
Decomposition:

ABSTRACT

Putting It All Back
RebeccaE. Gtiter

Befl Labs, Lucent Teckolo~es
263 Shmm Bodevm& 2F-309

Napefile, ~ 60566 USA

beti@esearckbe~-labs.com
h@://\wwv.beH-labs.coti-befi

Together Again ‘ “

building sofivare from the Perspectiveof the coordination
Design and development work have become increasingly
interesting to CSCW researchers. This paper introduces a
new perspective for extimg that work. decomposition.
Decomposition focuses on the activities required to
coordinate the assembly of an artifacL Using examples
drawn from a study of three software development
organizations, I show how decomposition is a form of
articulation work I describe how that articulation work
influences the product produce~ and how the product itseK
influences the coordination required- I discuss the
implications of a decomposition view for CSCW research.

Keywords
Software design stidies, ticulation wor~ decomposition.

INTRODUCTION
h the last few years there has been an increasing interest in
design among CSCW researchers. First, design is the
activity bat studies of work intend to inform [23]. As
discussions about the relationship behveen studies of work
and systems development continue, design wi~ remain a
focus of attention within the community. Secon& design
is a highly collaborative activi~. It provides a good
opportunity to study issues that are relevant to CSCW
concetns.

This paper follows the tradition of examiniig the
collaborative aspects of developing sotiare. Development
work includes design activities, because the process of
shaping software never ends during development.
However, thii study differs from many other investigations
of development work to date, that have focused on work
that occurs in meetings [4, 18], or how individuals reflect
on the problem [Za. It is *O different from the sma~er
pool of studies of coding work the development of the
sofivare i=elf [7]. Finally, it does not take the broader
perspective of those studies that examine the oveti project
organization of development work [S, 12].

~ls paper takes a different perspective, one that looks at
the process from its conclusio% a reassembled artifact.
Specifically, I examine the process of designing and

permixion to make di~tal or hard copies ofall m P~ of fis ~~orkfor
personal or cl=oom use is ~ted without fee protided that copies
are not made ordistributed for profit or cornmertial ad%mtageand that
copiesbear this notice and the full titation on rhe first page. To copy
otimisa to republish. to post on senrem or to redism%uteto fists,
requires prior spetific permission and:or a f-
CSC\V98 Scatie Washingon USA
Cop]tight A~f 199S 1-5S1134094/9S/1 1.-$5.00

issues ~ creates when the prod;ct is put back together. I
call this process of reassembling the product
decomposition. ●

The paper begins with an examination of the process of
decomposition, where the overall problem to be solved is
divided into components. The process of decomposition is
then defined. I discuss three different kinds of
decomposition work, and the coordination they require after
describing the methods and sites where this work was
conducted. Finally, I outline the implications this
perspective has for CSCW research. Specifically,
considering the construction of sotiare systems from this
perspective yields two important findings for the CSCW
research community. First, it grounds articulation work in
the technical realities of assembling products. Second, it
offers insights into the character of intergroup and
interorganizational coordination.

DECOMPOSITION IMPLIES DECOMPOSITION
That software development involves coordination work is
not a new observation. h 196S North Atlantic Treaty
Organization ~ATO) convened a meeting in Garmisch,
Germany fiat drew researchers from industry and academia.
At this meeting the name software engineering was picked
as the title for the emerging research discipline
investigating the complexities of software development
[19]. Akeady, the topic of coordinating the development
of sofivare was being discussed as one of their challenges.

Around the same time, Conway was writing an explanation
of why this was the case [11]. Conway’s thesis —
subsequently this has become known as Conway’s Law —
was that the structure of the code mirrored the structure of
the committee that had designed it.

By the mid-70’s, the coordination involved in software
development work was becoming increasingly important to
researchers. Brooks observed that adding more people to a
sofivare development project does not make the process
happen quicker [3]. Specifically, he argued that the
coordination overhead of adding new people would slow
down the project.

Like Brooks, David Pamas also recognized the importance “
of coordination in software development. Like Conway,
Pamas recognized a relationship between the people
working on the software and the product built. His
attention was focused on the process of modular
decomposition.

393
,.

-.. —

.—.——- .. .- ---->.-. :.’..,. . .._.

hlodular decomposition is the process of dividing the
sotivare problem into smaller tractable pieces to work on.
Once those pieces have been defie~ rmd the relationships
among the components specifie~ the work of development
commences. f~at was not well understood were the criteria
to guide the decomposition hsel~ Parnas recognized that
his process was not only a technical division of the
produc~ but a division of labor among individurds [21].
Specifically, the smaller pieces typicrdly would be assigned
to the different individuals on the projecL who wotid then
know how their code fitted into the bigger software
problem being addressed

Parnas argued that the advantages of doing a good modular
decomposition of a sofivare problem were more than
simply technical they were ako managerird. Spec%c&y he
fiought that good modular decomposition codd reduce the
communication required among different developers by
e~iinating some of their relationships with others.

Despite the widespread use of modular decomposition,
recent studies of software developers suggest that they stil
spend over 50°/0 of their time communicating with others
[22]. Clearly, relationships exist among developers that
need to be articulated There are at least three reasons why
these relations may exisL FirsL some relationships are
defined at decomposition time. Second, legacy code
complicates the decomposition process. The initial
decomposition of new problems onto an existing base of
code is anrdogous to retrofitting or extending an existing
house rather than building a new residence- Some
relationsK~psmaybe maintained simply because it is easier
in terms of putting new features on to the existing code
base. Thii& it is well known that requirements change
during the development Gfe cycle, and so as features are
delete& added and modified, those relationships are dl
subject to change.

This last reason is particdarly si@cant when trying to
understand how relationships in code affect coordination.
Specifically, understanding the relationships among
developers and the code that they produce in the
decomposition phase provides only a Mlted insight into
the socird relationships that evolve and disappear during
development. Instead, I chose the more unusual
perspective of examining tiese relationships from the
perspective of putting the system back together. I crdl the
a~gregate of activities seen born this perspective
decomposition. ~Is builds on the work of TeKoglu and
Wagner [29], who observe that the relations among
developers play a critical role in how products are
assembled. It dso follows in the spirit of Button and
Harper 16] who ar=~e that studies of work should go
beyond theoretical and abstract notions of work, and
examined the fived work of those studied

Sotivare decomposition occurs whenever the pieces of code
are put together. Obviously the sofivare is recomposed
once to be released to the customer. However, the sofivare
nezds to be recomposed many times before tha< for testing
purposes. Therefore, decomposition occurs far more times
than the inhial decomposition, and it is because it happens
over and over again, I cdl it decomposition. It includes

basic configuration management practices, release
management work, and other integration work. The
decomposition perspective focuses on the work that it takes
to reassemble the product from its pieces. ,.
It is at the point of decomposition when the relationships
among the different system components become critical.
The technical relationships among modules are known as
dependencies, and they can take a number of forms. For
example, if module A passes a variable to module B, then
module B depends on A to give it that information.
Another kind of dependency occurs if module A contains
information that B needs in order to compile. Then A
must be compiled before B. One of the hardest kinds of
dependency to fmd is when module A generates a certain
behavior during program execution which module B needs ●

to fiction. This last case is known as a run-time ““
dependency, and is hard to see because there maybe scant
evidence oftils relationship in the written code itself.

Dependencies become interesting from a sociological
perspective because of the potential division of labor
among the components. men two modules are owned by
different developers and share a dependency relationship
then the individuals fmd themselves needing to maintain
enough communication about the state of their work with
the other person. If the communication fails the result is
ofien that the modules will not work together — either at
au or as intended. It is at the point of decomposition when
developers are focused on making their code work not only
with other pieces they wrote, but with yet more
components written by others’ that these relationships
become the acts by which software is recomposed. The
strength of those relationships also becomes the ability of
the developers to put all the pieces back together and make
them work. In other words it is at the point of
decomposition when a dependency among modules must be
understood by all the developers that own the pieces
involved.

The next section introduces the sites and methods used in
this study. Then I describe three kinds of decomposition
work that I discovered formed a routine part of
development module, subsystems, and institutional.
Throughout the discussion I want to draw attention to the :
intimate link between the social and technical aspects of I
development that the developers fmd themselves managing. I
It is more than just grappling with an organizational. ;
context of design work but that social relationships are
embedded into the software itsel~ and furthermore, can be
driven and dictated by the technology.

SITES AND METHODS
I used two criteria for selecting sites for this study. First,
and foremost I wanted the organization to be successful. I
defined success simply as the ability to produce working
sofivare and sell it to their customers. Second, they also
needed to be willing to host a researcher, sometimes for
ex~endedperiods of time.

Tool Corp. is the vendor of a configuration management
(Cm tool. At the time they were finishing a new release
of the product as well as an upgrade to an existing version.

394

— -—

,, .—— .-.,..

Both products contained code born prior systems. During
my time there Tool Corp. grew from 14 to 1S developers
and their product consisted of 1 million ~es of code
@OC). I spent three months on site and conducted over
100 interviews there.

Computer Corp. is a large computer company that produces
a real-time operating environment They employ 700
developers who are distributed across a number of sites in
tie US and otier continents. Their product suite consists
of around 10 tifion LOC. I conducted 14 interviews with
developers and spent three days on site.

Flow Corp. is the vendor of a suite of office technologies.
The company employs over 1000 people spread out across
different sites around the world. As a result of their
product diversity it is hard to estimate the size of their code
base. I conducted 6 interviews with one group working on
one product witiin the suite.

Methods...
A qualitative approach was used to gatier and analyze the
da~ In particular I used grounded tieory, a method of
developing substantive formal theories from qurditative
data [14]. Grounded theory CWSfor a continual interaction
behveen data gathering and anrdysis. As the researcher
gathers new data they analyze it to see how it extends,
motlfies, or contradicts the existing theory being
constructed. The result of grounded theory is an
ex~lanation of a set of practices.

Data were collected using observation and interviewing
techniques. At au three sites I conducted non-participant
observation, by watching people at work and maintaining
diaries. I rdso used pardcipant observation data gathering
strategies at TOOICorp. and Computer Corp. Participant
observation involves working in the environment being
studied. The researcher Ieams — by doing — about the
participants’ work

Two interview protocols, unstructured and semi-structure~
were employed at the three sites. Unstructured interviews
have little if any interview tide and present opportunities
to gather information about the concerns of the participants.
These were used expensively at the beginning of the study
of Tool Corp. and towards the end to ml in any gaps in the
theo~.

Semi-structured interviews make use of an interview guide.
The guide consists of a number of questions to ask tie
interviewee. The contents of the guide changed over the
course of the study as the theory develope~ however, I was
careful to revisit old questions every so often to insure that
the answers remained consistent among ~erent developers
and organizations.

Data analysis consists of three stages known as open
coding, axird coding, and selective coding. Open coding
consists of reducing raw data to categories tiat explain the
behaviors reported. A category is a classification drawn
from the field notes that describes an event. These
categories have properties that can vary along dimensions.
An example wotid be the category of pain, that caa vw on
the dimension of how intense the pain was. Axial coding

395

involves developing these categories further, finding the
conditions that lead to their emergence, and the
consequences of their occurrence. Selective coding
involves picking one category as the core category that
forms the center of the theory. The three coding steps take
individual cases of action reported and generate a formal
theory that can be tested and revised in other settings. The
value added in this approach is distilling what the people
in the setting know and presenting it in an organized way.

...and Practice
The data were collected from the three sites using the
techniques described above. hitially my interests focused

●

on the coordination involved in the production of software.
This led very naturally to the decomposition work.
Specifically, I began examining configuration management
practices in place.

Whid interviews and observations focused on the formal
procedures and tools that developers used to perform
configuration management activities. I have written about
these practices and tool support elsewhere [15, 16].
However, the interviews soon broadened to encompass
other activities described by developers: talking with
people, the use of meetings, and diagrams. My interests
dso broadened to the sum of all the activities involved in
reassembling sofivare, from configuration management to
larger integration efforts, and final release management
techniques. This usually meant re-interviewing the initial
participants in the study to fmd out whether they were
using informal methods of coordinating work, and whether
they were involved in integration and release management
work. The advantage of qualitative interviewing is that it
allows for this on-going revision of the study during the
data gathering period.

The process of generalizing about how developers manage
dependencies in their work involves making a shifi from
what Strauss calls substantive to formal theory [2S]. This
was accomplished in two ways. First, I used and refined
the concepts generated at Tool Corp. in the organizations I
subsequently visited. The discoveries at Tool Corp. helped
to shape and refie the interviews and the observations that
I made in the other organizations. Second, in each
subsequent organization I revisited a set of core questions
asked at the earfier organizations. This combination of
refining parts of the interviews while holding other
questions constant allowed me to extend the theory through
the collection of new facts and data, while insuring the
reliability of previous data collected. Thus, the process of
generalization consists not of counting instances of
occurrence, but through systematic collection of data that
elaborates on the patterns of behavior found in multiple
organizations, both extending and refining previous
understandings. Finally, I took the results of my fieldwork
and presented them to some of the developers I had
interviewed and asked them for comments.

MODULE DECOMPOSITION
The division of labor in software development work
usually means that small teams of developers — often
collocated — work on related parts of the system. Within

I

-— —, ,.

-— .— --- .>.... - —. —. .. —__

large subsystems, tiis division is firther applied until
small groups have established responsibility for a small
componen~ Decomposition work at this level involves
assemb~mg modules into pieces of the subsystem. b thii
section I describe three Kids of decomposition work
merging, single modde overtime, and change sets.

Merging
Jfien two or more developers work on the same piece of
code simultaneously it is known as ptilel development
Imen this happens the fwst stage of decomposition
involves making a unified module out of the versions that
exist Tools exist that automatica~y merge codq however,
in many cases the developers find that they need to get
together with their collea=wes and manually merge the
versions.

Tools ftil to support merging well as the complexi~ of
what has to be merged increases [15]. Most tools manage
to merge versions automatically if the components do not
depend on each other in any way. For example, one person
changed the comments and another altered a figment of the
code in an unrelated part of the module. However, some
changes can not be handed automatically because they
involve unrave~ig and sorting out dependencies between
tie multiple versions of the module.

Some developers related their mer=tig difficulties with the
process of decomposition itseti. As one developer put ic

Perhaps the module itself needs to be broken up ...
usually tils set of functionality belongs to me, other
p20ple working on the project are working on a
difi’erent tictiontihy in the same module, therefore
the modules doing too much.

The complexity of merging increases when the developers
have simultaneously altered the same lines of code or
dgorithrn to address different problems. There are now
technical dependencies among the different changes that
need to be understood and combined to produce one
aggregated version of tie module. Consequently,
developers have to fid everyone eke, discuss what changes
they each worked o% and how tiey altered the code. They
work together to develop a shared understanding of rdl the
versions, and determine the functionali~ of the merged
modu~e. This activity often takes place as a joint merging
effofi The developers sit around one terrninrd and select
the ~mesthat shotid go into the final merged module.

P~lel development involves mtitiple developers working
on the same module at the same time- The developers
depend on the same module for the work that they need to
be done, and they end up depending on each other-
Meratig is the resolution of the technical dependencies that
exist between tie versions of the module. It dso involves
managing the social dependency among the developers
working on that module.

Sngle Module Over Time
Merging focuses on the relations among multiple versions
of a module that coexist at the same point in time.
Ano&er set of dependencies exists among versions of the
same module over time. At all the sites I noticed that

396

developers ofien examined the previous versions of a
module before making decisions about how to proceed.

Developers described this behavior as necessary as part of
the process of designtig the best solution for their current
problem. Previous versions of a module represent an
evolution of implementation decisions and a set of
technical constraints and opportunities for fiture work.
One developer justified why he went back to previous
versions of code as seeing:

why this particular change was made urn how it
does or doesn’t affect this next set of changes or you
understand why this person made this change and
hatit considered this other problem and that sort of
thing.

The developer is clear about the technical implications of
changing the module without considering what has
happened previously. However, he also identifies another
person, the individual who made those changes in the past.

Dependencies with code in the past involve individuals
who previously worked on that code. These kinds of
relationships can get very complicated in established
organizations. As the sofiare and organization grow
older, more employees move among projects. Other
developers leave the company, and new people arrive to
take their place. Consequently, many developers become
responsible for code they did not originally design and the
person who did is not available to explain how it evolved.
The new owners are left trying to understand the character ●

of the sofivare from the code itself. New developers
described situations where they needed to Ieam about what
problems previous developers had been trying to fix and ‘
the reasons behind the choice of solution.

Some configuration management tools provide information
that forms a kind of organizational memory, giving
developers some clues about who changed code, and why.
The more readily this information is available the more
likely developers are to use it in their work, because
without it tracking down documentation or other people
who remember the person and their development work is a
time consuming and sometimes inconclusive activity.

JWen developers do choose to ignore the past they are not
in any doubt of the potential problems that it could cause:

If you have to go through a lot of steps to figure out
the history and do comparisons and things like that
you tend not do that. You know cause I don’t have
time to do this, 1’11just kind of blast ahead and
cross my fingers and hope that I haven’t screwed up.

Historical dependencies arise because the approach to
changing the present version of a module may depend on
how a developer changed that module in the past. This
becomes challenging when the module has changed
ownership, and one developer needs to understand the work
of another. men the previous developer can not be
contacted, then the current developer depends on
information stored inside tools, organizational repositories
and people who remember that development time.

——— —-.— —.—

— —._ —- ——— ..-..,...-

Change Sets
The previous two cases have focused on relationships that
exist between versions of the same module. Another
relationship developers manage derives Corn the fact that
tieir work involves changing the behavior of the system.
One logical change — a request for a new, enhanced or
corrected feature — often results in more than one modtie
being rdtered hiaking the Iogicrd change involves tigning
all the physical changes to the components so that the
desired outcome is produced The modties involved in the
logical change are known as a change se~ They depend on
each other to produce the feature requested Furthermore,
usually tie change set must be introduced into the system
when all the physical changes have been made otherwise
my system btid wi~ probably fad.

A consequence of change sets is that the developers
responsible for making the necessary alterations to their
code become involved in a relationship with the others
working on tie same Iogicrd change. Synchronizing dl the
alterations and putting tie updated versions of the change
set back into the main line development requires
coordination. At all the organizations I studied
coordinating chmge sets was a combination of manual and
automated procedures.

Developers at all the sites had access to some systems
+ften problem tracking ticifities — that supported some
of this change set work The developers would usually
begin by identi~ing who they were working with on the
change se~ which involved extrapolating back from the
physicrd change to the statement of the logical problem to
be fise~ Typically the systems provided some clues about
who was working on related parts of the problem

Then the developers would get together and discuss how
they were going to implement the change as a group.
Finrdly, one person wotid take responsibility for tracking
how all the physical changes were progressing, with the
view to informing the person responsible for the system
build when that change set was ready to be compiled.

This sequence of events is managed more or less fomdly
depending on the she and span of the change to be made.
A small change involving two or three developers from the
same team was usually handled informally with the
developers erg-g themselves. men a change spans a
numbef of subsystems and involves more developers then
some levels of management may formally orchestrate the
process to ensure that the work remains Jlgne&

Change sets begin with the dependencies among modties
w they are simultaneously altered to meet new system
requirements. The technical component of the dependency
involves ensuring that rdl the altered code fictions
togefier, produces the desired behavior, and works with the
rest of the system. At the same time, the individuals
responsible for the physical chan~es, and sometimes their
mnnagemen~ need to form and maintain relationships to
ensure that everyone’s eff%rtsare synchronized

SUBSYSTEM DECOMPOSITION
The previous section described the coordination required to
rdign a few modties together. This section focuses on the

work necess~ to assemble collections of modules into
parts of the product — subsystems — and the entire
system. This kind of decomposition work also involves
modules of code, but because it involves increasingly more
parts of the system so the processes required by an
organization to coordinate and accomplish this work
become increasingly formalized and complex. I begin by
examinhg the complexities of recomposing a subsystem:
the build. Then I discuss managing multiple builds of a
single subsystem, and finally describe the processes behind
assembling the entire system.

Build
Groups of developers working on a subsystem often want
to test their changes — before submitting them to an
official test group — against a working version of the
subsystem. A build is process for pulling together all the
modules and components that make up the subsystem. The
build gives developers something to test their next changes
agains~ and provides them with feedback on the changes
that they made that are inside the build.

I have described the advantages of using a tool to automate
this process elsewhere [16]. Instead, I want to describe
how the technical dependencies among the pieces of code
form social relationships that have to be maintained, in
varying degrees, by the person responsible for the build.

●

This person is known as the build manager.

The three organizations varied considerably on their
automated support for build management. Among the
organizations where there were manual procedures in place
the role of the build manager involved maintaining
important relationships that allowed them to build the
code. Specifically, the butid manager needs to know about
at least three things.

First, they must be aware of any change sets in
development. A person responsible for managing a change
set needs to coordinate with the build manager to let them
know when to put all the revisions of a module into the
build. Second, the build manager also needs to know
about any compile-time dependencies that exist among
pieces of code. Compile-time dependencies specifi that
one module must be processed before another because it

,“

provides information to the latter one. Third, they need to
understand the dependencies that exist among the
components in the subsystem as they were defined at
decomposition and have evolved. By this I mean that they
need to know how the subsystem produces its functionality
and what kinds of run-time dependencies exist among the
code within the system. This piece of information
becomes particularly useful when the build breaks and they
need to identify the source of the problem.

For these reasons build’ managers try to have close
communications with all the members of the development
team. Depending on the degree of tool support for the
build process, build managers interact with their colleagues
to find out what code the developers are working on, what
impacts that has on the subsystem, and where the
components reside. The work of the build manager
involves maintaining up to date information about all the

397

—. .—.——— .-— -::,-. —

tecti~crd dependencies in a subsystem; consequently, they
find themselves sustaining relationships with everyone
involved in the development effofi

The degree of formtilzation of the build manager role
varied among the three organizations. At Tool Corp. and
in the part of Flow Corp. I studle~ the role of build
manager was an additional responsibility on top of one
developer’s work The build managers at these sites were
responsible for doing build work within fairly small teams
of developers. Computer Corp. was a much bigger
orga~~on, ~d some of fie subsystems were big enough
&at they had ml-time staff that wotid pefiom the build
fiction for their systems. Computer Corp. dso had some
teams that were smrdl enough to provide their own build
tiction intemdly, in much the same way that Tool Corp.
and F1OWcow. di~

Platforms Creating Multiple Ufe Cycles
The need to compete for market share creates another
dependency. It is only applicable to those development
efforts that span mtitiple hardwme and software platiorms.
It is a dependency when code is shared and developed for
mtitiple platiorms sirntitaneously.

l~en the companies I studied made a decision to offer
their product on a new platform they did not double the
development effofi Often parts of the code remain the
same across platforms and new platform-specific pieces are
created in the development environment to accommodate
the differences. This approach means that the system now
depends on the platform-specific components to provide the
functionati~ of the product to the new platform. At dl the
companies I studie~ some developers become responsible
for working on the platform-specific pieces of code in the
system.

Typically with anew development effoz some initial work
needs to be done before an~mg is ready to compfle. One
solution the developers used was to copy a version of the
system into fieir workspace and develop the variants from
that As changes carried on to the main development
effo~ the copied code became increasingly mistilgned to
the main development effort. So, at some point the new
platform variants need to join the main development effort
md be re%lgnti

fie technical-dilemma ticed is that if they are introduced
too early hen they are unstuble and under tested and as a
consequence likely to break the build. However, if the
developers wait too long the main system will have
changed so significandy that the build may break due to
the fict that the platform variant modules assume a set of
behaviors that the system no longer produces. One
solution developers used was to recopy the system to their
private workspace with increasing tiequency as they
approached the point when they wanted to put their
platform-specific changes into the central development
effo~ This prevented the gross misafi=-ent from
occurring towards the latter stages of platform variant
development

By reusing as much of the system as possible, the
developers created a dependency between their platfom

specific code and the rest of the modules. They had also
created an important relationship that they needed to
maintain, one that allowed them to time when their pieces
would go into the system. The relationships would need to
provide them with enough information to plan how to
prepare to fit their work into the development effort. This
coordination requires working with people who are familiar
witi the current state of the system and can suggest when
to put certain pieces back into the system.

Iwo these individuals happen to be is highly contingent
on the specific arrangement of work within the
development organization. I found that the developers
sought out people who had detailed knowledge of the
current state of the system development. In some cases
that was the person responsible for managing the
integration of the code. k other cases, developers tied to
managers for help finding out when introducing their code
would not do too much harm to others. The common
feature here is that developers who create relationships
between platfom-specific components and the main system
fid themselves needing to maintain strong ties to the rest
of development or risk mistiming the introduction of their
work into the central effort.

Assembling the Entire System
The product also needs to be integrated as a whole, which ~
involves making sure all the subsystems work together. At
Tool Corp. assembling the entire system was equivalent to ●--
assembling two groups’ work, as the organization was
small. The coordination work involved in assembling the
system was much greater for larger organizations such as
Computer Corp.

At the sites studie~ systems assembly work consisted of
two stages. Firs\ the individual teams needed to align
their work with other groups with whom they shared
dependencies. Once that was done the entire system needed
to be assembled. At the time of the study, neither
organization had any tools that automated the entire
function. Instead, the companies used a combination of
technical and organizational solutions to making the ~
product work as a whole.

Tool Corp. was able to align the two subsystems it had ~
fairly easily. E~erts for each team were well known to all ~
the developers there so they could check individual ,
problems throughout development. The build managers for :
each system also worked closely to maintain alignment. ,

Computer Corp. used two strategies to manage the
alignment issues. Some pieces of the system are more
central than others. Changes to those pieces of code had
impacts across the organization because many subsystems
depended on that code behaving a certain way. Computer
Corp. had established a repository and an organizational
defined unit — the shared resources group — to manage ~
the problems of commonly used code. The shared
resources group had the responsibility of maintaining the
code in a publicly accessible repository.

The shared resources group also standardized ways of ~
accessing the common code. They categorized the code by ~
what part of the system it came from, and then informed all ,

398

.-

———- .= . ,-. ~.. . —,----- _

the teams where the code could be found inside the
repository. This process formalized the ways that other
teams accessed the code by removing the individual
communication required and replacing it with a formal
procedure. It ako helped to prevent the problems of hatig
multiple versions of a single piece of common code being
used by different teams in their development work

However, not dl code was managed by the shared resources
~~oup. h the absence of the shared resources group taking
care of their code, teams had to find out who was using
their code. One mechanism some developers used was to
broadcast information about their systems electronictiy, in
the hope that people who were dependent on their code
would reply. The weakness of this approach was that the
dependency relationships were identified by the individtis
who owned each componenL lWen the developer who
owned the remote code left or moved on to a new project
the connection was 10SL If the relationship spanned large
sections of the organization the developer who needed to
reestablish contact witi the other side of their dependency
tvould ~iely not know anyone to ask.

Computer Corp. was in the process of implementing
technology that would sit on top of the CM tools and store
versions of subsystems that other groups could access.
Part of the tictionatity of the system was to depersonalize
the code, remove individua~s names horn the modties that
they worked on, and replace it with the team name. h this
case depersonalization was an effort to make the
subsystems more recognizable by assigning ownership at a
higher level of abstraction.

At Computer Corp. the actual act of systems assembIy was
handed by another separate organizational unit responsible
for releases. All the groups working on the product suite
wotid hand over a copy of their code to the release group at
fixed points in the development life cycle. The release
-moup wodd then test to see whether the code from
&%rent groups worked together as exTecte&

Assemb~mg the entire system is a coordination intensive
activity. It is the time when dl the subsystems must work
with each other. This drives a complex set of relationships
among developers and other people responsible for
elements of this process. The management of Wls
relationship requires the construction and maintenance of
complex documented procedures, organizational units, and
some technologies.

lNSTITUTIONAL RECOMPOSITION
The development environments I have described have
appeared relatively autonomous. Most of the dependencies
and relationships discussed so far have been created by
decisions taken withii companies. However, outside
influences dso create complex relationships that managers
‘ad developers have to manage as part of their work b
tils section I will describe just one of those relationships
brought about by open systems.

Open Systems
The dependencies created by platfoms I descriied earlier
focused on fitting development effoti in different stages of
being finished together. However, platforms and other

kinds of software create another set of dependencies that
forced all the companies I studied to create and maintain
more complex relationships with vendors of other hardware
and software products. All of the companies I studied,
built products that needed to work with other systems and
as a consequence found themselves managing these
relationships.

One way that other vendors influence the development
strategies followed by these companies is through their
own releases. For example when a company released a new
version of its operating system, Tool Corp. found itself
having to make important development decisions.
Specifically, Tool Corp. had to decide whether enough
potential and existing customers of their tool would
upgrade to the new operating system and whether that
warranted starting a new development effort to make their
own product compatible.

Sometimes the companies I studied wanted a tighter
integration between their products and those of other
vendors. Then some code must be shared between two
independent vendors. At Computer Corp. I found
developers that work with other companies’ code, and who
find themselves dependent on how those companies choose
to make their own system revisions.

I spoke to one developer who -was hired into the
organization particularly for his experiences with a sotiare
package that Computer Corp. wanted to integrate with their
software. His own development, the integration between
the fivo products, was routinely impacted by changes made
to the vendor code, as he explained

basically you have to take their base and compare it
to what they’ve given you now and see the
differences there and then you have the choice of
either implementing it from their new code or
putting their changes into your new code.

These vendors change their code, not only in terms of
functionality of individual modules, but at higher levels, in
the architecture of the overall produc~ over time. However,
sotiare development organizations who depend on other
vendors, pay a high price for that dependency. The
development organization must adjust their code every time
a vendor’s code changes. Quite frequently, the
development organizations need to ensure that they support
both new and older versions of the vendor’s code, allowing
customers the option of upgrading or not.

Developers who have code that depends on other vendors’
systems find themselves spending time reworking their
own modules to accommodate new changes from other
vendors. Sometimes the connections between vendors let
developers interact with their counterparts in the other
organization; sometimes managers meet and negotiate for
information about product changes. Critically, for these
developers part of the job of making their code work
depends on maintaining enough of a connection to the
other vendor.

●

399

I

—— .—. — . .— — _“- ..-”. ___

?MPLICATIONS FOR CSCW RESEARCH
k the last three sections I have described specific instances
of the coordination work required to produce sofiare.
S~dyinS tie coordination from the decomposition
perspective has helped to iden~ the occasions that create
coordination work, and what work individuals and
org~~tions ha~,eto do. A1hou~ I have focused on the
decomposition work necessary to assemble software
systems tiom their parts, decomposition work occurs in
other settings.

Studies that include hardware design suggest that tie s~e
issues arise there [5, 20]. For example, in hls studies of
en=tieering design, Bucciarelfi notes that synthesis of the
product even at early stages of design is not simple. It also
seems probable that this kind of work exists in the
assembly of other tiacts, such as large documents written
by multiple participants. h their study of the ~, Harper
and Sellen [17] observe that professionals working on
documents spend time corroborating their sections with
their colleagues to make sure that they fit together. k this
section, I examine what the decomposition perspective has
to offer for our understandings of coordination work and
organizationrd CSCW.

Decomposition as Articulation Work
Decomposition work is a specific form of the broader
concept of articulation work. Articulation work is all the
coordination and negotiation necessary to get work done
[27]. Decomposition work is tie coordination required to
assemble artifacts from their parts. Sctildt and Bannon
[25] have argued that artictiation work focuses on work
practices that reach beyond small group settings and
provides a use~ conceptual tool for broadening the scope
of CSCW. Decomposition work includes local work
practices, but must rdso span the entire organization, and
even brings different companies together.

~ls study has illuminated four features of this kind of
articulation work. First dependencies among the pieces —
in tils case system components — create a host of complex
social relationships that need to be articulated and
coordinated over long periods of be- Ftiermore the
stren=ti of these relationships fiuences the organizations’
abifity to assemble its artifact k other words, if these
relations~lps can not be maintained then it is ~ely that the
artifict will not fit together, as pieces will drifi away and
become increasingly misdlgne~

Secon& these relationships change overtime as the product
changes its technicrd character and the org-tion changes
its social makeup. fiowing what they were when the
artifact was orig”m~y designed is not enough, because the
requirements change, the people change, and so the product
is transformed People need to revise their understandings
of where the artifact is headed continually in order to
understand what it has become-

Thii& any existing artifacts — in this case code — creates
even more comp~cations. It creates difficulties for the
inhird decomposition effort in ways that potentkdly create
more dependencies among various pieces than desired For
example, the choice not to create an entirely new and

separate product for each platform means that all new
development must fit with all the existing work going on.

Foti, these dependencies are not entirely under the
control of the organization. If another organization — a
company, a federal agency, or regulatory body — makes
revisions that impact the organization’s work, the
org~tiation must realign their efforts again. In other
words, the decomposition perspective situates the
production of artifacts in a broader institutional context.

b summary, this study ties the coordination work required
to produce objects to the artifact that is developed.
Specifically, decomposition grounds one type of
articulation work in the technical details of what is
produced. This study demonstrates the importance of
articulation work, the variety of types that occur
simultaneously during the production of an artifact, and
clarifies the character that these relations take during the
process.

Button and Sharrock [9] observe that a relationship exists
between technology and an organization. h this case, it is
a relationship between the technology underproduction and
the organization shaping it. Decomposition work provides
a mechanism for understanding how coordination
Muences the outcome of any artifact produce~ and in turn
how that artifact directs the coordination required.
Furthermore, it suggests that there is a three way
relationship: among the artifact — whether it be a
technology or not — produced, the organization building
it, and any technology introduced to facilitate the
development process.

Organizational CSCW
Recently, CSCW researchers have begun to explore
intergroup and interorganizational forms of coordination
[2]. This study shows that many of the tectilcal solutions
that suppoti decomposition work exist for small groups
trying to coordinate their development efforts locally. The
amount of technical support decreases when multiple teams
or organizations are involved. At the same time, and not
unsurprisingly, the number of organizational “fixes”
increases. The establishment of departments, steering
committees, and other policies, all step in to address the
coordination needs that their current technologies do not
[10, 24].

This study has outlined some of the ways that
organizations coordinate their development efforts.
However, the relationship between the artifact and
organization that I have identified also offers opportunities
for examintig potential organizational and technological
solutions for organizational CSCW. In the rest of this
section I discuss two occasions when decomposition
provides insight into organizational CSCW issues.

Loosely Coupled Wo& and Architectures
Okon and Teasley [20] describe one organizational solution
to the challenges of aligning geographically distant design
work. The solution that two teams — one in the USA and
the other in France — took involved slowly uncoupling
their work over time. hitia~y they had an architecture that
required them to work closely. As the project evolved it

400

—. ——- . .- ..— ,.,,,>— .,_

became easier to redivide the work in ways that reduced the
coordination required They cdl this kind of work loosely
coupled

This study suggests that when work is redivided to
accommodate distance then a corresponding change in the
architecture of the artifact built must also occur (which
Olson and Teasley suggest happened in their study). Work
can still proceed in a loosely coupled fmhion without
changing the architecture of tie ~ifact, but sefious
difficulties will arise. Althou@ it may save time initially,
allowing different groups to proceed more independently, if
tiey have to reassemble their product and the dependencies
have gotten misrdi=me~ it wfll take longer, and require
reestablishing the lost connections, and forgotten context.

~ls suggests that the architecture constrains the abfi~ of
developers to choose tight or loose couphg independently
of the artitict So, the &ct itse~ can provide a source of
information about what kinds of work can be distant and
uncouple~ and those which if loosely coupled create
decomposition problems. This information could be used
to determine opportunities for groupware, and other
settings where those same technologies would be less
helpful. F~errnore, by comparing the architecture with
chtis that identi~ whether work is loose or tightly
coupled we can find places where work has become loosely
coordinated when it should not be. Finally, the
decomposition perspective provides insight into the specific
activities that developers will find hard if the work has
been loosely coupled while the architecture demands tight
coordination.

Organizational Ati~reness
In their stidy of design work Bellotti and BIy [1] describe
how individuals watched and taked with their collea=~es
as a way of mainta~mg enough awareness of what others
were doing. ~Is study confirms that developem engage in
the same practices to mainti this Mormation about what
their team mates are working on. h these activities,
developers associate information about other software
components with the individuals building them.

hfuch of the awareness literature to date makes this tie
between individuals and artifacts. The three types of
awareness mechanisms Do~sh ~d Bello~ [13] desc~be
all connect information about work states with an
individual responsible- hforrnational awareness allows
individuals to describe what they dld ad role restrictive
awareness lets other deduce what work has happened based
on the role of the individual. Their shared feedback
approach provides awareness of others witim a cormnody
shared electronic workspace. Changes to an artifact are
associated with the individual that made them in W these
approaches.

~Is study suggests that awareness at an organizational
]evel is subtiy Merent Awareness — what people need to
be aware of — changes when organizations attempt to
assemble artifacts that span many divisions of the
company. b the organizations I studie~ people involved
in subsystems and systems decomposition work found it
more useti to have components associated with the team

that produced it. h fac~ developers at all of the companies
I studied often referred to subsystems by the name of the
team that built them. Ofien the subsystem name was the
team name (i.e., the kernel group built the kernel). For
systems development this means providing ways to
aggregate and display awareness information about teams.
Furthermore, it raises questions about how to represent
abstractions of team activity. *
The notion of awareness changes radically when companies
create alliances with other vendors. Companies are
interested in making their products compatible, but not
giving away proprietary information. What it mems to be
aware, to maintain enough context to align products,
becomes the discussion of management meetings and the
content of legal documents.

CONCLUSIONS
The predominant way of thinking about design and
development work focuses on the work to break the
problem into smaller components. This view permeates
the literature about design as well as the techniques for
orgtig project activities. Systems assembly seems to
play a minor role in this view.

Reversing our thinking from decomposition to
decomposition places systems assembly at the center of the
development effort. For CSCW researchers it highlights
how critical and just how difficult individuals find
maintaining congruency among all the parts. Furthermore,
it establishes a foundation for explaining exactly how
coordination work directly impacts the artifact produced,
and in turn how that artifact affects the coordination work
required. The decomposition perspective also situates this
coordination in the local and global contexts of production.
Finally, it offers some insights into technological and
social solutions for organtitional CSCW. Decomposition
provides a new tool for CSCW researchers to explore the
coordination involved in the production of large
collaborative tiacts.

ACKNOWLEDGMENTS
~ls study is a product of the collective wisdom of those
who manage these dependencies in their daily work. Mark
Ackerman, Lisa Covi, Jonathan Grudin, Jim Herbsleb,
John L. King, Tom Redden, and Larry Votta provided
support and helped me to articulate these ideas. I thank the
reviewers for their comments. None of this would have
been possible without the financial support of the
Engineetig and Science Research Council of the United

,,

~gdom.

REFERENCES
1. Bellotti, V. and S. Bly. Walking Away from the

Desktop Compute~ Distributed Collaboration and
Mobility in a Product Design Team. h Proceedings of i,

ACM Conference on Computer Supported Cooperattie
Work CSCW 96 (Cambridge, MA, November 1996),

I

ACM Press, 209-218. !

2. Bowers, J., G. Button, and W. Sharrock. WorMow
!

from Within and Without: Technology and :,
Cooperative Work on the fit Industry Shopfloor. h
Proceedings of European Conference on Computer-

..—-— .—.

— —___

3.

4.

5.

6.

7.

s.

9.

10.

11.

12.

13.

14.

15.

16.

— -— —-—-— ——---- . .

●

Supported Cooperative Work ECSCW Y5 (Stockhohn,
Sweden, September 1995), Kluwer Academic
Publishers, 51-66.

Brooks Jr., F. P. The Mythical Man-Month.
Datamatio~ 20, 12 (1974), 44-52.

Bucciarelfi, L. L. An Ethnographic Perspective on
Eng~eefig Design. D~ign Studia. 9,3 (19SS), 159-

16S.

Bucciarelfi, L. L., Designing Engineers MT press,
Cnmbridge, ha, 1994.

Button, G. and K Harper. The Relevance of ‘Work-
tictice’ for Design. Computer Supported Cooperative
Work- The Journal of Collaborative Computing. 4,4
(1996), 263-2S0.

Button, G. and W. SharrocQ The Mundane Work of
Writing nnd Reading Computer hograms. h Situated
Order: Studies in The Social Organisation of Talk
md Embodied Activities, P. ten Have and G. Psathas,
Editors. 1992, The University Press of America
Washington D.C.

Button, G. and W. Sharrock Project Work The
organisation of Collaborative Design and
Development in Software Engineering. Computer
Supported Cooperative Work: The Journal of
Collaboratfie Computing-5, 4 (1996), 369-3S6.

Button, G. and W. SharrocL The Production of Order
and the Order of Production. k Proceedings of FI~th
European Conference on Computer-Supported
Cooperative Work ECSCW ’97 @ancaster, UK,
September 1997), Muwer Academic Pubkhers, 1-16.

Carstensen, P. H. and C. Smensen. From the Social to
tie Systematic Mechanisms SUppOrdng coor~afig
in Desi=~. Computer Supported Cooperattie Work:
me Jourd of Collaborattie Computing. 5,4 (199@,
3s7413.

Conway, hf. E. How Do Committees Invent?
Datamatio~z 14,4 (196S), 2S-31.

Curtis, B., H Kramer, and N. Iscoe. A Field Study of
the Software Desi=m Process for Large Systems.
Communication of the ACM 31, 11 (19SS), 126S-
12S7.

Dourish, P. and V. Bellotti. Awareness and
Coordination in Shared Workspaces. h Proceeding of
ACM Conference on Computer-Supported Cooperative
Work CSCW ’92 (Toronto, Canad~ October 31 -
November 4, 1992), ACM Press, 107-114.

Gl=er, B. G. and A. L. Strauss, The Discovery of
Grounded Theo~ Strategies for Qurdhative Research
Aldine de Gmyter, Hawthorne, N Y., 1967.

Grinter, R. E. Supporting Articulation Work Using
Configuration hfanagement Systems. Computer
Supported Cooperative Work: The Journal of
Collaborative Computing. 5,4 (199@, 447465.

Grinter, R. E. Doing So&are Development:
Occasions for Automation and Formafisation. b

402

17.

1s.

19.

20.

21.

22.

23.

24.

25.

26.

27.

2s.

29.

Proceedings of Fifth European Conference on
Computer-Supported Cooperative Work ECSCW Y7
@ancaster, ~ September 1997), Kluwer Academic
~blishers, 173-1SS.

Harper, R. and A. Sellen. Collaborative Tools and the
Practicalities of Professional Work at the htemational
Monetary Fund. k Proceedings of ACM Conference
on Human Factors in Computing Systems CHI ’95
@enver, CO, May 1995), ACM Press, 122-129.

Herbsleb, J. D., et al. Object-Oriented Analysis and
Design in Software Project Teams. Human-Computer
Interaction. 10,2-3 (1995), 249-292.

NATO Science Committee. Working Conference on
SofWare Engineering. NATO Scientific Affairs
Division. 1969.

Olson, J. S. and S. Teasley. Groupware in the Wild
Lessons Learned from a Year of Virtual Collocation. h
Proceedings of ACM Conference on Computer
Supported Cooperative Work CSCW 96 (Cambridge,
MA, November 1996), ACM Press, 419-427.

Pamas, D. L. On the Criteria to be Used in
Decomposing Systems into Modules.
Communications of the ACM. 15, 12 (1972), 1053-
105s.

Perry, D. E., N. A. Staudenmayer, and L. G. Votta.
People, Organizations, and Process Improvement.
IEEE So@are. 11,4 (1994), 3645.

Plowman, L., Y. Rogers, and M. Ramage. What Are
Workplace Studies For? In Proceedings of Fourth
European Conference on Computer-Supported
Cooperative Work ECSCW ’95 (Stockhohn, Sweden,
September 1995), ~uwer Academic Publishers, 309-
324.

Schmidt, K. Of Maps and Scripts: The Status of
Formal Constructs in Cooperative Work. In
Proceedings of International ACM SIGGROUP
Conference on Supporting Group Work GROUP Y7
@hoen&, AZ, November 1997.), ACM Press, 13S-
147.

Schmidt, K. and L. Bannon. Taking CSCW
Seriously: Supporting Maculation Work. Computer
Supported Cooperative Work (CSC W): An
International Journal. I, 1-2 (1992), 7-40.

Sch6n, D. A., The Reflective Practitioner: How
Professionals Think in Action Basic Books kc., New
York NY, 19S3.

Strauss, A. Work and the Division of Labor. The
Sociological Quarter@. 26,1 (19S5), 1-19.

Strauss, A., Qualitative Analysis for Social Scientists
Cambridge Universi~ Press, New York N.Y., 19S7.

Tellioglu, H. and I. Wagner. Negotiating Boundaries:
Configuration Management in Sotiare Development
Teams. Computer Supported Cooperative Work: The
Journal of Collaborative Computing. 6, 4 (1997),
251-274.

