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Abstract—Critical Infrastructures (CIs) such as energy, wa-
ter, and transportation are complex networks that are crucial
for sustaining day-to-day commodity flows vital to national se-
curity, economic stability, and public safety. The nature of these
CIs is such that failures caused by an extreme weather event or
a man-made incident can trigger widespread cascading failures,
sending ripple effects at regional or even national scales. To
minimize such effects, it is critical for emergency responders to
identify existing or potential vulnerabilities within CIs during
such stressor events in a systematic and quantifiable manner
and take appropriate mitigating actions. We present here a
novel critical infrastructure monitoring and analysis system
named URBAN-NET. The system includes a software stack and
tools for monitoring CIs, pre-processing data, interconnecting
multiple CI datasets as a heterogeneous network, identifying
vulnerabilities through graph-based topological analysis, and
predicting consequences based on ”what-if” simulations along
with visualization. As a proof-of-concept, we present several
case studies to show the capabilities of our system. We also
discuss remaining challenges and future work.

Keywords-critical infrastructure; network; graph theory;
simulation; vulnerability; national-scale

I. INTRODUCTION

Critical Infrastructures (CIs) such as energy, water, trans-
portation and communication are lifeline systems which
are vital for public safety and security. CIs are mutu-
ally dependent in complex ways and understanding these
interdependencies is critical for emergency preparedness,
sustainability, and reliability. For instance, the energy-water
nexus [1] highlights the interdependendencies between water
and energy systems, where the energy network depends on
the water network for energy production, and the water
network depends on the energy network for treatment,
dissemination, and disposition. For instance, since 2004,
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water stress within certain regions in the US has led to
power plants to temporarily reduce their power output or
shut down entirely, and prompted at least eight states to deny
new plant proposals [2]. In fact, such dependencies exist
across multiple CIs, and make them highly vulnerable where
hazards affecting one CI network can potentially propagate
to other infrastructure networks and disrupt the functionality
of the entire system.

The very recent 2016 Puerto Rico blackout [3] is an
example that shows that a disruption of a substation affects
several CIs simultaneously. Power outages affected nearly
1.5 million customers of the US territory and then caused
problems in several infrastructure sectors such as traffic
jams, business closures, and water service shutoffs affecting
340,000 people. Several other significant events in recent
history such as the 2003 North American blackout, 2012
Hurricane Sandy, and the 2015 Nepal earthquake present
examples highlighting the catastrophic effects of these in-
terdependencies.

In order to minimize the negative impact to national
security and public safety caused by serious CI disruptions,
it is crucial to have certain key capabilities for identifying
both existing and potential vulnerabilities in the CIs in a
systematical and quantifiable manner. We argue that the
following steps are essential in achieving such a goal. First
of all, we need to be able to monitor live extreme events
(such as hurricanes, earthquakes, etc.) that can cause dire
cascading consequences with subtle but important differ-
ences in impact for each given event. Second, it is necessary
to robustly model various kinds of massive CI networks
and their operations so that we can rapidly identify existing
vulnerabilities. Finally, predicting potential vulnerable com-
ponents and damage under certain scenarios (e.g., predicted
or actual hurricane path) is a necessary requirement to enable
appropriate mitigative actions.

However, realizing a system with such functionality is not
straightforward because we need to consider several layers
of multidimensional (such as types of interdependencies,
types of failures, coupling, etc.) data at various scales of time
and space. The breadth and complexity of large-scale CI
data further exacerbates the problem. A number of previous



efforts addressing critical infrastructure dependencies [4],
[5], [6] have been limited by their considering a limited set
of critical infrastructure and performing qualitative analysis
as opposed to quantitative analyses. To the best of our
knowledge, no existing system provides a software stack
that performs vulnerability analysis for national-scale inter-
dependent CI networks.

In this paper, we present the current status of our URBAN-
NET system, which aims to provide monitoring for the CIs
and vulnerability analysis for national-scale heterogeneous
interdependent CI networks. URBAN-NET system has been
designed to include a set of network oriented tools that
can be a part of a CI monitoring and analysis work-flow.
Specifically, URBAN-NET comes with a suite of tools
for 1) pre-processing the geospatial physical infrastructure
datasets, 2) monitoring the status of CI networks, 3) flexibly
building a network of CI networks (i.e., a heterogeneous
CI network), and 4) performing both graph topological-
based and simulation-based algorithms with complex net-
works. We also visualize the results to provide relevant
insights for a decision maker. We build on various Big Data,
GIS (Geographical Information System), and graph-theoretic
technologies for development of each component.

The rest of the paper is organized as follows. In Section
2, we introduce background and related work. Section 3
presents an overview of URBAN-NET system focusing on
the generic work-flow and objective of each component.
In Section 4, we describe the detailed implementation of
URBAN-NET along with our best practices and case studies.
Finally, we conclude the paper in Section 5.

II. RELATED WORK

A. Infrastructure Vulnerability Analysis

Modeling and analyzing vulnerability of interdependen-
cies within critical infrastructure networks are challenging
tasks, since it involves multiple dimensions such as the types
of coupling and failures and type of interdependencies [7],
[8]. For instance, there exists a physical interdependency
between power substations and oil refineries for energy
generation, and between water stream network and gen-
eration power plants for water cooling. During a natural
disaster such as an earthquake, there exists geographical
interdependencies across all the CI networks. Also, there
exist cyber interdependencies between control networks and
the corresponding CI networks where a cyber attack can
cause severe business and infrastructure losses. damage [9],
[10], [11].

A number of previous works focus on analysis and sim-
ulation of CI networks, which are broadly categorized into:
empirical approach, agent based, system dynamics based,
economic theory based, and network based approaches [12].
There exist a number of mathematical frameworks [13],
[14], [15] and interdependency models [16], [17], [18] for
understanding the robustness of interdependent networks.

However, most of them focus on at most two CIs, which
limits their practicality. Furthermore, only a limited num-
ber of previous efforts in interdependency analysis focus
on the the impact of natural disasters, which limits their
effectiveness in emergency management. ORNL’s EARSS
models enables the analysis of weather related threats such
as hurricanes to the CI networks [19]. However, its usage
is still limited to two CI networks. In comparison, the goal
of our system is to model multiple CI networks of large
geographical region/network locations based on real-world
datasets.

B. Infrastructure Network Monitoring

A number of existing works utilize both GIS tools and
real-time natural disaster datasets for hazard analysis [20],
[21], [22]. Most of them focus on the analysis of a single
network. For instance, landslide hazard analysis can be
performed based on real-time data such as SPOT images [21]
or remote sensor data [22]. On the other hand, a framework
for both infrastructure monitoring and management was pro-
posed in [23]. However, it does not consider the interdepen-
dencies between networks and therefore lacks the practical-
ity in emergency management. ORNL developed tools such
as VERDE provide a wide-area situational awareness of the
grid infrastructure by allowing a decision maker to overlay
live weather, population data and distribution outages to
visualize the health, criticality and risk of utility [24]. In
this work, We inherited several features of these tools for
URBAN-NET’s network monitoring functionality. Indeed,
due to the development of technologies in infrastructure
network monitoring [25], [26], the health of infrastructures
can be reported in near real-time. However, we argue
that data analysis is the key to emergency management.
Our approach collects data from various utility companies
and social media for reports such as natural disasters and
outages. Combined with the interdependency analysis, we
will be able to provide a national-scale holistic view of the
infrastructure networks and a comprehensive capability for
efficient emergency management.

C. Big Data and GIS

There are a number of big data tools for large scale data
analysis, such as MapReduce [27] and Spark [28]. Both
tools provide scalability and fault-tolerance for applications
written in map-reduce programming model to processing
of large-scale datasets. To leverage advantages of such big
data tools, URBAN-NET’s data processing tools are mainly
written following the map-reduce programming paradigm.
Infrastructure analysis desires the capability of handling
geographical data. Geographical Information Systems (GIS)
provide the capability to efficiently store, retrieve, analyze,
and visualize spatial data. In order to support a GIS, sev-
eral geographical DataBase Management Systems (DBMS)
can be employed. We utilized PostGIS [29], which is an



open source extension that supports geographical data to
the PostgreSQL DBMS. In order to support the process-
ing large-scale geographical datasets, previous approaches
proposed frameworks above MapReduce that support GIS
features [30], [31]. Our previous work [32] proposed an
Infrastructure Vulnerability Analysis System that utilized
both big data tools and GIS tools for data management
and data analysis. In this work, we further extend our
previous framework and support other functionality such as
infrastructure monitoring. As a result, our system can be
useful in both data analysis and emergency management.

D. Network Analysis Algorithms and Tools

The graph representation of CIs has an advantage since it
can provide intuitive visualization to CI operators. Various
data formats are available. Shapefile [33] is one of the very
popular geospatial data format for GIS tools. The vector
features of Shapefiles, such as points, lines, and polygons,
can perfectly represent CIs, e.g., rivers, roads, and substa-
tion service areas. We utilized Shapefiles for CI networks
identities and visualization tools such as OpenLayers [34].
For network analysis, we convert them to other data formats
such as CSV files [35] and plaintext and utilize Big Data
tools to achieve better performance.

CI operators are often interested in quantifying the vulner-
ability of graph components (e.g., nodes, edges, subgraphs,
etc.), since it can provide more specific information to CI
operators. A few previous efforts incorporate simple graph-
theoretic measures such as node degree or betweeness [36]
for vulnerability analysis [37], [38]. For computation of the
graph measures, existing tools such as gm-sparql [39] or
NetworkX [40] can be used for computing various graph
measures such as node degree, connected component [41],
and node eccentricity [42] within a triple store.

Note that most of the conventional graph measures are
defined on a homogeneous graph, which is composed of a
single type of node and edge. In comparison, CI network-of-
networks graphs are heterogeneous. Therefore, for analysis
of CI networks, instead of directly using such measures, we
need to define new measures for identifying vulnerabilities
in CI networks incorporating domain knowledge of different
CI networks. We aim to leverage combinations of exist-
ing graph-theoretic measures for computing vulnerability
measures and processing networks, including node degree,
shortest paths, connected component [41], etc.

III. OVERVIEW OF URBAN-NET

The goal of URBAN-NET system is to provide a front-
end that can be used by subject matter experts to support
their decision making based on the vulnerability of the CI
infrastructures. In order to achieve such a goal, there are
many crucial back-end tasks such as data processing (e.g.,
conversion of file formats, constructing networks, etc.) and
data analytic at large-scale. Accordingly, the URBAN-NET

system not only refers to the front-end user-interface with
visualizations but also refers to a full-stack of back-end
software and hardware systems including data processing,
analytic algorithms and their implementations. Figure 1
shows the conceptual architecture of URBAN-NET system
and how its components of the system can interact with each
other.

Figure 1: Conceptual architecture of URBAN-NET system

Data processing: There exists a wide range of CI datasets
compiled by federal agencies or commercial vendors. For
instance, the United State’s National Geospatial-Intelligence
Agency (NGA) and the Department of Homeland Security
(DHS) published a unified infrastructure geospatial data
inventory, namely HSIP Gold [43], which includes domestic
infrastructure datasets collected from various government
agencies and partners. NHDPlus [44] is a dataset created
by the US Environmental Protection Agency (EPA), which
includes information about the nation’s hydrological frame-
work. Other examples include open-source Energy datasets
from U.S. Energy Information Administration (EIA) [45].
We notice that majority of such geographical these datasets
are being published in the Shapefile [33] format and com-
monly used in majority of GIS systems. Thus, URBAN-
NET is designed to use Shapefile as base datasets for
analysis. However, despite of Shapefile format’s advantages
such as interoperability and prevalence, it is not directly
usable for URBAN-NET’s analysis, as the format is rather
focused on visualizing vector components on a map. In com-
parison, URBAN-NET’s analytic tools take graph-theoretic
approaches to analyze the CI networks while Shapefiles are
not designed for performing network-based analysis. More
importantly, it is also difficult to utilize relationships of
entities in different Shapefiles.

Thus, the lowest layer of URBAN-NET is responsible for
transforming Shapefile datasets into the network (i.e., graph)
datasets that are more analysis-friendly, where for each
component its adjacent or linked components can be identi-
fied. URBAN-NET converts Shapefile datasets into network



datasets in the following order. First, it transforms Shapefiles
into CSV (Comma Separated Values) files. Note that most
big data tools such as MapReduce frameworks are designed
to use text files that can be easily split as its input data, so
the first step is transforming Shapefile, which is in binary
data format, into flat text file. Second, using a CSV file as its
input, it generates vertices and edges. Not all Shapefile data
will generate both vertices and edges; for example, if the
original data set only includes information about substations
and their locations, the generated network will only contain
vertices; as relationship or linkages information is not in
the original file. Third, if needed, URBAN-NET simplifies
the outcome of the second step. Some networks constructed
from a Shapefile can be overly complicated and may include
lots of vertices and edges that are not really useful for
network-based algorithms. The third task aims to reduce
the number of nodes and edges to make the network more
meaningful and processible. Initially, network constructed
from different datasets are independent and not connected
to each other. The last step is to create interdependency
links across different networks, which will integrate multiple
different datasets into one network.

The constructed network datasets are stored in the network
repository; then subset of the constructed can be composed
as a view for specific analytic tasks. It is important ac-
knowledge that data processing itself involves with many
research questions and implementation challenges in terms
of scalability. We will discuss the details of each step and
related tools in Section IV.A.
Network monitoring: To monitor status of CI networks
such as the electrical grid, the network monitoring tool
collects data from various data sources, parses and stores
them into the network status database. The goal of network
monitoring can be summarized into three major objectives.
First, it aims to expose dynamic status of a CI network
to subject matter experts so that they can be aware of a
emergency situation in near-real time. Second, it allows to
archive historical status of CI networks so that they can
be later used as base dataset for predictive or statistical
analysis. Last, it aims to use real-time event as a trigger
of a simulation-based analysis’s input so that the system
can automatically initiate performing useful analysis without
having to be requested by subject matter experts. The current
URBAN-NET system focuses mainly on the electrical grid
and outage status as its example implementation, inheriting
features from ORNL developed tool VERDE/EARSS [24].
However, the concept can be extended to other domains
such as gas pipe line, etc. We discuss the details such as
data sources, data collection and storage, coverage of current
implementation, etc in Section IV.B.
Network-based analysis: In the higher layer of URBAN-
NET, we provide network-based analysis to answer these
questions: (1) how efficient is the CI network as a whole?
What are the most important nodes/edges in the network

whose removal cause largest impact? (2) What are the
consequences of a given event (like a hurricane, earthquake,
etc.), which triggers a set of initial failures?

The topology-based analysis aims to answer the first
question. The challenges here are how to characterize the
efficiency of the network with different types of nodes and
edges, and how to quantitatively measure the importance
of nodes and edges. The current version of URBAN-NET
provides two quantitative measures for CI network analysis
that are efficiency score and reachability score for network
components. In this work, we show examples of topology-
based analysis using the road-gas station network.

The simulation-based analysis answers the second ques-
tion. It aims to understand how effects of perturbation events
in an infrastructure (e.g., damage in the road network)
can spread out across multiple infrastructure networks via
simulation. Directly adopting existing propagation models
such as random-walks [46] and label propagation [47]
may not be appropriate for this task. These methods usu-
ally assume local propagation where failure/labels propa-
gates through links, while in CI networks, a failure of a
node/edge can cause failure in disconnected nodes/edges.
Hence, we propose a rule-based simulation for this tasks,
which captures the main physical interdependencies between
nodes/edges. Our simulation with various what-if scenarios
such as random perturbations (inactivating random nodes
or edges), targeted perturbations (inactivating nodes with
higher number of edges), regional perturbations (inactivating
a set of nodes or edges located in a region) can be useful
for CI operators. Further, we provide visualization of our
simulation results to support better decision making.

IV. URBAN-NET TOOLS AND BEST PRACTICES

A. Data processing tools

URBAN-NET’s data processing tools provide methods
for users to flexibly build network datasets using given
Shapefile datasets, depending on the analysis that needs to
be performed. A network dataset refers to a dataset where
its data components are composed of a set of vertices (i.e.,
nodes) and a set of edges. Generally speaking, a vertex
represents an entity on the map, which usually contains its
geographical location and other properties. For instance, a
substation can be represented as a vertex in the network
dataset. On the other hand, an edge represents a relationship
between entities; for instance, transmission line connecting
from a substation to another substation can be represented as
an edge. In some cases, a vertex or an edge does not repre-
sent physical entities, and they only represent geographical
locations. For example, in case of road network, an edge
representing a road (or a part of road) is a linkage between
two nodes representing geographical locations. We use node
list and edge list file to represent a network (See an example
in Figure. 2).



Figure 2: Example of node list, edge list, and header files

Network data construction is done by performing a series
of tasks. Figure 3 shows the pipeline of using data processing
tools to create a CI networks. shp2csv transforms shapefile
format datasets, which are binary datasets that are not
distributed processing friendly, into flat CSV files that are
more preferable by most Big Data tools. Internally, it relies
on shp2pgsql tool that is included in the PostGIS software
package, which imports the shapefiles into a PostGIS/Post-
greSQL database table. After importing a shapefile dataset
into a temporary database table, shp2csv exports the table
to a CSV file and creates a header file that describes the
columns of the table. Separating header from data allows
easily splitting data into multiple chunks and processing
them in parallel manner.

Figure 3: Data processing pipeline

The current version of shp2csv supports POINT, MUL-
TILINESTRING, and MULTIPOLYGON types of shapefile.
To be more specific, a POINT type shapefile is composed
of a set of geographical locations and their properties. A
MULTILINESTRING shapefile includes entities where each
entity represents a set of lines (i.e., series of geographical
locations, e.g., river stream or street). A MULTIPOLYGON
shapefile contains a set of entities that represent a set of
polygons (i.e., closed loop of geographical locations, e.g.,
service area).

Next, csv2net tool takes a CSV file generated by shp2csv
as its input and converts the file into a node list file, a node
header file, and an edge list file. It processes every row in the
input CSV file and generates nodes and edges accordingly.
If a row represents a POINT or a MULTIPOLYGON object,
it is transformed into a vertex. A unique value is then

assigned to the node as a identifier NODE ID, and the
node inherits property values of the object. In case of
POINT, the LAT (latitude) and LON (longitude) values
are extracted from the original object and added to the
constructed node property value. Similarly, GEO property
whose value is a sequence of ( LAT, LON) are added to the
node constructed from MULTIPOLYGON as a property value.
If a row represents a MULTILINESTRING, each geographical
location that composes a line are converted to a node, then
the connections between nodes are converted into edges.
Similar to the nodes generated from POINT shapefile, a node
identifier is assigned and properties are inherited to each
node. This conversion process is embarrassingly parallel and
implemented following the map-reduce programming model
for scalable processing. More specifically, map function
takes care of the node and edge generation logic, no reduce
task is required. We implemented the tool in Python, and it
runs on Apache Hadoop [48] via Hadoop streaming [49].

net-simplifier performs network simplification, which is
an optional task, but very useful in most cases. Because
shapefiles are originally developed to precisely describe a
shape of an object, in many cases, too many vertices and
edges can be generated if we directly convert them into a
network. Thic can be problematic because too many vertices
and edges can negatively affect not only performance in
terms of processing time but also the accuracy of analysis.
net-simplifier filters out nodes whose edge degree equals 2,
then directly connects two nodes connected via the removed
node, so that the terminal nodes and intersection nodes
remain. Figure 4 shows how a complicated road network
constructed from a MULTILINESTRING shapefile can be
simplified the tool.

(a) Before simplification (b) After simplification

Figure 4: Comparison of road network before and after
simplification

Similar to csv2net, we implemented this functionality
based on a map-reduce programming, and it is processed in
4 steps, as shown in Algorithm 1. The first map-reduce phase
computes edge degree for each node from the given edge.
For every node in the given edge list E={e1,e2,. . . }, map
function emits (start node ID(e),1) and (end node ID(e),1),
then reduce function aggregates the values by keys. In the
second phase, vertices are filtered using a map function by
checking if the degree of each vertex does not equal to 2.



Algorithm 1: Pseudo code of map function to create
simplified network

Data: linestring list L={l1,l2,. . . }
function MAP(l)

// Getting the sequence of vertices {v1,v2,. . .}
vprev←φ;
V ← getVertexList(l);
// Create edges to keep and emit them
For vi in V
if vprev=φ then

if checkToKeep(vi) then
vprev← vi;

// checkToKeep(vi) returns True,
// if degree(vi) 6=2 or,
// vi is the first or the last vertex of l
else
if checkToKeep(vi) then

emit(e(vprev ,vi));
// Emitting an edge vprev→vi
vprev←φ;

else
pass;

The third phase is to create vertex sequence of original
shape of MULTILINESTRING. The map function of this
phase takes the edge list file and emits the object IDs of
the original shapefile objects as key along with other edge
property values, then the reduce function aggregates them
and reconstruct linestring sequences of vertices. The output
result can be formalized as a set of linestrings L={l1, l2,
. . .}, where ei,j represents jth element of linestring li. The
final phase reproduces edges while checking the degree of
nodes at each side of the edge using a map function.

Network datasets created by the previous tools create a
network from a single data sources. net-linker performs
the last task in the data processing pipeline, which is to
create interdependency links across nodes constructed from
disparate datasets. The current version of URBAN-NET, we
mainly focus on geographical interdependencies. We support
two rules to create edges between nodes that are nearest-
neighbor and contained-in-polygon. The tool takes two net-
work datasets as input data. For every node in a network data
set, the nearest-neighbor rule identifies the nearest node in
the other given network and generates edges between them.
Similarly, contained-in-polygon creates edges if a node in a
network is geographically contained in a geographical shape
of a node. Note that contained-in-polygon is applicable
only if one input network contains nodes constructed from
MULTIPOLYGON shapefile objects. Performing geographi-
cal operations such as finding nearest points, determining
overlaps, and measuring distance without proper indexing
techniques can be very expensive. So we leveraged the

indices (e.g., R-Tree-over-GiST [50], etc.) supported by
PostGIS to efficiently generate interdependency links in the
implementation of net-linker.

B. Network monitoring tools

URBAN-NET network monitoring tools provides situa-
tional awareness of CIs by providing a holistic view of the
health of the critical infrastructures. Existing version mainly
provides information about the US electric grid while the
concept can be applied to all other CIs. These monitoring
tools extract near real-time data from various sources such as
websites and social media of a number of utility companies
across the country by periodically crawling and parsing the
outage information. The data is then aggregated and stored
in a POSTGIS database for analysis. We mainly provide
two tools through the external data parser implementation:
National Outage Map Parser and Social Media Parser.

The national outage map parser crawls data from
the outage websites of around 200 utilities every 15 min-
utes [51]. It parses the outage information and aggregates
outage data at the county level. Specifically, for each county,
we provide the number of outages, number of customers
affected, total number of customers served, and other in-
formation such as the expected restoration time. The data
is then visualized as a choropleth map using tools such
as OpenLayers [34], as illustrated in Figure 5. Combining
this live data obtained from textitexternal data parser with
weather data from NOAA, landscan population, hazard
layers from USGS, USDA Forest service etc can quickly
show the correlations between weather and impacts on the
distribution grid.

Figure 5: National Outage Map visualization during the
Hurricane Matthew

The social media parser extracts real-time power outage
information from social media streams (e.g. twitter) of sev-
eral utility companies [51]. Relying on streaming data from
twitter provides situational awareness for regions where we
have no coverage within the national outage map. This tool
crawls tweets published by several twitter accounts of the
utility companies, filters unrelated information, aggregates
the necessary outage information such as number of outages
and location of the outage, and stores it into the database.



The data is then visualized as a choropleth map based on
the number of tweets published by various utilities using
OpenLayers. The archived dataset collected from the exter-
nal data parser supports identification of network recovery
patterns within the distribution grid.

C. Analytic tools

In this layer, we provide network-based analytic tools to
further analyze the network constructed by URBAN-NET.
Our topological-based analytic tool takes the heterogeneous
network constructed by URBAN-NET, and outputs the im-
portance score for each node and edge in the network. Our
simulation-based analytic tool takes a set of initial failure
nodes/edges as input, and predicts how the failure cascades
through the network and estimates the final scale and impact
of the event.

1) Topological analysis: The goal of this tool is to
identify important components and interdependency links,
the failures of which may cause catastrophic effect on the
entire network. There can be many different quantitative
measurements of the node/edge importance depending on
the type of CI network we study. In the following, we show
as a concrete case study how such a measurement can be
designed on a network with two different types of nodes.

In this case study, we create a heterogeneous graph
composed of road network and gas stations constructed by
URBAN-NET. We use GR, GG to denote the two individual
networks, and VR, VG the set of nodes in the two networks.
We interlink the two networks by connecting each gas
stations to the closest two road nodes. Then we define the
following efficiency score for the entire network:

α(GRG) =
1

|VR|(|VR| − 1)

∑
vi,vj∈GR,vi 6=vj

1

dvivj︸ ︷︷ ︸
transportation efficiency

+

λ
1

|VR|
∑

vi∈VR

1

d∗vi︸ ︷︷ ︸
reachability of gas stations

where d∗vi = min
vj∈VG

dvivj (1)

where dvivj is the length (sum of edge weights) of the
shortest path from vi to vj , d∗vi

is the length of the shortest
path from vi to its closest gas station, and λ represents
the weight we put on the second component in Eq. 1. The
transportation efficiency component calculates the average
inverse of distance between all node pairs in GR, and the
reachability of gas station component measures the average
inverse of distance from any node to its closest gas station.
Hence, a higher value of α(GRG) indicates a better GRG

as it is easier to reach other road nodes and the gas stations
in the network. Then we can define the importance of a
node/edge naturally by calculating the decrease of the overall

Algorithm 2: Importance score ∆α calculation
Data: GR, GG, λ
Result: ∆α for all nodes and edges.

1 Construct GRG from GR, GG as described in Section IV-C1
2 SP={}, t=0, r=0//Initialization
3 for vi, vj ∈ VR, and vi 6= vj do
4 SP[vi][vj]=shortest path from vi to vj
5 t+= 1

dvivj

6 for vi ∈ VR do
7 Find the closest vj ∈ VG
8 SP[vi][vj]=shortest path from vi to vj
9 r+= 1

dvivj

10 t=t/|VR|(|VR| − 1), r=r/|VR|
11 α(GRG) = t+ λr
12 ∆α = {}
13 for every node/edge x in GRG do
14 Construct G′RG
15 Recalculate SP[vi][vj] if it contains the x
16 ∆α(x) =

α(GRG)−α(G′
RG)

α(GRG)

network efficiency upon its removal:

∆α(vi) or ∆α(ei) =
α(GRG)− α(G′RG)

α(GRG)

where G′RG is the network after removing vi/ei, and we
normalize the score by dividing the difference with the
original network efficiency. The pseudo-code for calculating
the ∆α is shown in Alg. 2. In practice, we use python
to implement the code, and calculate the shortest paths in
parallel to speed up the process.

As an example, we visualize our topological analysis
results for a small region around Chattanooga in Figure 6.
We observe that in both Figure 6(a)(b), we are able to
identify important nodes and edges in the network. And in
Figure 6(c)(d), we see that road nodes with heavy-traffic, and
gas stations close to many road nodes are correctly identified
as important. Such analysis can be extended to other types
of network as well, and we aim to finally design important
score formulation for all major CI networks in the future.

2) Simulation-based analysis: We took a simulation-
based approach to allow generation of various what-if sce-
narios by varying input (such as random perturbations, tar-
geted perturbations, regional perturbations, etc.), and analyze
the final output consequences of these input perturbations.

Designing such a simulation system is a very hard task
because there are many different types of interdependencies
between different CI networks, and it is also hard to identify
the temporal factors in the sense that it is not clear when
the failure would happen. Also, the timescales of propaga-
tion of perturbation is very different for these CIs. While
identifying the most important interdependencies between
major CI networks and how the failure happens temporally
is our final goal, as a first step, we study only the physical



(a) ∆α score statistics (λ = 0) (b) ∆α score statistics (λ = 1)

(c) Map visualization for ∆α scores (λ = 0) (d) Map visualization for ∆α scores (λ = 1)

Figure 6: ∆α score results. (a), (b) shows the mean and standard deviation of the ∆α(·) scores for each type of node and
edge. (c), (d) shows the map visualization of the scores, where the node size is proportional to its score, and the color of
an edge is also associated with its score using a heat map (the lighter the color, the more important the edge).

interdependencies without considering the temporal aspect.
The physical interdependencies refer to the situation where
the state of one system is dependent on the material outputs
of another system. And we assume that when one node
loses its supports, it fails immediately without any resistance
(adding resistance and time delay is one of our work in
progress).

As an example, we identify important types of com-
ponents in the power network, natural gas network and
transportation network, and use URBAN-NET to construct
a corresponding heterogeneous network (see details in Ta-
ble I). To realize the support chain in the system, we create
interlinks between different infrastructures in the following
way.
Substations are connected to the nearest transmission bus
node since it gets electrical supply from it. Each substation is
also connected to the road nodes, natural gas compressors
within its service area to capture the fact that it provides
power to these local facilities.
Power plants are connected to the nearest natural gas
pipeline and the nearest transmission bus node, since they
get fuel from the pipelines and output power through the
electric grid transmission network.

Natural gas compressors are connected to the nearest
pipeline to capture the fact that the flow and the pressure
of the natural gas along these pipelines depends on the
compressors.

Table I: Summary for the heterogeneous network constructed
by URBAN-NET.

Now we define the following physical-dependency-based
rules to simulate the failure cascade:



Substation-Power generator: If a substation does not have
a path to any power generator through the transmission
network, it fails.
Road-Substation: If a road is not covered by the service
area of an active substation, the traffic signals are affected
and the road would eventually fail.
Natural gas compressor-Substation: If a natural gas com-
pressor is not covered by the service area of an active
substation, it fails.
Power generator (Gas)-Natural gas compressor: If a gas-
type power generator (which uses natural gas to generate
power) does not have a path to any natural gas compressor
through the pipeline network, it fails.

With the above rules, given any perturbation (e.g., in-
activate nodes in an area), we can identify the nodes that
will fail next, and simulate the results of the final cascade.
For example in figure. 7, we construct the heterogeneous
network in Florida and visualize them using Gephi, and we
randomly choose initial failure nodes at the beginning. We
are able to see the how the failure spreads from the initial
failed nodes to other nodes. We will develop our own web-
based visualization, and our simulation-based tool would
eventually be able to estimate the number of affected nodes
in each infrastructure network and visualize the foot print of
the cascade in an intuitive way for better sense and decision
making.

Figure 7: Visualization of our simulation-based tool and
results for power, natural gas and road network in Florida.

V. CONCLUSIONS

We present URBAN-NET, a critical infrastructure mon-
itoring and analysis system. This system consists of a set
of CI network monitoring and analysis tools to provide
a holistic view of the health of CIs and their interde-
pendencies. In case of a stressor event such a natural
disaster, the tools provide regional and national views of
failures based on available data (both raw and processed).
The data processing tools transform physical infrastructure
data sets and represent these heterogeneous CI networks as
network-of-networks for scalable graph-theoretic analysis.

With real-world datasets, We demonstrate how URBAN-
NET’s topology-based and simulation-based analytic tools
can enable systematic analysis across CI networks to quan-
titatively and visually identify existing vulnerabilities within
the interconnected networks. For future work, we plan to
perform extensive evaluations in terms of scalability and
validations of analytic results with real-world scenarios.
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