
/7 soF'/t,,,,n,re¢ D toPm NT".
Using a Co nf=guration Management Tool to CoordInate

Software Development

4T

Rebecca E. Grinter
C o m p u t e r s , O r g a n i z a t i o n s , P o l i c y , a n d S o c i e t y

D e p a r t m e n t o f I n f o r m a t i o n a n d C o m p u t e r S c i e n c e
U n i v e r s i t y o f C a l i f o r n i a , I r v i n e

I r v i n e , C A 9 2 7 1 7 - 3 4 2 5

r g r i n t e r @ i c s . u c i . e d u
h t t p : / / w w w . i c s . u c i . e d u / d i r / g r a d / C O R P S / r g r i n t e r

ABSTRACT
I describe a naturalistic study of one organization's use of a
configuration management tool to coordinate the development
of a software product. In this organization, the developers use
the tool routinely to reduce the complexities of coordinating
their development efforts. I examine how the tool provides
mechanisms of interaction that let the developers work with
each other. 1 identify four aspects of these mechanisms:
difficulties of representing work, the multiple levels that they
operate at, the possibilities for coordination they provide, and
their role in supporting a model of work.

KEYWORDS: configuration management (CM), computer-
supported cooperative work (CSCW), organizational memory,
articulation work, mechanisms of interaction.

INTRODUCTION
In the last ten years there has been an explosion in the amount
and kinds of software. A number of factors have contributed to
this explosion, including: the multitude of hardware platforms
that need to be supported, market competition pressures, and
the ability to build more functionally complex software.
Factors such as these, as well as the increasing demand for new
innovative software, have encouraged the industry to grow. In
response the industry has employed more people to build
software quickly and reliably.

However, as Fred Brooks (1974) observed, adding more people
to a software project does not necessarily decrease development
time. What software project managers like Brooks discovered
were problems of coordinating groups of developers working
on the same project. Software engineers have typically
addressed the difficulties of group work by developing formal
procedures that structure the work of building software
(Pickering and Grinter, 1995). These formal procedures
include: modularization, process models, and formal methods.

Software engineers have also built systems that provide
automated support for some of these formal procedures. These
technologies are groupware aimed at supporting software
development work. Yet despite their existence few researchers
outside of the software engineering community have explored
how these systems support group work in practice (but see
Orlikowski, 1991; Hughes et al., 1994).

In this paper I describe one system designed to resolve some of
the challenges of coordinating group work. This particular
technology, a configurat ion management (CM) tool,
incorporates a configuration management approach to
handling the complexities of managing software development.
The paper begins with a description of configuration
management, and how it involves coordinating the work of
multiple developers. Next, the paper focuses on the types of
formal procedures embedded into CM tools and how developers
use those procedures in their work. I also describe the times
when formal procedures do not help the developers and what
they do in order to maintain the coordination required to
develop a software system. Finally implications for research
in supporting the work of groups are discussed.

C O N F I G U R A T I O N M A N A G E M E N T AND
COORDINATION WORK
Managing the Evolution of Software
Configuration management addresses the problems of
managing the evolution of software (Bersoff et al., 1979).
Software is hard to manage for three reasons. First, developers
can easily change code. Second, the modifications can affect
the behavior of the entire system because of the
interdependencies among modules. Third, because teams
develop software the changes one person makes often impact
the work of others. Configuration management procedures
focus on controlling developers' abilities to alter code. By
controlling the changes, configuration management tries to
ensure that the evolution of the software product goes steadily.

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copyright
notice, the title of the publication and its date appear, and notice is given
that copyright is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
COOCS 95 Milpitas CA USA © 1995 ACM 0-89791-706-5/95/08..$3.50

Small development teams often manage the evolution of
software by communicating with each other. As one informant
in this study explained:

We used to have this really cool way of handling it,
(software development) where we'd do the whole release
in a single version. Everybody just, it was public and
everybody modified it, well we had a very small team
so it was manageable because we could talk over the
walls to each other.

168

When teams grow larger they can no longer communicate at
that level of detail about the changes made to the system.
Instead they use procedures such as reports and announcements
to notify everyone about the status of the software. These
procedures are intended to keep software from being changed in
ways that adversely affects the work of others.

First generation configuration management tools automated
these mechanisms by using access controls. 1 Using a library
metaphor for programming, these tools used "check-out" and
"check-in" states to control changes to software. To make any
modifications to a module of software developers had to check
out the code. When a developer checked-out a module, the tool
made a new version of the code and prevented others from
checking out the same software. When changes had been
completed, the developer checked in the code. A checked-in
module was stable and usually working. Other developers could
read and execute it with their own modules. By checking-out
and checking-in code developers created successive versions of
the module that the system stored.

These systems supported software development by providing
code versioning. However, they had two disadvantages. First,
they only worked for code. Software systems contain more
than just code, including: libraries, test suites, makefiles, and
documents. Modern configuration management systems use
database technology to manage large data repositories that
store all the types of artifacts that make up a system.

Second, the checked-out state turned out to be very limiting
because it prevented others from changing the same module at
the same time that slowed down developers' ability to get their
work done. Modern systems solved this problem by allowing
parallel development. If one developer checks out a module
they create a new version of that code to work on. If a second
developer also checks out the same module, from the last
checked-in state, then they create another new checked-out
version of the code. Both developers can now make their
changes and then integrate them.

Modern CM tools also support three other layers of
functionality on top of the check-out/check-in model
(Caballero, 1994). The configuration control layer maintains
information about the artifacts that form a software product. It
knows which versions comprise a specific system and how
they relate to each other. This has a number of advantages in
modem software development contexts. Typically a software
development organization builds a family of products for
different hardware platforms. The configuration control level
allows developers to find out exactly which artifacts belong to
a certain hardware platform. Often development organizations
support older products as well as developing new releases. The
configuration control layer allows developers to recreate both
previous and current releases of any software stored inside the
CM data repository.

The process management layer provides a "life cycle" for each
type of artifact stored in the system. A life cycle consists of a
number of states. For example a typical life cycle for a
software module consists of the checked-out, checked-in,
quality-tested, and released states. While the developers are

most concerned with the checked-out and checked-in states,
testers of the software use the quality-tested state to signal that
a particular version of a software module has passed rigorous
system testing.

Finally, the problem reporting layer supports bug and
enhancement tracking. Modifications to the artifacts in the
system occur as a result of problems with the function of the
system or enhancements requested for future products. The
problem reporting layer provides a way of linking the bugs or
enhancements to the changes themselves. Modern CM tools
either have built in process management and problem
reporting, or provide the necessary connections to allow users
to build it themselves or purchase another off-the-shelf system
and integrate it into the CM tool.

Configuration Management and Articulation
Work
Configuration management specialists do not describe
difficulties of group work in ways that seem familiar to
information systems researchers. They focus on the challenges
of managing projects rather than the social dynamics of teams.
However, they recognize that group work creates added
complexity for managing software development. For example,
Babich (1986) describes configuration management as:

...the day-to-day and minute-by-minute evolution of
the software inside the development team. Controlled
evolution means that you not only understand what you
have when you are delivering it, but you also
understand what you have while you are developing it.
Control helps to obtain maximum productivity with
minimal confusion when a group of programmers is
working together on a common piece of software.
(Babich, 1986 p. vi.)

Clearly he believes that configuration management can reduce
the complexities of coordinating developers.

One stream of research has characterized the coordination of
work as articulation work (Strauss 1985, 1988). Strauss
defines articulation work as:

Articulation work amounts to the following. First the
meshing of the often numerous tasks, clusters of tasks,
and segments of the total arc. Second, the meshing of
efforts of various unit-workers (individuals,
departments, etc.) Third, the meshing of efforts of
actors with their various types of work and implicated
tasks. (The term "coordination" is sometimes used to
catch features of this articulation work, but the term
has other connotations so it will not be used here.)
(Strauss, 1985. p 8) 2

Articulation work is all the coordinating and negotiating
necessary to get the work at hand done. In this case software
developers work on building systems. However because they
work in groups they must also coordinate their changes with
other people's modifications. Because CM tools attempt to
support their articulation work electronically they are
groupware systems.

1 The early systems are also known as version control
systems. Two popular systems are Revision Control System
(RCS) and Source Code Control System (SCCS).

2 The total arc Strauss refers to "consists of the totality of
tasks arrayed both sequentially and simultaneously along the
course of the trajectory or project." (Strauss, 1985. p4)

169

M e c h a n i s m s of Interact ion
Schmidt and Bannon (1992) have applied the concept of
articulation work to the research problems in the computer
supported cooperative work (CSCW) community. They
describe how individuals engage in articulation work as part of
their daily routines. They say:

However in 'real world' cooperative work settings ...
the various forms of everyday social interaction are
quite insufficient. Hence articulation work becomes
extremely complex and demanding. In these settings,
people apply various mechanisms of interaction so as
to reduce the complexity and, hence, the overhead cost
of articulation work ... These protocols, formal
structures, plans, procedures, and schemes can be
conceived of as mechan i sms . . . And they are
mechanisms of interaction in the sense that they reduce
the complexity of articulating cooperative work.
(Schmidt and Bannon, 1992 p. 18-19, italics in
original)

Examples of these mechanisms of interaction include plans,
and standard operating procedures. These mechanisms
supplement forms of social interaction like e-mail, video
conferencing, and other forms of communication.

Although Schmidt and Bannon do not explicitly say that group
size might render "the various forms of everyday social
interaction" insufficient for articulation work but this must be a
factor. Large groups of "project size," as Grudin (1994) (based
on Curtis et al., 1988) calls them, can not find out what the
status of the project is by social interaction alone. The
overhead of finding people, speaking with them, and having it
happen so quickly that nothing has changed is unrealistic.

From exper iences of managing software projects ,
configuration management specialists devised mechanisms of
interaction to organize the development process. They also
developed computer systems to SUllport configuration
management. However, configuration management specialists
did not adopt solutions to increase the communications
bandwidth such as e-mall. Instead they embedded mechanisms
of interaction, the configuration management procedures, into
a CM tool.

CM tools provide an opportunity to examine computerized
mechanisms of interaction. In this study I discuss four aspects
of the mechanisms of interaction supplied by a CM tool:
diff icult ies of representing work, mult iple levels of
mechanisms, new possibilities for coordination provided by
mechanisms of interaction, and models of work supported in
these mechanisms. For each of the aspects I explore the
interplay between the mechanisms of interaction and the social
interaction necessary to coordinate software development
work.

ORGANIZATIONAL SETTING
The CM tool market has grown rapidly in the last few years and
market analysts estimate that it will be worth approximately
$1 billion worldwide by 1998 (Ingram, 1994). 3 This study

3 Drives for bringing quality into the software development
process include the Software Engineering Institutes' (SEI)

focused on the development division of one CM tool vendor
who I call "Tool Corporation," that competes in an oligopoly
for this market.

Specifically I studied how the developers responsible for
building the CM tool actually use their CM tool to manage
their work. The group consisted of 14 members, including the
manager, and software testing group, who also use the tool in
their daily work. Because the developers use the CM tool to
build the latest version of CM tool itself, they are experts in
using it.

Obviously, studying expert users of the CM tool affects the
conclusions that I can draw, but it also offers several
advantages. While there are some studies of electronic mail
usage few researchers have studied the use of more sophisticated
CSCW systems. There are even fewer studies of the use of
advanced CSCW systems in the workplace. Studies of CSCW
technologies in workplaces have focused on the adoption of
CSCW technologies (Orlikowski, 1992; Bowers, 1994). These
studies, and others such as (Grudin, 1989), point out the
difficulties that users had adapting to the new technologies.

Orlikowski's (1992) study of the adoption of Lotus Notes TM in
Alpha Corp. revealed that the users of the system did not have
cognitive frames that matched the technology. Specifically,
the users did not completely understand the group features of
the system and typically used single user applications. By
studying a group of experts who have used the technology for
some time I did not encounter problems of cognitive frames.

The users of a CSCW network that Bowers studied understood
the purpose of groupware technologies. They were actively
engaged in examining the potential uses for CSCW technology
in the British government. They developed and used the
network to learn more about the technologies. However,
Bowers found that the users had trouble establishing new ways
of working with the network. In this study the software
developers had progressed beyond the initial difficulties of
customizing their work routines to work with a new
technology.

The ways in which the developers used the CM tool and the
problems that they had are reminiscent of Suchman's (1983)
study of purchasing staff. She showed how the staff understood
the formal procedures governing their work. She also
demonstrated how those formal procedures did not recognize
the contingencies in their day to day activities. One
distinction between Suchman's study and this one is that the
configuration management procedures used to coordinate
software development are computerized.

M E T H O D S
I conducted a three and a half month on-site interpretive study
of the company in mid-1994. I adopted participant, non-
participant observation, and interviewing strategies to collect
data (see Jorgenson, 1989). Supplemental material was
gathered by reading journals, reports, electronic discussion
lists, and company documents.

My par t ic ipant observat ion included: helping with
development activities, including usability testing, multiple

Capability Maturity Model (CMM) and the ISO 9000 series of
standards.

170

user testing, reviewing documentation, and attending
meetings. I also had full access to the development
environment created by the CM tool so I could watch the work
in progress. I used two interview gathering strategies,
informal interviewing and semi-formal interviewing. The
interviews lasted anywhere from 20 minutes to 2 hours. The
semi-formal interviews were taped and transcribed and the
informal interviews were written up after they took place. In
total 20 semi-formal interviews and 80 informal interviews
took place.

Initially, data analysis concentrated on understanding how the
developers used the CM tool to coordinate their work. The
initial informal interviews were used to confirm and detail
usage patterns. At the same time, the distinction between CM
tools and more traditional forms of groupware such as e-mail
and video-conferencing started to emerge, that led me towards a
conception of this tool supporting mechanisms of interaction,
rather than social interaction. This observation was used to
develop the interview guide for the semi-formal interviews.
Developers were encouraged to discuss their use of the CM tool
and what they do when the tool does not support them. The
final stages of data gathering and analysis focused heavily on
fleshing out the concepts.

THE ROLE OF CM TOOLS IN COORDINATING
WORK
The Case of Parallel Development
The developers call the times when more than one person has
the same module checked out, "parallel development." This
happens when different developers have changes that require
them to work on the same module. Despite having mechanisms
of interaction to support the activity the developers find
parallel development difficult.

liz I "12 tim I "1,3

Figure 1: The time line view of an artifact

The tool provides a mechanism of interaction that helps the
developers to choose whether to engage in parallel
development. The CM tool maintains a time line view of the
evolution of every artifact in the data repository (see Figure 1).
The time line shows the history of an artifact's development as
a series of boxes and lines that chart its evolution over time.
Each box represents a version of the artifact and that
corresponds to a time in the development of the artifact. The
boxes show the name of the artifact (a.c), the version number
(1,2, and 3), the person who worked on the artifact (Liz, and
Tim), and the state of development then (checked in, and
checked out).

Developers use the time-line views of modules to find out
whether anyone else is currently working on the code they need
to alter. In the time line view shown in Figure 1, Tim has the
latest version of a.c checked out for changes. All the
developers working on this project can also see that Tim has
the module checked out, because they have access to the same
time line view. This allows them to make decisions about
whether they want to engage in parallel development. Often if

developers see that someone has the latest version checked out,
they either ask the person working on it to incorporate their
changes into that version, or try to work on some other task.

However, sometimes the developers can not avoid parallel
development. Their changes may be too complex to ask
another person to work on, or they may be too critical to
postpone until parallel development can be avoided. So the
developers check out another version of the module. At this
point, even if they have looked at the view, the system flags
them with a message telling them that they have made a
parallel version.

When the developers have completed their changes they
usually have to merge their code with the changes made by the
other person. 4 The person who finished last takes
responsibility for merging their work with the other person's. 5
The tool supports merging by providing a facility that
compares the two files and displays the lines that differ. The
developer responsible for merging selects the lines that need to
appear in the integrated module.

Merging can be easy when the developers have changed
different parts of the module, for example if someone has
changed the comments and another person has altered the
functionality. Developers find cases like this easy because the
changes involve distinct parts of the module and that shows up
clearly in the merge display. In these easy cases the developer
simply merges the modules without consulting anyone.

However, sometimes merging becomes too difficult for a
developer to do without communicating with the other person
who worked on the module. The times when this happens
usually occur when both the developers have modified the same
lines of code or algorithm. When this happens the complexity
of merging rises because suddenly differences become embedded
in the context of how a module works, what problems and
enhancements the developers were working on, and which
solution developers chose to implement.

At this point the developer responsible for merging finds the
other person who also modified the module. They discuss what
they did, explaining their programming strategies, the
problems they solved, and the functionality that they believe
the module possesses. They work together to develop a shared
understanding of both modules, and determine the functionality
of the merged module. This activity often takes place as a joint
merging effort. The developers sit around one terminal and
select the lines that should go into the final merged module.

Developers avoid parallel development because of the potential
complexities of merging. The difficulty of coordinating the
efforts of multiple developers in a single module cuts into their
development time. The mechanism of interaction that
formalizes merging tries to eliminate some of these
difficulties, but clearly it breaks down when the developers
make changes that interact with those made by their co-
workers.

4 Sometimes it is not necessary to merge modules at all, for
example if the changes are hardware platform specific.

5 Although there may be many parallel versions the CM tool
can only merge two versions of the module at a time. In

~UNIX TM parlance it has a graphical "diff" facility.

171

Levels of Mechanisms of Interaction
The mechanisms of interaction embedded in the CM tool
support coordination among developers by providing
information about the work of others. For example, developers
use the time line view to find out whether anyone is working on
a certain module. Without that facility developers must
coordinate their actions (engage in parallel development or
defer because someone else has the code checked out) by
communicating with all the other developers to find out what
they are currently working on.

The developers also have access to information about the status
of all artifacts related to the one that they are working on. Each
developer has a view of the module that they are presently
working on and all the artifacts that it relates to. 6 For each
related artifact this view provides information that includes the
name of the artifact, the developer who has most recently
worked on the artifact, and the state of the artifact.

Developers have the option to "reconfigure" this view of
related modules. A reconfigure causes the system to update the
view, potentially revealing changes in an artifact's name, a
new developer working on an artifact, or a change in the state
of an artifact. Reconfiguring the view provides important
information to developers because of the changes it shows.
For example, if a developer sees that a related module has been
checked in they know their software must work with that code.
This view enables developers to continually coordinate their
efforts as they alter related modules simultaneously. Often
developers find after reconfiguring their view that their module
does not work with some of the latest changes made to related
modules and they must fix their work.

While the tool provides mechanisms of interaction to help
coordinate development it did not support higher levels of
system understanding. During discussions with developers I
noticed that they often referred to a lack of a software
architecture for the product being developed. Software
architectures:

permit designers to describe complex systems using
abstractions that make the overall system intelligible.
Moreover, they provide significant semantic content
that informs others about the kinds of properties that
the system will have... (Garlan and Perry, 1994 p. 363)

Software architectures represent another mechanism of
interaction supporting collaborative work at a higher level of
systems abstraction. 7 The collaborative work that software
architectures support differs from the development work 1 have
described. Instead of being concerned with the details of
development work, the emphasis is on locating your work in
the "bigger picture."

6 Artifacts relate to each other in different ways. Modules
"call" each other, invoking the actions of others during
program execution. Libraries relate to modules by providing
collections of callable routines to the software.

7 Of course software architectures have important technical
properties, such as supporting the reuse of software, and
comparing and contrasting systems to learn more about
software systems.

In this case, some developers had problems explaining the
architecture of the tool they were building. While they
understood their own sub-systems well, and many had worked
on different sub-systems, the developers did not know the
conceptual structure of the product being developed. This
problem was exacerbated by the changes in design that occurred
throughout its development that altered the architecture. The
developers were unable to establish that shared understanding
through communication as a large group.

The system had no mechanisms of interaction for showing
developers how their individual work fitted into the "bigger
picture." Without them, and unable to communicate the vision,
these developers felt that they could not fully understand the
work of developers who worked on sections of the system
remote to theirs. This raised concerns amongst these
developers that they could miss opportunities to share
solutions.

Many levels of mechanisms of interaction must exist to
support collaborative work. In this study, the CM tool
supplied mechanisms of interaction to help developers
coordinate developers their daily work. However, developers
also wanted mechanisms of interaction that abstracted away the
details of particular artifacts, showing higher level views of the
system, providing information about the connections between
sub-systems so they could share solutions and locate their own
efforts.

Organizational Memory: Creating New Forms of
Articulation Work
Developers often rework existing code, modifying it to fix
repairs and add new functionality (Lubars et al., 1993). When
developers reuse old code they often find themselves trying to
work with code that someone else wrote. The job of
development then becomes the task of aligning your efforts
with the work of the previous developer. The complexity of
working with other's code increases when the developer who
originally wrote the code has left the organization or is
assigned to a different project (Fischer et al., 1992).

The CM tool attempts to solve problems associated with
reusing code by maintaining a record of changes made to the
artifacts using the problem reporting facility. Developers use
the problem reporting system to log problems and
enhancements. When developers alter any artifact the tool
forces them to link the new version of the artifact to one of the
problems or enhancements in the problem reporting facility.
The CM tool stores these links, and over time they build into a
memory of which artifacts changed as a result of a certain
problem or enhancement. In this organization the memory has
been growing for 2 years.

These links are augmented by a free form comment field where
developers can describe their changes. The CM tool stores the
comments so the organizational memory contains problems
and enhancements, the artifacts changed, and often
descriptions by developers of how they implemented the
solutions.

Developers use the organizational memory in a number of ways
depending on their experience. Those developers who have
worked at Tool Corp. for several years often do not need to
consult the memory to remember why a change was made, but
other developers do not have this personal experience. Two

172

cases emphasize the different uses made of the organizational
memory.

About two thirds of the way through the study the company
decided to change a naming convention used throughout the
system. The name was embedded in the product, appearing on
screens and named in commands. The manager assigned a
number of developers the task of going through the system and
changing all instances of the old name to the new name.
Fortunately for the developers this name changing had already
happened once before, and the code changes were linked to one
problem describing the previous name change.

Instead of searching through all the artifacts by hand the
developers used the organizational memory. They began with
the problem and found all the artifacts that changed: those
containing the name. This found most of the instances of the
name, only excluding modules created after the last name
change. The developers also used the free form comments to
find out whether the previous developers had experienced any
difficulties when they did the earlier name change.

The person in charge of interface development also uses the
organizational memory. He described his role as a code
maintainer, rather than developer, emphasizing that he
primarily worked on amending and expanding existing code
written by another developer. Because he often found himself
editing parts of the interface code that he did not write himself,
he consulted the organizational memory to see what the
developer who wrote the code had said about the task at hand.
This provided information about which kind of solution to
pick.

I have only discussed two examples of the use of the
organizational memory at Tool Corp. but they illustrate its
main use: to learn about what previous developers did. The
memory allows developers to coordinate with others over
longer periods of time, such as months and years. The memory
gives them the ability to leverage from the experiences of
others. The organizational memory is a mechanism of
interaction that creates these coordination possibilities.

However the organizational memory has a limitation. When
development proceeds at a relaxed pace people usually take the
time to explain what they did in the comment field. The
pressure of tight project deadlines encourages developers to
write less in the comment field. When other developers review
these comments they do not understand what happened in detail
that makes the comments almost meaningless.

Despite this limitation, the organizational memory supports
some coordination between actions in the present and work
done in the past. This mechanism of interaction can not be
replaced by communication when the authors of the original
software have left the organization. Even when the original
developers have not left, the organizational memory provides
developers some starting points for learning about the artifacts
they must change. However, the organizational memory
suffers from the difficulties of conveying enough context about
code changes. When the demands of the organization do not
leave the developers with time to write useful and insightful
comments it limits the usefulness of the organizational
memory.

M e c h a n i s m s and a Model of Work
The previous sections described mechanisms of interaction
provided by the CM tool and how they support work. This
section focuses more broadly on how these mechanisms
constitute a model of how software development work should
be done. The model allows developers to make assumptions
about their environment and constrains their actions.

The mechanisms of interaction create a model of software
development because the procedures support certain ways of
working. For example, I described the view of relations
between artifacts. This provides a standard way of
understanding the current work environment that contrasts with
conventional file arrangements like directories. Directories
give developers complete discretion about how to arrange the
artifacts they create and use, and people organize files
differently. This system supports one arrangement,
is_related_to, which means that when a developer works on
one artifact all the artifacts related to it appear. Developers
find this standard file structure particularly useful when they
work on unfamiliar sections of the system. Instead of having
to figure out how the artifacts relate, by looking at arbitrary
arrangements of directories, developers automatically know
what dependencies' artifacts have.

However, sometimes these models of work do not recognize all
the details of software development. This happens when the
real work does not match the model of software development
embedded in the procedures. When this happens developers
must choose to bend the rules of work around them.

Developers at Tool Corp. have special privileges to create and
assign themselves problems using the problem reporting
facility. This was not the intention of the tool that had a
concept of a managerial group entering problems and
developers responding to them. However the group tasked with
creating and assigning problems only met every couple of
days. If developers finished their assignments before the next
meeting then they would be unable to work because the system
would not accept module changes without an associated
problem. The developers used system privileges reserved for
system administrators and worked around the constraints of the
CM tool.

While the rapid development times formed the main reason for
giving developers these problem reporting privileges, they
had an unintended payoff for managers. Often developers
needed to make small changes to one artifact and so they
created and assigned problems to themselves. Managers
benefited because they did not have to read through and assign
all these small problems leaving them to concentrate on the
major system problems.

In another case a few developers violated the procedures
imposed by the system. One example of this related to the
difficulties of testing software. Testing software requires
developers to run numerous tests that not only ensure the
integrity of the artifact, but the reliability of its interactions
with other artifacts. Developers have to test all the possible
interactions that a module has with other artifacts that means
generating tests for all the permutations of run-time behavior.

Sometimes after checking the module in developers realize that
their code may not work when a certain sequence of actions
occurs. Other times they have worked on a problem that spans

173

many artifacts and they realize after checking in all the modules
that they forgot to make one part of the change.

If the developers discover that they need to make further
changes they have two options: check out another version of
the code, create a problem to assign to that code, and fix the
problem, or cheat the system. Often developers go to the
trouble of making another version, but occasionally they edit
the artifact in the checked-in state. They do this despite
knowing that the changes they make in the checked-in state
might affect the work of other developers who assume that
checked-in files do not change.

The CM tool creates both opportunities and constraints for
developers. In this case the tool provides them with
mechanisms for sharing work, and coordinating their software
development efforts with others. When the processes do not
match the realities of the work then two results may occur,
developers may bend the model to work with it or reject it
entirely.

IMPLICATIONS FOR SUPPORTING GROUP
WORK
Articulation work has much promise in studies of CSCW, and
this research represents an initial step in this direction. I
explored the mechanisms of interaction concept in the study of
developers using computer support to coordinate their work. I
identified four aspects of these mechanisms of interaction:
difficulties in representing work, the different levels, the
possibilities they create for new types of coordination, and
how the model embedded in them operates. In this section I
discuss the impacts of these discoveries for research
investigating the role of technology in coordination work.

Difficulties of Representation
In his study of navigation, Hutchins (1990) described how a
team of ship navigators worked together to guide vessels into
harbor. Part of his study examined the role of navigational
instruments. Specifically, he discussed how the instruments
provide representations of the navigation problems the team
faced. He argued that these instruments supported the work of
navigators because of the way that they represent the
problems. Much navigation work involves mathematical
relations and instruments that have these formulae built into
them allow navigators to find the solutions easily. In this way
the instruments reduce the complexity of the problems of
navigation work.

The configuration management tool supports mechanisms of
interaction that create visibility into the development process.
Without these mechanisms the evolution of software has little
tangible form other than hundreds of files, in many directories,
stored on several machines. These mechanisms reduce the
complexity of software development by providing views that
show the current state of development.

However, in the case of parallel development I saw the
difficulties of finding adequate representations. The work it
takes to merge modules depends on the complexity of the
changes made to both versions of the module. Sometimes
merging goes smoothly, the tool support suffices, and the
developer can merge without any communication. However,
when the same lines of code or the same algorithm changed the
merging representation does not enough support to allow one
developer to merge alone. At this point the developer needs to

find and communicate with the other developers who worked on
that module.

This tool provides representations that often support the
coordination work of developers. However, this study reveals
the challenge of finding a representation of a certain problem
that works for all cases. In the case of the merging problem,
the representation failed to support the developer's
coordination work when the complexity of the changes
increased.

In a study of CSCW tools and concepts, Robinson (1991)
makes a distinction between the formal and cultural levels of
language. The formal level consists of elements that can be
discussed by multiple participants without requiring
interpretation. The tool provides developers with information
that clearly shows which modules need merging and what the
associated problem reports are. The cultural level focuses on
the remaining elements, those requiring explanations to
become meaningful to other participants. For the developers
this level involves understanding how the modules were
changed, and how those changes interact with each other, and
what the combined functionality needs to be. Robinson (1991)
claims that when a system does not support both levels of
language then it becomes unusable.

When merging reached the cultural level the representation
provided by the tool did not help developers. Because
developers needed to know much more about intent, meaning,
and interpretation of someone else's changes, the view of the
different lines of code did not suffice. At these times the
strength of the tool came from its proximity to a variety of
alternative technologies, such as electronic mail and the
telephone.

Multiple Levels of Articulation Work
Previous research has shown that individuals help others
coordinate with them by making their work activities' public
(Heath and Luff, 1991). Researchers have drawn mixed
conclusions about the benefits of using computers to make
people's work visible to others (Bowers, 1994; Sommerville et
al., 1993; Zuboff, 1991). However, these authors agree that to
work well, these systems must be supported by appropriate
organizational policies that explain the role of the
technology.

The software developers had grown accustomed to working with
this visibility into their work and that of others. Specifically,
the system provided low level visibility into the current
actions of others through the reconfigure and time-line views.
It also allowed developers to see what other developers did to
artifacts in the past. However, the CM tool did not create
visibility into the system as a whole. At a higher level of
system abstraction, removed from the details of individual
changes, the developers could not see how their work, or other
people's, fitted together.

Tools designed to support collaborative work through
visibility need to develop mechanisms of interaction that span
multiple levels of system abstraction. This is especially true
when the group cannot coordinate in other ways. In this case
there were 14 software developers, and communicating enough
information to establish and maintain an on-going shared
understanding of the new product as it emerged in development
had enormous costs, which they could not pay.

174

In a discussion of the articulation work involved in a project,
Strauss (1988) describes a concept he called the articulation
process that is:

The overall process of putting all the work elements
together and keeping them together represents a more
inclusive set of actions that the acts of articulation
work. (Strauss, 1988 p. 164, italics in original.)

The CM tool may have supported the articulation process by
visibility into the overall product structure. It is unlikely that
computer technology can support the articulation process in
absence of other forms of articulation work. However, this
study asks whether computers can provide some of the
visibility into the overarching process. 8

Technolog ica l Possibi l i t ies for Ar t iculat ion
Work
Focusing on mechanisms of interaction allowed me to look at
the role organizational memory plays in supporting
collaborative work. The developers use it to align their efforts
with the work other developers did in the past. Sometimes it
facilitates a new possibility for collaborative work,
coordinating with the legacy of another person who has since
left.

The organizational memory differs from other ways that the
organization could support this kind of collaborative work. A
common altemative for software engineers is to put comments
next to the lines of code they change explaining what it does.
Code commenting is usually optional. This memory provides
an analogy to commenting in the free form comment field
where developers can describe the changes that they made.
However, by forcing the developers to link all the changes
they made, that may involve more than one artifact, to a single
problem the memory provides an additional function. It gives
developers a history of why design changes were made and
which artifacts were involved, as well as what those changes
were.

Because the organizational memory remains up-to-date it
differs from internal documentation and specifications. In fact
the organizational memory provides reporting features that
generate internal documentation. However, by being on-line
and up-to-date it maintains a higher degree of accuracy.

However, organizational forces influence the usage patterns of
organizational memories. In this case, the need for efficiency
collided with the documentation of how problems were fixed.
Other researchers have pointed this out, for example
Orlikowski's (1992) study shows how the up-or-out promotion
system within Alpha Corp. had negative impacts on the usage
of Lotus Notes TM. Instead of wanting to share consulting
techniques using the system, those caught in the promotion
structure kept their strategies to themselves, rather than
helping others and potentially ruining their own careers.

This study of software developers does reveal that
organizational forces influence the usage of technologies long
after their initial adoption. This organizational memory had

8 Since the completion of the study the organization has taken
steps to resolve the issue of developing an understanding of the
software architecture. Currently they have individuals who act
as the software architects.

been in place for 2 years. The problem was not that the
organization needed to adopt policies that encouraged
individuals to use the new technology, but that when project
deadlines got tight then developers focused on development
rather than documentation. In other words, the usefulness of
technology remains contingent on the organization long after
its initial introduction.

Models of Work
Gerson and Star (1986) observe that mechanisms of interaction
require articulation work because of the unforeseeable
contingencies of real work. For example, manufacturing
schedules often require adapting due to delays that occur in the
production cycles. In that case people have the option of
working together and mutually adjusting the schedule.
Mechanisms of interaction embedded into a CM tool can not be
changed so easily, which is reflected in developer strategies for
dealing with the model of work imposed on them.

The procedures allow the developers to make assumptions
about their working environment. For example, the developers
know who is working on artifacts related to their own. This
saves them from the work required to find the latest changes of
the software.

However, these procedures do not work when the contingencies
of their work deviate from the model. One case of this involves
the special privileges for creating and assigning themselves
problems. They use this to circumvent the procedure for
problem assignment, the meeting where managers and testers
assign problems. In this case the system provides an
acceptable work around for its own limitations.

Sometimes developers deviate from the model because it does
not support their work. In a study of the use of a CASE tool,
Orlikowski (1991) describes how the model of work built into
the tool reinforced the organizational status quo. Importantly,
she observed that all the rules embedded into the tool were
subject to interpretation by the people using it. The
developers at Tool Corp. have a high degree of latitude in their
interpretation, sometimes because the system supports them
bending the rules, and other times because they have the
expertise to break the mechanisms. The former was viewed by
management as a necessary safety valve, but the latter was
condoned and caused problems for other developers. More
research is needed to examine the limits of models of work, and
how they can become flexible enough to accommodate more of
the real work of software engineering.

C O N C L U S I O N S
This paper described how one tool supported the collaborative
work of a team of software developers. This case was unusual
because the software developers knew the tool intimately and
had incorporated it into their everyday working routine.
However, this study provided a rare chance to look beyond the
challenges of groupware adoption to discover the issues
surrounding routine usage.

I found that mechanisms of interaction play a critical role in
supporting the coordination of software development. Further
research characterizing how mechanisms of interaction do
support coordination work, and how organizations develop
them, remains to be done. This study offers important starting
points for that work.

175

This study suggests that mechanisms of interaction do not
support all the articulation work required to build software.
Despite well-defined policies surrounding tool usage and a
good cognitive understanding of the tool, coordinating
software development remains difficult. The developers still
use other communicative solutions to overcome challenges of
coordinating work.

Currently no groupware solution offers the total solution to the
complexities of coordination work. Much work remains to be
done exploring how technologies can support the channel
changing which allows software developers to get their work
done. Learning about the limits of mechanisms of interaction,
and how they can be extended, should be coupled with an
examination people switch from one form of articulation work
to another.

Acknowledgments
First, I would like to thank the Engineering and Physical
Sciences Research Council (UK) for financial support. I am
deeply indebted to Jonathan Grudin, Jeanne Pickering, and Jim
Whitehead for their help and encouragement in formulating and
pursuing these ideas. The Computers, Organizations, Policy,
and Society research group provided an environment where
these ideas grew through discussions and review. Lisa Covi,
Dave McDonald, and Jonathan Allen helped me refine the ideas
presented here.

References
Ackerman, M. (1994) "Augmenting the Organizational
Memory: A Field Study of Answer Garden" In R. Furuta & C.
Neuwirth (Ed.), Proceedings of Computer Supported
Cooperative Work 1994, (243-252). Chapel Hill, North
Carolina: ACM Press.

Babich, W. A. (1986) Software Configuration Management -
Coordination for Team Productivity. New York, New York:
Addison-Wesley.

Bendifallah, S. & Scacchi, W. (1987) "Understanding Software
Maintenance Work" IEEE Transactions on Software
Engineering, 13(3), 311-323.

Bersoff, E. H., Henderson, V. D., & Siegel, S. G. (1979)
Principles of Software Configuration Management. Englewood
Cliffs, N.J.: Prentice-Hall.

Bowers, J. (1994) "The Work to Make a Network Work:
Studying CSCW in Action" In R. Furuta & C. Neuwirth (Ed.),
Proceedings of Computer Supported Cooperative Work 1994,
(287-298). Chapel Hill, North Carolina: ACM Press.

Brooks Jr, F. P. (1974) "The Mythical Man-Month"
Datamation (December).

Caballero, C. (1994) "Life Cycle: Now the Focus in UNIX CM
Market" Application Development Trends (August), 49-
54,64,86.

Curtis, B., Krasner, H., & lscoe, N. (1988) "A Field Study of
the Software Design Process for Large Systems"
Communications of the ACM, 31(11), 1268-1287.

Fischer, G., Grudin, J., Lemke, A., McCall, R., Ostwald, J.,
Reeves, B., & Shipman, F. (1992) "Supporting Indirect

Collaborative Design with Integrated Knowledge-Based Design
Environments" Human-Computer Interaction, 7(3), 281-314.

Garlan, D., & Perry, D. (1994) "Software Architecture: Practice,
Potential, and Pitfalls" In Proceedings of 16th International
Conference on Software Engineering. IEEE CS Press, Los
Alamitos, CA.

Gerson, E. M., & Star, S. L. (1986) "Analyzing Due Process in
the Workplace" ACM Transactions on Office Systems, 4(3),
257-270.

Grudin, J. (1989) "Why groupware applications fail: Problems
in design and evaluation" Office: Technology and People, 4(3),
245-264.

Grudin, J. (1994) "Computer-Supported Cooperative Work:
History and Focus" IEEE Computer, May, 19-26.

Heath, C., & Luff, P. (1991) "Collaborative Activity and
Technological Design: Task Coordination in London
Underground Control Rooms" In European Conference on
Computer Supported Cooperative Work.

Hughes, J., King, V., Rodden, T., & Andersen, H. (1994)
"Moving Out from the Control Room: Ethnography in
Systems Design" In R. Furuta & C. Neuwirth (Ed.), Proceedings
of Computer Supported Cooperative Work 1994, (429-439).
Chapel Hill, North Carolina: ACM Press.

Hutchins, E. (1990) "The technology of team navigation" In J.
Galegher,R. E. Kraut, & C. Egido (Eds.), Intellectual
Teamwork: Social Foundations of Cooperative Work (191-
220). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Ingram, P (1994) "The Market for CM tools" In Proceedings of
Unicom Conference London: England. October, 1994

Jorgenson, D. L. (1989) Participant Observation. Newbury
Park, CA: Sage Publications.

Lubars, M., Potts, C. and C. Richter (1993) "A Review of the
State of the Practice in Requirements Modeling" in Proceedings
of the International Requirements Engineering Symposium
IEEE CS Press, Los Alamitos, CA. 2-14.

Orlikowski, W. (1991) "Integrated Information Environment
or Matrix of Control? The Contradictory Implications of
Information Technology" Accounting, Management and
Information Technology, 1 (1), 9-42.

Orlikowski, W. J. (1992) "Learning from Notes:
Organizational Issues in Groupware Implementation" In
Proceedings of ACM CSCW'92 Conference on Computer-
Supported Cooperative Work (362-369). Toronto, Canada:
ACM Press.

Pickering, J. M., & Grinter, R. E. (1995) "Software
Engineering and CSCW: A Common Research Ground" In J.
Coutaz & R. N. Taylor (Eds.), Software Engineering and
Human-Computer Interaction: 1CSE'94 Workshop on SE-HCI
Joint Research Issues (241-250) Lecture Notes in Computer
Science, Vol. 896. Springer-Verlag.

176

Robinson, M. (1991) "Computer Supported Co-Operative
Work: Cases and Concepts" originally appeared in Proceedings
of Groupware '91 reprinted in R. M. Baecker (Eds.), Readings in
Groupware and Computer-Supported Cooperative Work:
Assisting Human-Human Collaboration (29-49). San Mateo,
C.A.: Morgan Kaufmann.

Schmidt, K., & Bannon, L. (1992) "Taking CSCW Seriously:
Supporting Articulation Work" Computer Supported
Cooperative Work: An International Journal, 1(1-2), 7-40.

Sommerville, I., Rodden, T., Sawyer, P., Bentley, R., &
Twidale, M. (1993) "Integrating Ethnography in the
Requirements Engineering Process" In A. Finkelstein & S.
Fickas (Ed.), Requirements Engineering 1993. San Diego,
California January 4-6, 1993: IEEE Computer Society Press.

Strauss, A. (1985) "Work and the Division of Labor" The
Sociological Quarterly, 26(1), 1 - 19.

Strauss, A. (1988) "The Articulation of project Work: An
Organizational Process" The Sociological Quarterly,
29(2),163-178.

Suchman, L. A. (1983) "Office Procedure as Practical Action:
Models of Work and System Design" ACM Transactions on
Office Information Systems, 1 (4),320-328.

Zuboff, S. (1988)In The Age of The Smart Machine: The Future
of Work and Power. New York, New York: Basic Books Inc.

177

