

3 Formulation of Models

We formulate our models in this section. The hypothesis is that a tweet stream
generated by a user can be used to capture the underlying health condition of
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Table 1 Symbols used for HFSTM and HFSTM-A

Symbol Meaning
S Flu state
St Flu state for the t-th tweet
ε State switching parameter
π Initial state distribution
η Transition probability matrix
l Binary background switching variable
x Binary switch between flu and non-flu words
y Aspect of word
λ Parameter for the Bernoulli distribution for l
c Parameter for the Bernoulli distribution for x
φ Topic distribution
σ Prior for l when aspect is introduced
γ Prior for x when aspect is introduced
Tu Total number of tweets for the u-th user
Nt Total number of words in t-th tweet
w Word variable in the template model
wtn the n-th word in the t-th tweet
z Non-flu related topic
θ Prior for non-flu related topics
α Hyper parameter for topic distributions
ψ State switching variable
K Total number of states
β Dirichlet parameter for word distributions
U Number of users

that particular user; and that the health state (e.g., flu state) of a user remains
the same within a tweet. Then we use our models to capture the flu states of
a user which are S (healthy), E (exposed), or I (infected) based on the classic
flu-like Susceptible-Exposed-Infected-Susceptible SEIS epidemiological model.
These states model the different health conditions of a person throughout the
lifecycle of the infection. In this study, we first introduce the HFSTM model.
Then we show the limitation of HFSTM, and propose an improved model
HFSTM-A (HFSTM with aspects) to address the issue.

3.1 Hidden Flu-State from Tweet Model (HFSTM)

A tweet is a collection of words and a tweet stream is a collection of tweets.
The number of tweets varies across users and the number of words in a tweet
varies within and across users. We denote the t-th tweet of a user by Ot =
〈wt1, wt2, . . . , wtNt

〉 where wtn denotes the n-th word in the tweet and Nt

denotes the total number of words in the tweet. Let Ou = 〈O1, O2, . . . , OTu
〉

be the tweet stream generated by a user u and Su = 〈S1, S2, . . . , STu
〉 be the

underlying state of the stream Ou. Here Tu denotes the length of the stream
of a user u and St ∈ {S,E, I}. Let O = 〈O1,O2, . . . ,OU 〉 be the collection of
tweets for U users, from which we aim to learn the parameters of our model.
We use K to denote the number of states that St can take (see Table 1 for
notations).
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(a) HFSTM (b) State transition

Fig. 2 (a) Plate notation for HFSTM: The variable S captures the hidden state of the
user in which the user generated this tweet. N , T , U are the number of words, tweets, and
users respectively. The LDA-like topic variable z capture non-flu related words. (b) HFSTM
state variables expanded: Each message Ot is associated with a state St, which remains
same for flu-related words in Ot. Switching from one state to another is controlled by a
binary switching variable ψ and the next state St+1 from the current state St is drawn
using transition probabilities η

Our initial model—Hidden Flu-State from Tweet model HFSTM—is a
probabilistic graphical model which captures the tweet structure of a flu-
related tweet. It is a temporal topic model for predicting the state sequence
of a user given Ou and is illustrated in Fig. 2(a). An expansion of the plate
notation for the same is illustrated in Fig. 2(b). In this model each word w for
Ot ∈ Ou is generated when the user is in a particular flu state (St) or the user
talks about a non-flu related topic (zi). For example, in the message “I have
caught the flu. Feeling feverish. Not going to school” the words ‘flu’, ‘feverish’,
‘caught’ are generated because the user is in the “infected” state and the words
‘going’ and ‘school’ are generated by non-flu related topics. Sometimes a word
can be generated due to noise which is also accounted for in our model.

The generative process for the model is shown in Alg. 1. A binary variable
l determines whether or not a word is generated from a background distribu-
tion. The binary variable x determines whether the current word is generated
from non-flu related topics or flu-state distributions. The value of l and x are
generated from Bernoulli distributions parameterized by λ and c. The non-flu
related topics follow the LDA like mechanism (Blei et al., 2003). The state for
the first tweet is drawn from the initial distribution denoted by π. We assume
that the states of the subsequent tweets are generated due to a state transi-
tion or by copying from the previous state which is determined by a binary
switching variable ψ with prior parameter ε. The state St (for 2 ≤ t ≤ Tu) of
the subsequent tweets are drawn from transition matrix η and previous state
St−1 with probability ε or copied from the previous state St−1 with probability
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Algorithm 1 Generator(λ, c, η, π, α, β, ε) for HFSTM
Input: A set of parameters.
Output: Topics and flu state of each user.
1. Set the background switching binomial λ
2. Choose φ ∼ Dir(β) for the non-flu topics, flu states, and background distribution
3. Choose initial state s1 ∼ Mult(π)
4. Draw each row of η using Dir(α) B Trans. matrix
5. Draw θ ∼ Dir(α)
6. for each tweet 1 ≤ t ≤ Tu do
7. if not the 1st tweet in the corpus then
8. Draw ψt ∼ Ber(ε)
9. if ψt = 0 then

10. St ← St−1

11. else
12. St ← Mult(ηSt−1

)
13. for Each word wi, 1 ≤ i ≤ Nt do
14. Draw li ∈ {0, 1} ∼ Ber(λ) B Background switcher.
15. if li = 0 then
16. Draw wi ∼ Mult(φB) B Draw from background distribution.
17. else
18. Draw xi ∈ {0, 1} ∼ Ber(c)
19. if xi = 0 then
20. Draw zi ∼ Mult(θ)
21. Draw wi ∼ Mult(φzi ) B Draw from non-flu related distribution.
22. else
23. Draw wi ∼ Mult(φst ) B Draw from flu related distribution.

1−ε. Once the state of a tweet is determined, a word is generated from a word
distribution defined by that state.

Let Ot = (w1, . . . , wN ) be the words that are generated when a user is in a
particular state. The likelihood of the words generated by a user in that state
is given below.

p(Ou) =
∑
St

p(Ou, St) =
∑
St

p(O1 . . . , OT , St)

=
∑
St

∑
St−1

p(Ot|St)p(St|St−1)p(Ot−1, St−1) (1)

Andrews and Vigliocco (2010) show that such kind of likelihood function is
intractable. In HFSTM the unknown parameters that we want to learn are
H = {ε, π, η, φ, λ, c}. The posterior distributions over these unknown variables
are also intractable since the posterior distributuions depend on the likelihood
function. We hence developed an EM-based algorithm HFSTM-FIT to esti-
mate the parameters H of the model (we omit the details for this algorithm,
but rather elaborate on the inference algorithm for the extended HFSTM-A
model in Sec. 3.4).
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3.2 Issues with HFSTM

HFSTM requires a ‘clean’ vocabulary, i.e. a vocabulary that does not contain
many background words. In real datasets, there is a huge imbalance between
background and flu-related words. For example, among 100 tweets from a user,
only two or three maybe related to his/her health state. As there is no super-
vision used in HFSTM, each word has the same probability of passing/failing
the switches (see the parameters λ, c in 3.1), which biases our model towards
background words. Hence it is likely for HFSTM to learn the complex state
transitions among background words rather than among the flu-related words.
If the dataset contains many tweets about some hot events such as a football
game, the model would learn the state transition in the sport game rather than
in the flu infection since the number of sport-related tweets overwhelms that of
the flu-related tweets. For this reason, HFSTM needs a vocabulary that does
not contain many background words—as a consequence, it highly depends on
the accuracy of the selection of words, which decreases its generality.

3.3 Improving the model—HFSTM-A

Due to the issues with HFSTM, we propose a new model HFSTM-A (HFSTM
with aspects) so that we can provide it with a larger noisier vocabulary. Our
key idea is to explicitly include our belief of which words are likely to be
useful for state transitions. Hence we add such weak supervision to HFSTM
by introducing an ‘aspect’ value (y) for each word (a related approach has
been used by Paul and Dredze (2011)). We call this new model HFSTM-A.
This aspect y takes two values {0, 1} based on whether the word is flu related
or not. It then biases the switching probabilities so that background words
are less likely to be explained by the state topic distributions. Note that this
supervision is weak because the aspect of a word does not directly decide if a
word is flu-related, it only increases/decreases the probability of a word being
regarded as flu-related or not. Those words which we do not mark as related
are still possible to be analysed by state topic distributions. As a result of the
changes, HFSTM-A can handle much noisier vocabularies, at the mean time
have comparable performance with the HFSTM model.

More concretely, in the plate notation of this new model HFSTM-A (see
Fig. 3), y is the observed aspect value for a word, where l and x are the binary
values which decide whether the word is generated by background topic, non-
flu topics, or state topic distributions. In HFSTM, these two values are gener-
ated by the Bernoulli distribution with parameters λ and c. Now in HFSTM-A,
y biases these probabilities and may thus change the values of l and x.

The generative process for the HFSTM-A model is shown in Alg. 2. In
contrast to Alg. 1, we see that in Alg. 2 the value of l and x are now generated
from Bernoulli distributions parameterized by λyi

and cyi
, which are biased by
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Fig. 3 Plate notation for HFSTM-A: The aspect value y is an observed variable for each
word, and this variable is biases the probability of a word being generated by the various
topics (See Sec. 3.3)

Algorithm 2 Generator(λ, c, η, π, α, β, ε) for HFSTM-A
Input: A set of parameters.
Output: Topics and flu state of each user.
1. Set the background switching binomial λ
2. Choose φ ∼ (β) for the non-flu topics, flu states, and background distribution
3. Choose initial state s1 ∼ Mult(π)
4. Draw each row of η using Dir(α) B Trans. matrix
5. Draw θ ∼ Dir(α)
6. for each tweet 1 ≤ t ≤ Tu do
7. if not the 1st tweet in the corpus then
8. Draw ψt ∼ Ber(ε)
9. if ψt = 0 then

10. St ← St−1

11. else
12. St ← Mult(ηSt−1

)
13. for Each word wi, 1 ≤ i ≤ Nt do
14. Draw yi ∈ {0, 1} (observed)
15. Draw li ∈ {0, 1} ∼ Ber(λyi ) B Background switcher.
16. if li = 0 then
17. Draw wi ∼ Mult(φB) B Draw from background distribution.
18. else
19. Draw xi ∈ {0, 1} ∼ Ber(cyi )
20. if xi = 0 then
21. Draw zi ∼ Mult(θ)
22. Draw wi ∼ Mult(φzi ) B Draw from non-flu related distribution.
23. else
24. Draw wi ∼ Mult(φst ) B Draw from flu related distribution.

the observed aspect value yi. The definition of λyi
and cyi

are shown below.

λyi=0 = λ

λyi=1 = λ+ b ∗ (1− λ)

cyi=0 = c− a ∗ c
cyi=1 = c+ a ∗ (1− c)
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where a, b are the fixed biases we add to the switching probabilities. Basically,
if a word is labeled as flu-related (yi = 1), we increase its probability of
passing the background switch (λyi=1) and its probability of passing the non-
flu topic switch (cyi=1), by pushing these probabilities closer to 1. In the
equations above, we take a proportion (b and a respectively) of the residuals
and add it to the probability; and if a word is not flu-related (yi = 0), we
decrease its probability of passing the non-flu topic switch (cyi=0), by pushing
the probability towards 0 (we use a to shrink the value in the corresponding
equation). Note that if a word is not flu-related, it can still be generated by
non-flu topics. Hence its probability of passing the background switch (λyi=0)
is kept unbiased. In our experiments, we use a = 0.4, b = 0.4, and find the
performance good and stable around these values.

3.4 HFSTM-A-FIT: Inference and Parameter Estimation

We next show an EM-based algorithm HFSTM-A-FIT to estimate the param-
eters H = (ε, π, η, φ, λ, c) of our model.

At each time point t a user can be in any of the 2K states where the first K
states denote that the user happens to be in the state due to a state transition
from his state at time t − 1 and the rest of states from K + 1 . . . 2K denote
that the state of the user is simply copied from the state of the user at time
t− 1.

3.4.1 E-Step

We use forward-backward procedure for estimating parameters. We define
the forward probability At(i) and the backward probability Bt(i) for a tweet
stream as follows.

At(i) = P (O1, O2, . . . , Ot, St = i)

Bt(i) = P (Ot+1, . . . , OTu
|St = i)

At(i) is the joint probability of the partially observed sequence until time t and
state St is i. Bt(i) is the joint probability of the partially observed sequence
from t + 1 to Tu, given state St is i. Both At(i) and Bt(i) can be solved
inductively. See the linked equations for more details on how At(i) and Bt(i)
are calculated.

Let γt(i) be the probability of being in state Si at tth tweet given the
observed tweet sequence Ou.

γt(i) = P (St = i|Ou)

=
At(i)Bt(i)∑2K
i=1At(i)Bt(i)
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To estimate transition probability we define ξt(i, j), the probability of being
in state i at t and in state j at t− 1 given the Ou.

ξt(i, j) = P (St = i, St+1 = j|Ou)

=
P (St = i, St+1 = j,Ou)

P (Ou)

3.4.2 M-Step

In this step we re-estimate the parameters ε, π, η, φ, c, λ. Due to space
constraints only the estimations of π and η are shown as follows. Please check
the Appendix for all the equations.

πi =

∑U
u=1 γ1(i)∑U

u=1

∑K
i=1 γ1(i)

ηij =

∑U
u=1

∑T
t=1 (ξt(i, j) + ξt(i+K, j))∑U

u=1

∑T
t=1

∑K
j=1 (ξt(i, j) + ξt(i+K, j))

4 Experiments

We describe our experimental results next. All the experiments are designed
to answer the following questions:

1. Can HFSTM and HFSTM-A robustly learn in presence of different noise
levels in a dataset? (see Sec. 4.2)

2. What are the state-topic distributions learnt by our models? (see Sec. 4.3)
3. Is the state transition table learned reasonable? (see Sec. 4.4)
4. How do our models perform for flu case-count and peak predictions? (see

Sec. 4.5)
5. Finally, as mentioned in Sec. 2, several papers (Matsubara et al., 2012;

Yang and Leskovec, 2011) have shown that the rising and falling pattern of
keywords count in social media does not match with that in epidemiological
model. By including the extra state information, can we bridge this gap
between social and epidemiological activity? (see Sec. 4.6)

4.1 Experimental Set-up

First we describe our set-up in more detail. Our algorithms were implemented
in Python.1

1 Code and vocabulary can be found here: http://people.cs.vt.edu/liangzhe/code/

hfstm-a.html

http://people.cs.vt.edu/liangzhe/code/hfstm-a.html
http://people.cs.vt.edu/liangzhe/code/hfstm-a.html
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4.1.1 Vocabularies

To ensure that the most important words (directly flu-related words like ‘flu’,
‘cold’, ‘congestion’, etc.) are included in our vocabulary, we first build a flu-
related keyword list. Chakraborty et al. (2014) construct a flu-keyword list, by
first manually setting a seed set, then using two methods (pseudo-query and
correlation analysis, see their paper for more details) to expand this seed set,
and then finally pruning it to a 114 words keyword list. A similar keyword-
construction procedure (expanding by crawling websites) was also used by
Lampos and Cristianini (2012). For our experiments, we include the same 114
keywords from Chakraborty et al. (2014) first. We then include 116 words
selected by our in-house experts, which are not directly related to flu, but
may implicitly imply the state of a user, such as ’hopeless’, ’bed’, ’die’, ’sad’,
etc. We use these (a total of 230) words as the vocabulary for HFSTM since
it cannot deal well with a noisier vocabulary (see Sec. 3.2).

For HFSTM-A, the extension of HFSTM which is designed to handle larger
vocabularies with much background noise, we enlarge the size of the vocabulary
by simply adding the most frequent words in the corpus. After automatically
extracting these top words, we get a final vocabulary of 2739 words.2 All
other words not in our vocabulary but occurring in the corpus are mapped to
a single generic block-word. We label a word as 1 (flu-related) if it is in the
previous 230 words list (note again this is only weak supervision, this label
does not directly decide whether this word is generated by background topics,
or state topics). Thanks to our model design, as we describe later, HFSTM-A
is able to learn meaningful state transitions and topic distributions, inspite of
having a more than 10X larger vocabulary.1

4.1.2 Datasets

We collected tweets generated from 15 countries in South America for the pe-
riod Dec, 2012—Aug, 2014 using Datasift’s Twitter collection service.2 The
Datasift twitter feed is enriched in two ways which are relevant to collecting
the twitter flu data. The first is using the Basis technology3 natural language
processing facilities from which we use the lemmatized form of words to im-
prove word count metrics. The second is a custom set of geocoding algorithms
used to detect the location of a tweet since only 5% of tweets are actually
geotagged. We then improve the quality of our dataset by removing bots,
spammers, and retweets.

We create a training dataset TrainData, using the tweets from Jun 20, 2013
to Aug 06, 2013, which contains a peak of infections. We created three evalua-
tion sets using tweets from different time-periods: TestPeriod-1 (Dec 01, 2012
to Jul 08, 2013), TestPeriod-2 (Nov 10, 2013 to Jan 26, 2014), and TestPeriod-3
(Mar 01, 2014 to Aug 31, 2014). TestPeriod-1 and TestPeriod-2 are time peri-
ods before and after our training period in the same year (2013); We further

2 http://datasift.com/
3 http://www.basistech.com

http://datasift.com/
http://www.basistech.com
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test our models trained from 2013 on TestPeriod-3, which covers a complete flu
season in the next year 2014. The number of flu related tweets (containing at
least one flu keyword) for these test periods are ∼ 1.8M , ∼ 0.3M , and ∼ 4M
respectively. For the two individual countries used in Sec. 4.5 for TestPeriod-1,
this number is 60k for Chile, and 112k for Argentina. We use tweets that
occurred during the flu season in 2013 as the training set for maximizing the
number of samples that are tagged as infected. We choose the three test sets
as they either contain a complete flu season, or contain interesting rising pat-
terns (detecting the rising part of the disease is one of the most challenging
tasks in surveillance (Butler, 2013)). For creating training data we perform
keyword and phrase checking (from our vocabulary) to identify a set of users
who have potentially tweeted a flu-related tweet. We then fetch their tweet
streams from Twitter API for the training period. We then use the Datasift
service to preprocessing these tweets (stemming, lemmatization, etc.), and get
our final training dataset of roughly 34,000 tweets. Under such a setting, our
inference algorithm HFSTM-A-FIT takes around 2 hours to run on a 4 Xeon
E7-4850 CPU with 512GB of 1066Mhz main memory.

We collected data from The Pan American Health Organization (PAHO,
2012) for the ground-truth reference dataset for flu case counts (trends).
PAHO is the ground-truth medical report source for South America and it
plays the same role in South America as CDC does in the USA (CDC does
not provide flu trend data for South America). Note that PAHO gives only
per-week counts.

4.2 Robustness and Consistency (Q.1)

To first check the performance of our models under different conditions, we set
up three kinds of simple synthetic datasets for the learners. We first choose
a set of fixed parameters as base settings for generating a dataset. We then
vary the background switching parameter (λ) for creating a set of datasets with
different noise levels (to clarify, note that via λ we are only varying the number
of background words in the dataset here, not in the vocabulary). For the third
variant of datasets, we vary the number of users for generating a set of datasets.
Firstly, in all the datasets, our learner was able to recover the true parameters,
and show a good estimation of switching variables, transition probabilities and
word distributions on these synthetic datasets. Table 2 shows the estimation
error of π, η and the word distribution for each state, measured by the KL
distance between the true parameter and the estimated value. Secondly we
see that the performance of our models is pretty robust: it does not degrade
with an substantial increase in noise level, and the learner is also stable when
we increase the number of users. Finally, note that HFSTM-A learns similar
quality results like HFSTM, inspite of a much enlarged vocabulary.
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Expt
KL of π KL of η KL of φ0 KL of φ1 KL of φ2 KL of φ3

m1 m2 m1 m2 m1 m2 m1 m2 m1 m2 m1 m2

base 0.04 0.04 0.08 0.02 0.24 0.57 0.2 0.08 0.2 0.12 0.2 0.04

λ = 0.1 0.04 0.04 0.08 0.03 0.01 0.48 0.01 0.17 0.01 0.13 0.01 0.04
λ = 0.3 0.04 0.04 0.03 0.50 0.00 0.14 0.01 0.01 0.01 0.01 0.01 0.01
λ = 0.5 0.04 0.04 0.03 0.05 0.01 0.70 0.01 0.17 0.01 0.16 0.01 0.06
λ = 0.9 0.04 0.04 0.04 0.01 0.00 0.45 0.01 0.07 0.01 0.08 0.01 0.02

U = 50 0.04 0.04 0.29 0.26 0.04 0.27 0.07 0.01 0.06 0.01 0.09 0.01
U = 70 0.04 0.04 0.30 0.42 0.05 0.14 0.08 0.03 0.04 0.03 0.09 0.03
U = 90 0.04 0.04 0.08 0.01 0.02 0.52 0.03 0.07 0.03 0.02 0.03 0.01
U = 110 0.04 0.04 0.01 0.40 0.00 0.17 0.01 0.01 0.01 0.01 0.01 0.01
U = 130 0.04 0.04 0.00 0.01 0.00 0.71 0.01 0.04 0.01 0.04 0.01 0.01
U = 150 0.04 0.04 0.06 0.07 0.00 0.20 0.01 0.01 0.01 0.01 0.01 0.01

Table 2 Robustness and Consistency of our models (m1 = HFSTM, and m2 = HFSTM-A)
using synthetic datasets. In the ‘base’ setting, we use 100 users, and a vocabulary of size
92, where the number of background words, state words, and non-flu topic words are 20, 60,
and 12 respectively. We vary the the number of background words (by varying λ) and the
number of user from 50 to 150. It can be seen that the performance of both models do not
suffer from increasing noise levels in the dataset (different from the noise in the vocabulary),
and it is pretty stable when we increase the number of users in the experiments

4.3 Word distributions learnt for each state (Q.2)

In short, our model learns meaningful topic word distributions for the flu states
from real data (TrainData). See Figure 4—it shows a word cloud for each state-
topic distribution (we renormalized each word distribution after removing the
generic block-word) we learnt using HFSTM-A. Note that both HFSTM-A
and HFSTM learn meaningful distributions, here we only show results from
HFSTM-A since the result from HFSTM is similar. The most frequent words
in each state matches well with the S(usceptible), E(xposed) and I(nfected)
states in epidemiology. These word distributions in Fig. 4 correspond to the
S, E, I states shown in Fig. 5. As shown in the figure, the S state has normal
words, the E state starts to gather words which are indicating an exposure
or approaching to the disease (and contains both ‘S-like’ and ‘I-like’ words),
while the I state gets many typical flu-related words. The I state captures
flu-related keywords like flu, fever, pain; the E state contains words like cold,
suffer, strange; and the S state has words like enjoy, work, music, smile.

4.4 Transition probabilities learnt between states (Q.3)

We show the state transition diagram learned from real data (TrainData) by
HFSTM-A in Figure 5. Again, HFSTM-A is as good as HFSTM, with a much
larger vocabulary. The initial state probability learned is [0.91, 0.02, 0.07],
with high probability that a tweet starts at state S, and with much lower
probabilities it starts at state E or I. We observe that for each state, it firstly
has the tendency to stay in that state, which is reasonable because a twitter
user is likely to post more than one tweet in any given state. When there
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(a) S state (b) E state (c) I state

Fig. 4 The translated word cloud for the most probable words in the S, E and I state-topic
distributions as learnt by HFSTM-A on TrainData. Words are originally learned and inferred
in Spanish, we then translate the result using google translate for the ease of understanding.
The size of the word is proportional to its probability in the corresponding topic distribution.
Our model is able to tease out the differences in the word distributions between them

is a transition occuring, we see that transition between S and E is larger
than between E and I, showing the fact that the probability of truly getting
infected is lower than the probability of getting just exposed. Interestingly,
these transition probabilities match closely with the standard epidemiological
SEIS model and intuition.

We also investigate the most-likely state sequence for each user learned by
HFSTM-A. Using the parameters learned by our model, we take a sequence
of tweets from one user, and use MLE to estimate the state each tweet is in.
Table 3 shows multiple examples of these transitions (we show the translated
English version here using Google Translate and further refined by a native
speaker) using HFSTM-A (the results are similar to that of HFSTM). As we
can see, our model is powerful enough to learn the Exposed state, before the
user is infected. This also shows the accuracy of our transition probabilities
between the flu states.

I(E(S(

0.6( 0.43( 0.64(

0.31(

0.44(

0.13(

0.18(

0.09(

0.19(

Fig. 5 The transition diagram between flu-states automatically learned by HFSTM-A.The
probabilities are rounded up for simplicity. Note that the structure of the state transitions
is close to the standard epidemiological SEIS model
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User Date Tweet Message State

1

4 Jul 2013 S: @ PauFigueroaentoces yes .... but by then I wouldn’t
like to feel like I feel now because I wouldn’t be able
to enjoy the vacations.

Healthy

4 Jul 2013 I finished my first job, one more to go, and me feeling
so bad... I want to rest.

Healthy

4 Jul 2013 @ Kimy2Ramos My queen, I hope you’re having a
great time... because I feel terrible. I have a headache
and fever =( ... I love you a lot.

Exposed

4 Jul 2013 @ PauFigueroaflu, with the flu, headache, body ache,
and even my sight hurts... Couldn’t ask for anything
else.

Infected

4 Jul 2013 time to studyyy... Healthy

2

10 Jul 2013 I’m feeling like a boss for working on this by myself.
I’m gonna pass, no doubt about it hahahaha.

Healthy

10 Jul 2013 already Wednesday? Today to Aliados, how awesome. Healthy
11 Jul 2013 Any season is spring for me if I’m with you. Exposed
11 Jul 2013 It’s just great how I got sick. Sad part is that I can’t

even miss school -.-
Exposed

11 Jul 2013 It was so great to see a scene from Peter y Pablo, how
much I missed those things.

Exposed

11 Jul 2013 Oh, how much I hate you Tabcin. You’re gross -. - Healthy
11 Jul 2013 Lately I’ve been missing those little things that made

you so unique. I wonder where all those virtues went:
S

Exposed

11 Jul 2013 I’m feeling awful: fever, headache, dizziness, chest
pain, snot, snot, snot and more snot and a sore throat.
Am I missing something?

Infected

Table 3 Example user state sequences from real-world tweets (translated to English by a
native Spanish speaker). We used HFSTM-A to classify tweets to different states. As we can
see from the table, our model can capture the difference between different states and also
the state transitions

4.5 Fitting flu trend using additional state information (Q. 4)

Additionally, to test the predictive capability of our models, we design a flu-
case count prediction task on our test datasets, after training on TrainData.
We compare four models: (A) the baseline model, which uses classical linear
regression techniques and word counts to predict case count numbers; our
models (B) HFSTM and (C) HFSTM-A, where we improve the word counts by
attaching each word with the state estimated by MLE; and (D) GFT (Google
Flu Trend). In all four cases we use a LASSO based linear regression model
to predict the number of cases of influenza like illnesses recorded by PAHO
(the ground-truth). We predict per-weekly values as both PAHO and GFT
give counts only on a weekly basis.

The baseline model uses a set of features created from the counts of 114
flu related words. For TestPeriod-1, we count these words over 1.8M tweets
from 0.72M users that were filtered by containing at least one keyword from
our vocabulary (similarly for TestPeriod-2, TestPeriod-3). These word counts
were then collated into a single feature vector defined as the number of tweets
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containing a single word per week. We then regressed this set of counts to the
PAHO case counts for each week.

Our models improve upon the baseline model by incorporating the state
of the user when a word was tweeted. In this way we capture the context of a
word/tweet as implied by our HFSTM and HFSTM-A models. For instance, if
the word ‘cold’ is used in a normal conversation it probably means temperature
but if it is used while a person is in the I state it is likely referring to flu
related symptoms. For our models, we also use a LASSO regression to make
predictions in a similar fashion. However the feature vector is created from a
count of the top 20 words from each state, appended to the word of each state,
such that (cold, S) is counted differently from (cold, I).

For GFT, we directly collect data from the Google Flu Trends website4,
and then apply the same regression as used in other methods to predict the
number of infection cases. Note that as GFT is a state-of-the-art production
system with highly optimized proprietary vocabulary lists, we do not expect to
beat it consistently, yet as we describe later, we note some interesting results.

In all types of models the same LASSO regression is applied to the time
series. For each time point a LASSO regression was fit to the last 10 weeks of
data. The model was then used to predict either for zero, one, or two weeks in
the future, depending on the lag; the best lag was chosen for each method. We
evaluate all these methods for different countries (individually and aggregated)
in South America on TestPeriod-1, TestPeriod-2 and TestPeriod-3. We first
discuss results on TestPeriod-1 and TestPeriod-2, which are in the same year
(2013) as the TrainData, then we show the qualitatively similar results on
TestPeriod-3, which is in a different year (2014).

Fig. 6(a)–(d) show the comparison between the four models for different
scenarios in 2013. Fig. 6(a) and (d) shows the aggregated cases for all coun-
tries for TestPeriod-1 and TestPeriod-2, which is the same test cases we used
in Chen et al. (2014). We further expand the test cases by including two ex-
ample countries: Argentina and Chile for TestPeriod-1 in Fig. 6(b) and (c).
We chose Argentina and Chile as they had the largest number of tweets in
our dataset. We make several observations. Firstly, as expected from the
previous results, the performance of HFSTM and HFSTM-A are close to each
other in all cases, despite a large vocabulary difference. The RMSE values of
HFSTM-A for the four plots are 501, 437, 108, 345 respectively, and the values
for HFSTM are 485, 453, 115, 350 respectively. The difference for our methods
was only about 12. Secondly, it is clear from the figures that both HFSTM
and HFSTM-A outperform the baseline method (of keyword counting) in all
cases—demonstrating that the state knowledge is important and our models
are carefully learning that information correctly (as a contrast to the difference
between HFSTM and HFSTM-A above, the RMSE value difference between
HFSTM-A and the baseline for the 4 plots are about [210, 112, 120, 80] re-
spectively). Finally, we also see that the predictions from our methods are
comparable qualitatively to the state-of-the-art GFT predictions, even though

4 http://www.google.org/flutrends

http://www.google.org/flutrends
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our methods were just implemented as a research prototype without sophis-
ticated optimizations. In fact, although GFT performs better than HFSTM
and HFSTM-A in Figures 6(a) and (b) in the RMSE scores, for Figures 6(c)
and (d), our methods perform as well, and even outperform GFT (with an
average RMSE difference of about 24). Significantly, in Figures 6(a), (c) and
(d), GFT clearly overestimates the peak which our methods do not (this is
an important issue with GFT which was also documented and observed in
context of another US flu season as well (Butler, 2013)).

For TestPeriod-3 in 2014, we have similar observations. The performance
of HFSTM and HFSTM-A are close to each other (with 544, 599 RMSE val-
ues). GFT , although having a better RMSE value (421), clearly overestimates
the peak. The baseline method exhibits the worst performance with an RMSE
value of 871. All of the results on our test datasets show that including the epi-
demiological state information of users via our models can potentially benefit
the prediction of infection cases dramatically.

4.6 Bridging the Social and the Epidemiological (Q.5)

Finally, as mentioned before, another key contribution of our models is to
bridge the gap between epidemiological models and social activity models.
An important recent observation (Matsubara et al., 2012; Yang and Leskovec,
2011) was that the fall-part of any social activity profile is power-law—in
contrast to standard epidemiological models like SEIR/SIR which give an ex-
ponential drop-off. How can they be reconciled? In the following, we show
that accounting for the differences in the epidemiological state as learnt by
our models, the two different activity profiles look the same i.e. they drop-off
exponentially as expected from standard epidemiological models.

To test our hypothesis, we chose commonly occuring flu-keywords—such
as enfermo (sick), mal (bad), fiebre (fever), dolor (pain)—for the analysis.
Firstly, we count the total occurences of these keywords in TestPeriod-1. For
each keyword we identify the falling part of its activity-curve. We then fit each
curve with power law and exponential function. As expected from Matsubara
et al. (2012), Fig. 8 results from HFSTM and HFSTM-A (a) and (c) both show
that the power-law function provides a much better fit of the falling part of
the curve compare to the exponential function (RMSE scores of exponential
functions is 1.5 times higher than that of power law in both HFSTM and
HFSTM-A cases).

Secondly, to study the effect of our model on the activity profiles of these
keywords: we count total occurrences of these keywords in the tweets which
are tweeted only by infected users (i.e. by those users we learn as being in I).
Again, we fit the falling part of each curve with a power law and a exponential
function. In contrast to the previous figure, we see that now exponential fit
is much better than a power law fit, the RMSE score of power law is ∼ 1.9
times higher than that of exponential functions in both HFSTM and HFSTM-
A cases (see Fig. 8(b) and (d))—matching what we would expect from an
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(a) All countries, TestPeriod-1

(b) Argentina, TestPeriod-1

(c) Chile, TestPeriod-1

(d) All countries, TestPeriod-2

Fig. 6 Evaluation for the two test datatsets in 2013. Comparison of the week to week
predictions against PAHO case counts using the four models: baseline model, HFSTM,
HFSTM-A, and GFT (Google Flu Trend). Our models outperform the baseline, performance
of HFSTM and HFSTM-A are similar, and are comparable to GFT. GFT overestimates the
peak in (a), (c) and (d). (a) All countries, for TestPeriod-1; (b) Argentina, for TestPeriod-1;
(c) Chile, for TestPeriod-1; and (d) All countries, for TestPeriod-2
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Fig. 7 Evaluation for test dataset in 2014 (TestPeriod-3). Comparison of the week to week
predictions against PAHO case counts using the four models. The comparison is based on
all countries in the dataset. We observe that the performance of HFSTM and HFSTM-A
are similar and comparable to GFT, and GFT overestimates the peak.

epidemiological model like SEIS. Thus this demonstrates that finer-grained
modeling can explain differences between the biological activity and the social
activity which is used as its proxy.

4.7 Summary of observations

In sum, the main observations from our experiments are:

1. Our models HFSTM and HFSTM-A learn both state topic distributions
and transitions, which match epidemiological intuition. The performance
of HFSTM-A is robust despite of an enlarged and noisy vocabulary.

2. Our models consistently get better flu case-count predictions than naive
vocabulary assessment (the baseline model), over datasets covering multi-
ple time-periods.

3. Our models make better flu-peak predictions than Google Flu Trends for
the aggregated curve in both our datasets (including individual countries
like Chile).

4. Our models make qualitatively comparable flu case-count predictions to
Google Flu Trends (even beating them in some cases).

5. Our models can potentially bridge the gap between models of biological
activities and their social proxies.

5 Discussion and Conclusion

Predicting the hidden state of a user from a sequence of tweets is highly chal-
lenging. Naive methods to find the states in such sparse and large data are
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(a) Total Keyword activity (log-log) by HF-
STM

(b) Keyword activity in learnt I state (lin-
lin) by HFSTM

(c) Total Keyword activity (log-log) by
HFSTM-A

(d) Keyword activity in learnt I state (lin-
lin) by HFSTM-A

Fig. 8 Finer grained models help bridge the gap between social and epidemiological activity
models. (a), (c) Power law describes keyword activity better (in log-log axes to show the
difference); while (b), (d) Exponential function explains well the falling part of the curves
for keyword activity (note the linear axes). The results from HFSTM and HFSTM-A agree
with each other

computationally intractable. However, our proposed methods, HFSTM and
HFSTM-A have the capability to use this sparseness efficiently to produce a
generative model. It satisfies the requirements of low dimensional representa-
tion of the data while retaining enough information about the system. Through
extensive experiments on real tweet datasets, we showed how our methods can
effectively and robustly model hidden states of a user and the associated tran-
sitions, and use it to improve flu-trend prediction, including avoiding recent
errors discovered in methods like Google Flu Trends. Further, our models use
public data, and our results were stable across two different time-periods. We
also showed how our model can reconcile seemingly different behaviors from
social and epidemiological models.

As mentioned in the introduction, current approaches for predicting flu
using information gleaned from the Twitter data are often devoid of any epi-
demiological significance and hence there is a great chasm between the data
driven flu trend modelling using Twitter data and the model-based, simulation-
oriented epidemiological models such as SI, SIR and SEIS. Hence more broadly,
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our technique can act as the missing link between this apparently uncorrelated
line of research—lending a state aware nature to data-driven models and simul-
taneously, can let simulation oriented models estimate their state transition
matrices by maximizing data likelihood.

6 Future Work

We have several directions to further extend our work.

The state transitions probabilities our models learn can be used to estimate
parameters in traditional epidemiological models, such as the transmission
rate, the removal rate, the infection prevalence threshold, etc. We can study
how these epidemiological parameters behave in the context of twitter, and
how these social-media-derived parameters reflect on the real situation.

Secondly, as twitter is a highly connected social network, we can integrate
the network structure into our models and improve the results. Currently
our models assume independency between twitter users, and estimate a user’s
states by only looking at his/her own tweets. However in reality, people are
more likely to get infected if most of their friends are infected. Hence the
neighbors of a node in the network have some bias on the state transition of
the node, which can be integrated into our models.

Thirdly, we can improve the efficiency of the inference algorithms. Note
that our algorithms are practical enough to run on real world datasets as used
in this paper. Nevertheless it will be interesting to improve the scalability of
our approach by exploring approaches like distributed EM, or other inference
algorithms like MCMC.

Finally, our proposed methods are general enough and can be easily ex-
tended to other domains such as monitoring organized protests where a user
can go through several states of protest like ’not interested’, ’ambivalent’, ’ac-
tive’, ’resigned’, etc.
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Appendix A HFSTM-A-FIT

In this appendix, we show the equations we designed for HFSTM-A-FIT. Note that the
outlines of the HFSTM-FIT algorithm is similar to HFSTM-A-FIT, one can derive equations
for HFSTM-FIT from the content we show below.
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Let K, T , N , and U be the number of states, number of tweets per user, number
of words per tweet, and total number of users. Let O =< O1, O2, . . . , OT > and S =<
S1, S2, . . . , ST > the observed sequences of tweets and hidden states respectively for a
particular user.

Here is a list of symbols that we will use.

1. ε: the prior for the binary state switching variable, which determines whether state of
a tweet is drawn from the transition probability matrix or simply copied from the state
of the previous tweet (a number in (0, 1])

2. π: initial state probability (size is 1×K)
3. η: tansition probability matrix (size is K ×K)
4. φ: word distrtibution for each state (size is K ×W , where W is the total number of

keywords for all of the states)
5. wtn: the nth word in the tth tweet
6. λ: the background switch variable
7. c: the topic switch variable
8. y: the observed aspect value

For HFSTM-A, as mentioned in Section 3.3, the value of λ is biased by the observed
aspect value y. We use λ instead of λy in the following for brevity, but remember the λ
value in the equations is actually calculated using:

λyi=0 = λ

λyi=1 = λ+ b ∗ (1− λ)

cyi=0 = c− a ∗ c
cyi=1 = c+ a ∗ (1− c)

We want to learn all the parameters given the tweet sequence. For compact notation we
use H = (ε, π, η, φ, λ, c). In HFSTM-A-FIT, we use forward backward procedure for which
we define forward variable At(i) and backward variable Bt(i) as follows.

At(i) = P (O1, O2, . . . , Ot, St = i|H)

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

Let γt(i) be the probability of being in state Si at for tth tweet given the observed tweet
sequence O and other model parameters. For each user the size of γ is 2K × T (with the
first K states as the states which are copies of the previous state, and the second K states
which are derived after a transition). This probability can be expressed by the forward and
backward probabilities.

γt(i) = P (St = i|O,H)

=
At(i)Bt(i)

P (O|H)

=
At(i)Bt(i)∑2K
i=1 At(i)Bt(i)

We have two switch variables in the model: l, x. If l = 1, the word is generated either
by states or topics, if l = 0 it’s generated by background. If x = 0, the word is generated by
topics, if x = 1 it’s by states.

For li = 1, which means that wi is generated by either state or topics.
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P (li = 1|λ, c,H,w) =
P (li = 1|λ, c,H)P (w|li = 1, λ, c,H)

P (w|λ, c,H)

=
λP (wi|λ, c,H, li = 1, w−i)P (w−i|λ, c,H, li = 1)

P (wi|λ, c,H,w−i)P (w−i|λ, c,H)

=
λ
∑
xi

[P (wi|λ, c,H, li = 1, xi, w−i)P (xi|λ, c,H, li = 1, w−i)]∑
li

[P (wi|λ, c,H, li, w−i)P (li|λ, c,H,w−i)]

=
λ[(

∑
topic φtopic(wi)P (topic|xi=0,li=1,λ,c,H,w−i))(1−c)+(

∑
state φstate(wi)γi(state))c]

λ[(
∑

topic φtopic(wi)P (topic|...))(1−c)+(
∑

state φstate(wi)γi(state))c]+(1−λ)φBak(wi)

For li = 0, wi is generated by background.

P (li = 0|λ, c,H,w) =
P (li = 0|λ, c,H)P (w|li = 0, λ, c,H)

P (w|λ, c,H)

=
(1−λ)φBak(wi)

λ[(
∑

topic φtopic(wi)P (topic|...))(1−c)+(
∑

state φstate(wi)γi(state))c]+(1−λ)φBak(wi)

For xi = 0, wi is generated by topics.

P (xi = 0|λ, c,H,w) =
P (xi = 0|λ, c,H)P (w|xi = 0, λ, c,H)

P (w|λ, c,H)

=
(1− c)P (wi|λ, c,H, xi = 0, w−i)P (w−i|λ, c,H, xi = 0)

P (wi|λ, c,H,w−i)P (w−i|λ, c,H)

=
(1− c)

∑
li

[P (wi|λ, c,H, xi = 0, li, w−i)P (li|λ, c,H, xi = 0, w−i)]∑
xi
P (wi|λ, c,H,w−i, xi)P (xi|λ, c,H,w−i)

=
(1−c)[(

∑
topic φtopic(wi)P (topic|xi=0,li=1,λ,c,H,w−i))λ+φBak(wi)(1−λ)]

(1−c)[(
∑

top φtop(wi)P (top|...))λ+φBak(wi)(1−λ)]+c[(
∑

sta φsta(wi)γi(sta))λ+φBak(wi)(1−λ)]

For xi = 1, wi is generated by states.

P (xi = 1|λ, c,H,w) =
P (xi = 1|λ, c,H)P (w|xi = 1, λ, c,H)

P (w|λ, c,H)

=
c[(

∑
sta φsta(wi)γi(sta))λ+φBak(wi)(1−λ)]

(1−c)[(
∑

top φtop(wi)P (top|...))λ+φBak(wi)(1−λ)]+c[(
∑

sta φsta(wi)γi(sta))λ+φBak(wi)(1−λ)]

Forward variable: We now further expand the forward variable in more details. The
Initialization is as follows:

For 1 ≤ i ≤ K:

A1(i) = P (O1, S1 = i|H)

= P (O1|S1 = i,H)P ((S1 = i|H)

= πi

N∏
n=1

P (w1n|S1 = i,H)

= πi

N∏
n=1

{(1− λ)φBak(w1n) + λ[(1− c)
∑
top

φtop(w1n)P (top| . . .) + cφi(w1n)]}

For K + 1 ≤ i ≤ 2K: A1(i) = 0
Induction is as follows:
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For 1 ≤ j ≤ K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

= (

2K∑
i

At−1(i)εηij)P (Ot|St = j,H)

= (

2K∑
i

At−1(i)εηij)

N∏
n=1

{(1− λ)φBak(w1n)

+ λ[(1− c)
∑
top

φtop(w1n)P (top| . . .) + cφj(w1n)]}

For K + 1 ≤ j ≤ 2K:

At(j) = P (O1, O2, . . . , Ot, St = j|H)

= (At−1(j) +At−1(j −K))(1− ε)
N∏
n=1

{(1− λ)φBak(w1n)

+ λ[(1− c)
∑
top

φtop(w1n)P (top| . . .) + cφj(w1n)]}

Backward variable: The initialization for backward variable is as follows:

For 1 ≤ i ≤ 2K:

BT (i) = 1

Induction is as follows:

For 1 ≤ i ≤ K:

Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

 K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)


+ (1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

=

 K∑
j

εηij

N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .)

+cφj(w(t+1)n)]}Bt+1(j)

)
+ (1− ε)

N∏
n=1

{(1− λ)φBak(w(t+1)n)

+ λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi(w(t+1)n)]}Bt+1(i+K)

For K + 1 ≤ i ≤ 2K:
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Bt(i) = P (Ot+1, . . . , OT |St = i,H)

=

 K∑
j

εηijP (Ot+1|St+1 = j,H)Bt+1(j)


+ (1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

=

 K∑
j

εηij

N∏
n=1

{(1− λ)φBak(w(t+1)n) + λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .)

+cφj(w(t+1)n)]}Bt+1(j)

)
+ (1− ε)

N∏
n=1

{(1− λ)φBak(w(t+1)n)

+ λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi−K(w(t+1)n)]}Bt+1(i)

Define z as follows:

zt,n(i) = P (Ttn = i|ltn = 1, xtn = 0, wtn, H)

=
P (wtn|Ttn = i,H, ltn = 1, xtn = 0)P (Ttn = i|ltn = 1, xtn = 0, H)

P (wtn|ltn = 1, xtn = 0, H)

=
φtop=i(wtn)P (Ttn = i|ltn = 1, xtn = 0, H)∑
i[φtop=i(wtn)P (Ttn = i|ltn = 1, xtn = 0, H)]

Let ξt(i, j) be the probability of being in state Si at time t, and state Sj at time t+ 1,
given O and other model parameters.

ξt(i, j) = P (St = i, St+1 = j|O,H)

=
P (St = i, St+1 = j, O|H)

P (O|H)

To express ξt(i, j), we have the following definition.
For 1 ≤ i ≤ 2K and 1 ≤ j ≤ K:

T1 = At(i)εηijP (Ot+1|St+1 = j,H)Bt+1(j)

= At(i)εηij

N∏
n=1

{(1− λ)φBak(w(t+1)n)

+ λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφj(w(t+1)n)]}Bt+1(j)

For 1 ≤ i ≤ K and K + 1 ≤ j ≤ 2K:

T2 = At(i)(1− ε)P (Ot+1|St+1 = i+K,H)Bt+1(i+K)

= At(i)(1− ε)
N∏
n=1

{(1− λ)φBak(w(t+1)n)

+ λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi(w(t+1)n)]}Bt+1(i+K)
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For K + 1 ≤ i ≤ 2K and K + 1 ≤ j ≤ 2K:

T3 = At(i)(1− ε)P (Ot+1|St+1 = i,H)Bt+1(i)

= At(i)(1− ε)
N∏
n=1

{(1− λ)φBak(w(t+1)n)

+ λ[(1− c)
∑
top

φtop(w(t+1)n)P (top| . . .) + cφi−K(w(t+1)n)]}Bt+1(i)

Correspondingly, we have the following ξ values according to the different i, j value
range:

ξt(i, j) =
T1∑

i

∑
j(T1 + T2 + T3)

ξt(i, j) =
T2∑

i

∑
j(T1 + T2 + T3)

ξt(i, j) =
T3∑

i

∑
j(T1 + T2 + T3)

Estimation of parameters:
We use the following equations to estimate the parameter values in the M-step.
For estimating ε:

ε =

∑U
u=1

∑T
t=1

∑2K
i=1

∑K
j=1 ξ(i, j)∑U

u=1

∑T
t=1

∑2K
i=1

∑2K
j=1 ξ(i, j)

For estimating π:

πi =

∑U
u=1 γ1(i)∑U

u=1

∑K
i=1 γ1(i)

for 1 ≤ i ≤ K

For estimating η:

ηij =

∑U
u=1

∑T
t=1 (ξt(i, j) + ξt(i+K, j))∑U

u=1

∑T
t=1

∑K
j=1 (ξt(i, j) + ξt(i+K, j))

for 1 ≤ i ≤ K, 1 ≤ j ≤ K

For estimating λ:

λ =

∑
u

∑
t

1
Nt

∑Nt
n=1 P (ltn = 1|λ, c,H,w)

UT

For estimating c:

c =

∑
u

∑
t

1
Nt

∑Nt
n=1 P (ltn = 1|λ, c,H,w)P (xtn = 1|λ, c,H,w)∑
u

∑
t

1
Nt

∑Nt
n=1 P (ltn = 1|λ, c,H,w)

For estimating φ:

φi(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn=1|λ,c,H,O)P (xtn=1|λ,c,H,O)(γt(i)+γt(i+K))

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn=1|λ,c,H,O)P (xtn=1|λ,c,H,O)(γt(i)+γt(i+K))

for 1 ≤ i ≤ K
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φBak(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn = 0|λ, c,H,O)

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn = 0|λ, c,H,O)

φTopic(w) =

∑U
u=1

∑T
t=1

∑
1≤n≤N

&
w=wtn

P (ltn=1|λ,c,H,O)P (xtn=0|λ,c,H,O)zt,n(Topic)

∑U
u=1

∑T
t=1

∑W
w=1

∑
1≤n≤N

&
w=wtn

P (ltn=1|λ,c,H,O)P (xtn=0|λ,c,H,O)zt,n(Topic)

P (Ttn = i|ltn = 1, xtn = 0, H) =
∑U

u=1

∑T
t=1

∑Nt
n=1 P (ltn=1|λ,c,H,O)P (xtn=0|λ,c,H,O)zt,n(i)∑U

u=1

∑T
t=1

∑Nt
n=1 P (ltn=1|λ,c,H,O)P (xtn=0|λ,c,H,O)
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