
215

1

Code Generation for WSLAs using AXpect
Galen S. Swint and Calton Pu, Senior Member, IEEE

Abstract— WSLAs can be viewed as describing the service

aspect of web services. By their nature, web services are dis-
tributed. Therefore, integrating support code into a web service
application is potentially costly and error prone. Viewed from
this AOP perspective, then, we present a method for integrating
WSLAs into code generation using the AXpect weaver, the AOP
technology for Infopipes. This helps to localize the code physi-
cally and therefore increase the eventual maintainability and
enhance the reuse of the WSLA code. We then illustrate the
weavers capability by using a WSLA document to codify con-
straints and metrics for a streaming image application that re-
quires CPU resource monitoring.

Index Terms— Software quality, Software tools, System soft-
are. w

I. INTRODUCTION

A s the web services model gains popularity for developing
and deploying applications, many companies are propos-

ing standards and specifications to codify the constraints that
necessarily must exist between parties involved in application.
In fact, recent efforts of companies such as IBM and HP trend
towards specifying web service contracts that capture expecta-
tions of performance and the roles of the involved parties
[1][2]. We can view these specifications as domain specific
declarative languages especially for the web services domain.
The web service specification problem, then, becomes one of
mapping the service contract’s particular domain specific lan-
guage (DSL) to the application’s implementation space. At
runtime, then, the measurement, contract evaluation, monitor-
ing, and adaptive functionality must be interspersed into the
application's normal runtime pattern.

Clearly, these standards specify an aspect of their associated
web services. That is, they capture a system characteristic that
is orthogonal to the primary application functionality, and that
functionality crosscuts, or touches on many parts of, the appli-

cation's implementation. Aspect-Oriented Programming
(AOP) has recently emerged as a candidate development
paradigm for managing code that implements application re-
quirements that have the crosscutting characteristic. For gen-
eral purpose languages, and by extension the general space of
all applications, AspectJ and AspectC have shown that AOP
techniques can significantly improve the clarity, and therefore
maintainability, of application implementations. However,
adding AOP to existing languages has also proven to be non-
trivial. AspectJ is clearly successful, but it took several years
of significant group effort. In comparison, progress on As-
pectC is slower. One of the major AOP research questions is
whether this difficulty (of adding AOP) is related to the ex-
pressive power of

 the target application space or is simple
in

g distrib-
ut

ode weaving logic as an additional processing
co

herent to AOP.
We investigate this question and probe the power of AOP

in implementing these service contracts by using IBM's Web
Service Level Agreement (WSLA) specification as an exam-
ple aspect language for service contracts and demonstrate the
facility with which AOP techniques allow web service man-
agement code can be implemented within an existin

ed information flow programming framework.
The Infosphere project has already created a toolkit to sup-

port the specification and generation code for information
flow applications [3]. The basic Infopipes toolkit consists of a
high-level specification language, Spi; an XML-format of this
language, XIP; and the Infopipe Stub Generator, or ISG,
which generates the communication code. When using our
framework and AOP techniques, we find it is significantly
easier to augment our existing specification language with
AOP, although it is still non-trivial. Doing so, allows us to add
support for WSLAs and to generate code supporting web ser-
vice agreements. Three primary factors contribute to this:
First, DSLs such as XIP typically capture recurring designs,
so a weaver capable of using the underlying design pattern
can reduce the number of extraneous joinpoints and thereby
reduce complexity in writing new aspects. Second, XIP is
defined over XML and it benefits from XML’s inherent ex-
tensibility and maturing software tools such as parsers and
XSLT pattern processors, facilities which have proved to be
very useful for incorporating aspects. Third, the design of our
generator as a processing pipeline aided us by easing the in-
sertion of c

Manuscript received February 9, 2004. This work was done as part of the
Infosphere and Embedded Infopipes projects, funded by DARPA through the
Information Technology Expeditions, Ubiquitous Computing, Quorum, and
PCES programs. The research was also partially funded by NSF's CISE direc-
torate, through the ANIR and CCR divisions as well as the ITR program. In
addition, the research was partially funded by Intel.

G. S. Swint is a Ph.D. graduate student in the College of Computing at the
Georgia Institute of Technology, Atlanta, GA 30332-0280 USA (phone: 404-
385-2585, e-mail: swintgs@acm.org)

mponent.
The first contribution of this paper is a concrete implemen-

tation of an experiment, using our AXpect AOP weaver to
implement WSLA support for an application created using the
ISL/ISG framework. The weaver processing component ac-

C. Pu is a Professor, holds the John P. Imlay Chair in Software, and is the
Co-Director for the Center for Experimental Research in Computer Systems in
the College of Computing at the Georgia Institute of Technology, Atlanta, GA
30332-0280 USA (e-mail: calton@cc.gatech.edu).

215

2

cepts AOP-augmented XIP from our code generation compo-
nent and uses XSLT to retrieve data from the application's
X

-
st

ates the use and results of AOP and the AXpect weaver
in the context of our motivating example. Finally, Sections V
and VI, respect the conclu-
si

LA document to add
a

ceiver with too
many images and thereby use up a disproportionate amount of
re for other tasks. We
di

 transmit
da

ap-
tu

iler for Spi is based on the Ply lexer/parser
pa

ss in more detail in Section III). Overall, it is similar
to

IP specification and from its contract WSLA. It then inserts
WSLA support at the source level.

The second contribution of this paper is an experimental
evaluation of the AXpect weaver through a non-trivial infor-
mation flow application. In our experiment, we used WSLA to
apply resource constraints to the application and created a
cooperative image sender and receiver services that respect
CPU usage requirements of the receiver end through sender
adaptation. Our framework allowed us to implement the con

raints and monitoring in an incremental fashion. So far,
AXpect has generated and woven about 30% of the final code.

The organization of this paper is as follows: Section II pro-
vides a motivating example and background material relevant
to Infopipes. Section III describes the implementation of the
AXpect weaver for AOP support in Infopipes. Section IV then
illustr

ively, provide related work and
on.

II. MOTIVATION AND BACKGROUND

A. Motivating Example
We will use a distributed image streaming application to il-

lustrate the functions performed by the Spi/ISG toolkit and
then demonstrate the use of a WSLA document plus the AX-
pect weaver to impose resource constraints and add adaptation
to the image source service. For this application, we have a
sender, the source of our images, and a receiver, which con-
tracts to accept and process the image data stream. In the base
implementation, the sender transmits images to the receiver at
an unconstrained rate. We then use a WS

CPU usage constraint so that the receiver measures the re-
source usage of the sender and returns the data to the sender
so the sender can adjust its sending rate.

Operational requirements of this simple sender/receiver
application are common to many distributed information flow
applications. For its part, the receiver must create a socket,
publish connection information, and wait for an incoming
connection. The sender follows a complementary series of
steps. It creates a socket, looks up the receiver's connection
information, and then establishes the socket connection. In the
steady state, the sender transmits data to the receiver through
the connection. In the base implementation, however, it is
easy for an overeager sender to swamp the re

ceiver resources which may be needed
scuss how a WSLA allows the sender and receiver to

manage this situation in the experimental section.

B. ISL, ISG and Infopipes
A great deal of code in information flow applications per-

tains solely to creating, using, and maintaining the communi-
cation connection. This code implements functionality such as
connection establishment and code to marshall and

ta and following that to receive and unmarshall data. We
exploited these commonalities and developed the Spi language
and ISG code generator for specifying and generating com-
munication framworks to support these applications.

The Spi/ISG toolkit has two parts: the domain specific lan-
guage, known as Spi, and a code generator, the ISG. Spi c

res application design by describing each transformational
step as a "pipe" which has inputs, outputs, and some function
that maps between them. Spi also allows a developer to spec-
ify datatypes used for communicating between processes.

Once a Spi description is created, it is compiled into an in-
termediate representation – the XIP (XML for Infopipes) de-
scription. Our comp

ckage. The compilation of Spi is a straightforward trans-
formation of the datatype, pipe, and connection information to
XML structures which is then augmented with some configu-
ration information.

XIP is itself another domain specific language though not
designed for human re . Rather, XML syntax is most
suited as input to programs. XIP serves as input to the In-
fopipe Stub Generator (ISG), our software that generates the
communication stubs for handle connection establishment,
data marshalling, etc. Figure 1 provides a visual overview of
the ISG architecture including the AXpect weaver (which we
will discu

adability

Figure 1. ISG with support for AXpect weaving.

 the application code generator architecture described in [4].
The XIP specification is the input, and C source code accom-
panied by makefiles are the output of the code generation
process.

Code generation proceeds through two phases. First, the
XIP specification is passed to the actual code generation com-
ponent, in our case a collection of XSLT-based templates.
These templates are XSLT statements embedded within a C

215

3

code skeleton which can retrieve relevant data from the XIP
specification, as the <xsl:value-of> element in Figure 2
does. The result of applying the XSLT to the XIP document is
a new XIP document containing both the original specification
an

lent XIP, which is then passed
to the ISG. The ISG selects the proper templates and then
writes the file eveloper can
th

ction. We address, first, aspect
sp

 the entire system and security is limited by the
w case, we use CPU usage monitors
a channel to allow the sender to re-
sp

level aspect specification is required in any case, since
Sp

XML element which

if we wish to apply an aspect
to

weaver will apply
th ceiver
ex relies
on generated in the timing aspect. In
X

er to specify
d use. Alternatively, the
de

rns to express through them. For

d also the generated C code. In the second phase, this new
XIP document is passed to the final stage of the stub genera-
tor. Here, the XIP is cracked into individual files, stripped of
XML, and written into directories.

In our example application, the developer first creates the
Spi description which defines two pipes – a sending pipe and
a receiving pipe. These pipes are connected, and the sender
transmits image data as type ppm, which is a small header
followed by a byte array, to the receiver. This Spi specifica-
tion is compiled into an equiva

s into the proper directories. The d
en add the C source code implementing the core functional-

ity of the sender and receiver.

III. ASPECT SUPPORT IN THE ISG
To the toolkit described in the previous section, we have

added support for AOP. This topic we divide into three areas
and discuss them in this se

ecification, in which we designate the aspects to be woven
with our base code; second, weaver support in the templates;
and third, a method to implement each aspect and specify
code, advice, and pointcuts.

On top of the basic streaming application described in the
previous section, we added support for resource management
using AOP to evaluate the AXpect weaver. Normally, each
resource constraint (e.g., CPU or network usage guarantees)
needs specific code that touches several parts of the system,
since resource management requires end-to-end cooperation.

For example, performance is limited by the bottleneck com-
ponent in

eakest component. In this
nd an additional feedback
ect resource constraints of the receiver by adapting its send-

ing rate.

A. Aspect Specification
The developer of an application must indicate to the weaver

what aspects are to be applied and on which components to
apply them. We chose to implement aspect support at the XIP
level and postponed the research question of aspect specifica-
tion in Spi. The decision stems from two main reasons. First,
XIP-

i is translated into XIP. Second, there is no standard WSLA
specification language – competing standards include CDL
from the QuO project [5], and proposals by HP [2] and IBM
[1].

Adding aspect statements to each pipe specification that
generates code is done by adding an
carries the name of the aspect and any additional information
the aspect requires. For instance,

 the receiver that generates rate controller functionality and
it references a WSLA, then we write this:
 <apply-aspect name="rateController.xsl"
doc="uav.xml"/>.

Aspects may specifically rely on functionality located in
other aspects implying at least a partial ordering. Developers
can denote this in the specification by nesting aspect applica-
tion elements within one another, and the

e most deeply nested aspects first. In our sender-re
 a CPU usage monitor whichample we want to apply

 the timing information
IP the requirement is expressed like this:
<apply-aspect name="cpumon.xsl">
<apply-aspect name="timing.xsl"/>

</apply-aspect>.
The AXpect weaver does not require a develop

int <xsl:value-of select="$thisPipeName"/>() {
 <jpt:pipe point="user-declare">
 ; // USER DECLARES VARS HERE
 </jpt:pipe>
 <jpt:pipe point="user-function">
 ; // USER CODE GOES HERE
 </jpt:pipe>
 return 0;
}
// startup all our connections
int infopipe_<xsl:value-of
 select="$thisPipeName"/>_startup()
{
 <jpt:pipe point="startup">
 // start up outgoing ports
 // <xsl:for-each select="./ports/outport">
 infopipe_<xsl:value-of
 select="@name"/>_startup();
 </xsl:for-each>

 // start up incoming ports
 // <xsl:for-each select="./ports/inport">
 infopipe_<xsl:value-of
 select="@name"/>_startup(); </xsl:for-each>
 </jpt:pipe>

 return 0;
}
Figure 2. Excerpt from a template that generates connection startup calls and
skeleton for the pipe's function. Line breaks inside XSLT tags do not get
copied to the output.

ependencies between all the aspects in
veloper can simply list the statements as children of the

<pipe> element or of an <apply-aspect>. In these
cases, the aspects are applied in the order listed.

B. Aspect Support in the Templates
C, our target implementation language, does not have a

complete and robust aspect weaver for it, yet, as AspectC is
still in development. On the other hand, we also do not need
the full power of a general aspect weaver, either, because we
limit ourselves to a specific domain – information flow appli-
cations. Instead, we adopted an approach analogous to the
explicit programming model of ELIDE [6]. In AXpect, join-
points are XML elements explicitly written into the templates
and they are selected via XPath pointcuts. Unlike ELIDE,
however, we can limit the number of joinpoints explicitly ex-
pressed since we are in a specific domain and have already
identified some repeated patte

215

4

instance, we know that each pipe at run time proceeds through
three main phases: startup, running, shutdown. Furthermore,
we even know what specific substeps are required for each of
those phases, e.g. initialization and location advertising by a
socket inport during startup.

Knowing these steps, we can insert XML elements that ex-
plicit denote the boundaries of execution for each step and
sub-step. Referring back to Figure 2, we see XML elements
denoting the startup of a pipe (<jpt:pipe
point="startup">) and delineate the group of calls to
start up each inport or outport, and another element
(<jpt:pipe point="user-function">) denoting the
position where the user will insert the code to do the work of
the pipe. Note that we place the tags inside the functions so
that code can be added inside the function. We have additional
ta

s no extra “work-
ar

ally, C code only requires am-
p on.

llection of

joinpoints in the desired fashion.
Si e iden-
tif nt then
hand Then, if you

ment. At this point, the aspect
w

 the same variables and stack
co

> which denotes the block of code
in

gs outside the functions that denote the contents of a source
file or header file so that an aspect developer can affect appli-
cation structures larger than a single function. In fact, an as-
pect can also add entirely new files to the suite of generated
files and generate calls to functions in the new files.

XSLT was designed for manipulating and creating XML
documents. Therefore, the presence of XML tags in the gen-
eration templates is not unusual and require

ounds” when coding templates nor does the supplemental
XML reduce or break the functionality in the base templates.
For the most part, code included in a template or aspect needs
very little modification. Typic

ersands and less-than symbol conversi
We placed the joinpoint tags in a separate namespace. This

segregates the joinpoint designators from tags that may have
other purposes, such as denoting file information for the code
generator or XSLT elements.

C. Implementing an Aspect
An aspect for the AXpect weaver is an XSLT document.

The collection of pointcuts, advice, and code that constitutes
an aspect are expressed using a co
<xsl:template> statements in a stylesheet and use the
template's match attribute to execute the pointcuts through
XPath statements. For instance, the XPath query to select all
instances of the joinpoint "middle-module" would look like
this: “//jpt:pipe[@point='module']”.

Most of the time, we apply an aspect to only one pipe in a
collection of all the pipes generated to create a system. To
select the code for only that pipe from the entire collection in
the XML document we can condition our XPath statement to
narrow the selection of

nce this is such a common requirement, we extract th
y aspect> statemethe pipe from the <apply-

 pass it to the template through variables.
wanted only the middle-module template for the re-
ceiver pipe, you qualify your selection statement with
XPath attribute selectors:
“//filledTemplate[@name=$pipename]
[@inside=$inside]//

jpt:pipe[@point=’module’]”
where $pipename and $inside are variables. We can
restrict join point selection by adding XPath predicates, or
select multiple joinpoints with the ‘|’ (OR) operator as well.

AspectJ has three advice keywords, before, after, and
around, direct the weaver to run the aspect code before, af-
ter, or in the around case, either both before and after or
instead-of the joinpoint. When around is used for before/after
semantics, the developer controls the execution of the code in
the joinpoint with the proceed keyword. Rather than des-
ignating advice with a keyword, advice with AXpect is ex-
pressed through the structure of the XSLT template. Once the
XPath statement selects the joinpoint, then the aspect writer
must explicitly copy the joinpoint and its code to the output
using the <xsl:copy> ele

riter can choose to add code before, after, around, and in-
stead-of (by omitting the copy directive) the joinpoint. In
Figure 3, we can see that the timing aspect inserts code around
the middle function of a pipe. With this approach, each piece
of inserted code has access to

ntext as the original code.
An aspect may also need to refer to data in the XIP specifi-

cation. Since the specification is presented along with the code
for weaving, the aspect code can refer to the specification in a
same manner that templates retrieve the data by using
<xsl:value-of> element.

When developing an aspect, a writer may wish to include
joinpoints in the aspect code to augment the joinpoints avail-
able in the base templates and thereby expand the joinpoint
space. Doing so provides hooks for aspects which may be
applied later, and allows the later aspect code to take advan-
tage of the earlier aspects' functionality. This denotation is
accomplished in the same fashion as adding joinpoints to the
original templates -- by adding XML elements to the aspect
template in the same fashion as for the code generation tem-
plates. In Figure 3, it is easy to see the added joinpoint
<jpt:time-process

 the aspect related to timing the execution of the function of
<xsl:template
 match="//filledTemplate[@name=$pipename]
 [@inside=$inside]//jpt:pipe-middle">

 struct timeval base;
 struct timeval end;

 <jpt:time-process>
 // take timing here
 gettimeofday(&base,NULL);

 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>

 gettimeofday(&end,NULL);
 usec_to_process = (end.tv_sec - base.tv_sec) *
 1e6 + (end.tv_usec - base.tv_usec);
 fprintf(stdout,"Time to process: %ld\n",
 usec_to_process);
 </jpt:time-process>
</xsl:template>
-
Figure 3. An excerpt from timing.xsl, the timing aspect implementa

215

5

a pipe. Note that we kept the variable declarations outside the
joinpoint element. This is to comply with the C requirement
that variables be declared at the top of a code block. Follow-
ing this convention helps ensure that the aspect code does not
introduce syntax errors.

Finally, for WSLAs, we must retrieve the constraints en-
c corporate them into the generated
c ng XSLT's " ” function
w

uted
aft

t and passed
al

ses the Xerces-C XML parser and Xalan-C

Generally, the process for weaving aspects is straightfor-

poi

2.

3. aspect code from disk (aspects

4.

sor. The

5.
h de-

pend on the current aspect's functionality, or functionaly
independent asp ied later.

6. Once all aspects have been applied, then the entire XML
ent is passed to the last stage of the generator

d the senders own com-
pu

the rate at which the

per
rec images from multiple sources (pos-

In
into
for messages about CPU use.

era
: the datatype

tablishment. There is one of each of
these files for the sender and receiver.

• ch sender and receiver.

munication layer in a con-

net
tw

un
th to the

se
•

.

•
tional messages to the sender about the

oded in the WSLA and in
ode. We do this by utilizi document
hich allows for a developer to operate from any XML data

source. In our test we have found it simplest to simply define
a variable that represents the root of the XML document, and
then this can be re-used throughout the aspect.

D. The AXpect Weaver
The AXpect weaver is the component of the ISG that brings

together the preceding three topics by interpreting aspect
specification statements in the XIP, loading the implemented
aspects from disk, and applying them to the template-
generated code. The modular structure of the ISG allowed us
to insert the AXpect engine as a processing stage exec

er applying the XSLT code generation templates, as shown
in Figure 1. After generation, the produced pre-code is re-
bundled with the description as an XML documen

ong to the AXpect weaver. The weaver itself is a C++ com-
ponent that u
XSLT processor to resolve, load, and weave the aspects.

ward, as the complications of finding joinpoints, executing
ntcuts, and weaving are in the XSLT engine.

Weaving proceeds recursively through the following steps
on each pipe:
1. Retrieves the first <apply-aspect> element from the

specification.
If the aspect contains more <apply-aspect> state-
ments, then the AXpect applies those aspects first, and re-
enters the process of weaving at this step.
The weaver retrieves the
are kept in a well-known directory).
Apply the aspect to the code by passing the aspect XSLT
stylesheet, the generated code with joinpoints, and system
XML specification to the Xalan-C XSLT proces
result is a new XIP document that again contains the
specification, woven code, and joinpoints that were re-
tained or even added by the aspect.
The weaving result serves as input for any aspects that
follow the current aspect. This includes aspects whic

ects that are simply appl

result docum
to be written to disk. Any residual XML joinpoints in the
woven code remain until the last stage removes them as
the code the generator writes the source files to disk.

IV. USING AXPECT

A. Scenario
In the base implementation of the streaming image applica-

tion, a sender transmits images to the receiver as quickly as
possible given network conditions an

tational load. However, in some environments it is desirable
for the receiver to dictate a limit on
sender transmits data. For instance, the receiver may wish to

form compute-intensive transformations on the data, or the
eiver may be collecting

sible even from multiple network segments) at the same time.
such cases, it is useful for a rate limiter to be programmed
 the sender which responds to receiver issued WSLA in-

mation

For the base scenario, there are a total of fourteen files gen-
ted each for the sender and receiver:

• sender.{c,h} or receiver.{c,h}
declarations, the middle function of the pipe, its startup,
and its shutdown code

• ppmOut.{c,h} or ppmIn.{c,h}: header files for the
communication functions and source files implementing
marshalling, communication, and connection establish-
ment

• runtime.{c,h}: header and library functions for sup-
port of connection es

 a Makefile for ea
When the application runs, it first calls the startup code for

the pipe. This in turn calls the startup code of each connection
for opening and connections. Once startup is complete, the
pipe enters its main running phase, which consists acquiring
data and submitting it to the com
tinuous loop. The communication layer then manages the

work transmission. Communication is asynchronous be-
een the sender and receiver.

B. Implementation
Our base scenario simply allows the sender to transmit data
checked to the receiver using the base code generated by
e templates. To add rate-limiting functionality, then,

base implementation requires the following changes to a base
nder-receiver implementation:
Add support for resource metrics to the receiver reevalu-
ated each time the receiver processes an application packet.
Requires code added to the receiver when it initializes and
when it processes each packet

• Add a reverse channel for WSLA information messages
from the receiver to the sender. This requires discovery and
connection code on the client and receiver plus a mecha-
nism to multiplex and demultiplex control messages.
Add rate CPU metric code to the receiver which marshals
and sends informa
observed metric under a chosen reporting policy (e.g. win-
dowed vs. un-windowed). It builds on the functionality of

215

6

the cpu monitor aspect and the control channel. So, those

enting the aspects proceeded in several steps. First,
si

 in the application, we created six aspect files.
O

U usage, and sla_receiver, which
se

iplexing function code that routes incom-
ing control information to the "rateCmdReceived()"
fu h takes proper action. Furthermore, to actually
im

LOC) added by each aspect.
Fo

r new rules for
make were woven in as well.

Table 2 and Table 3 detail exactly which files were affected
by the aspect being woven. For the files control and sla
files, we place the X in parentheses since these files were cre-
ated by the respective aspect. We can see that the number of
files altered by each aspect varied greatly. In a complementary
fashion, we also note that each file may be affected by a vari-

enting the aspects proceeded in several steps. First,
si

 in the application, we created six aspect files.
O

U usage, and sla_receiver, which
se

iplexing function code that routes incom-
ing control information to the "rateCmdReceived()"
fu h takes proper action. Furthermore, to actually
im

LOC) added by each aspect.
Fo

r new rules for
make were woven in as well.

Table 2 and Table 3 detail exactly which files were affected
by the aspect being woven. For the files control and sla
files, we place the X in parentheses since these files were cre-
ated by the respective aspect. We can see that the number of
files altered by each aspect varied greatly. In a complementary
fashion, we also note that each file may be affected by a vari-

aspects must be present first.
• Add rate control code to the sender. This code must retrieve

messages from the control channel, demultiplex them, and
behave appropriately. It again depends on the control code
being applied first. The sender "throttles back" by sleeping
after image transmission if the receiver reports greater than
20% CPU usage.
Figure 4 illustrates the application and aspects. Note that in

addition to crosscutting the base design of the application,
several aspects crosscut other aspects.

Implem

age transmission if the receiver reports greater than
20% CPU usage.
Figure 4 illustrates the application and aspects. Note that in

addition to crosscutting the base design of the application,
several aspects crosscut other aspects.

Implem
nce we had not previously used aspects with our template

code, we added a total of 18 joinpoints to the base template
code. For the most part, these additions corresponded to each
major syntactic or logical unit of code. For instance, we mark
the header and implementation sections for the communica-
tion code and function of the pipe, the body of the pipe startup
code, the body of the pipes middle function, the code that
reads the socket, and finally, we also add a joinpoint
(<jpt:make-rule>) to the Makefile for the sender and
receiver.

For adapation

nce we had not previously used aspects with our template
code, we added a total of 18 joinpoints to the base template
code. For the most part, these additions corresponded to each
major syntactic or logical unit of code. For instance, we mark
the header and implementation sections for the communica-
tion code and function of the pipe, the body of the pipe startup
code, the body of the pipes middle function, the code that
reads the socket, and finally, we also add a joinpoint
(<jpt:make-rule>) to the Makefile for the sender and
receiver.

For adapation
n the sender side we used two aspects: control_sender,

which implemented the sender-side control channel, and
sla_sender, the implementation of the sender's response to
receiver rate requests. On the receiver side we used five as-
pects: timing, which provided base timing measurements
for CPU usage computation, control_receiver, an im-
plementation of the receiver-side control channel, cpumon,
which monitored CP

n the sender side we used two aspects: control_sender,
which implemented the sender-side control channel, and
sla_sender, the implementation of the sender's response to
receiver rate requests. On the receiver side we used five as-
pects: timing, which provided base timing measurements
for CPU usage computation, control_receiver, an im-
plementation of the receiver-side control channel, cpumon,
which monitored CP

nt rate messages to the sender. Each aspect corresponded to
one XSLT file.

When creating the control channel, we placed the bulk of
the functionality in files separate from code generated for the
base implementation. It added startup code and make rules to
the sender and receiver output files. Altering the Makefile
allowed automatic compilation of the extra files for the pipes,
and adjusted the compile and link flags by adding required
libraries like –lpflags for supporting the separate thread of
the control channel.

For an illustration of how disruptive even relatively simple
additions can be to the application, we will explore the modi-
fications on the sender side more closely. First of all, the
sender must establish a control. Since we do not want our con-
trol channel to interfere with the main communication of the

application, we place the service for the control channel in a
separate thread. This means that at pipe startup, we must cre-
ate a separate thread, create a socket within that thread, and
connect to the receiver's control socket. Next, we add support
for the rate control; therefore, the startup code must also ini-
tialize rate information variables. In this case, this entails set-
ting the sender's sleep flag and guard variable to 0 (the guard
variable allows us to turn off the throttle control if the sender
is allowed to send at its maximum rate). In addition to this
startup complexity, the rate control aspect inserts into the con-
trol channel's demult

nt rate messages to the sender. Each aspect corresponded to
one XSLT file.

When creating the control channel, we placed the bulk of
the functionality in files separate from code generated for the
base implementation. It added startup code and make rules to
the sender and receiver output files. Altering the Makefile
allowed automatic compilation of the extra files for the pipes,
and adjusted the compile and link flags by adding required
libraries like –lpflags for supporting the separate thread of
the control channel.

For an illustration of how disruptive even relatively simple
additions can be to the application, we will explore the modi-
fications on the sender side more closely. First of all, the
sender must establish a control. Since we do not want our con-
trol channel to interfere with the main communication of the

application, we place the service for the control channel in a
separate thread. This means that at pipe startup, we must cre-
ate a separate thread, create a socket within that thread, and
connect to the receiver's control socket. Next, we add support
for the rate control; therefore, the startup code must also ini-
tialize rate information variables. In this case, this entails set-
ting the sender's sleep flag and guard variable to 0 (the guard
variable allows us to turn off the throttle control if the sender
is allowed to send at its maximum rate). In addition to this
startup complexity, the rate control aspect inserts into the con-
trol channel's demult

nction, whicnction, whic
plement the rate throttling, the rate control aspect inserts a

guard statement and usleep() call after the Infopipe com-
pletes its data transmission. Each of these changes involves
installing variables at various scopes (global, module, and
local) and in multiple header files. Finally, since we add new
files to the application, we also insert the aforementioned
Makefile rule and add the corresponding object files and
flags to the link list.

plement the rate throttling, the rate control aspect inserts a
guard statement and usleep() call after the Infopipe com-
pletes its data transmission. Each of these changes involves
installing variables at various scopes (global, module, and
local) and in multiple header files. Finally, since we add new
files to the application, we also insert the aforementioned
Makefile rule and add the corresponding object files and
flags to the link list.

C lts
After applying each aspect, we saved the produced XIP

document and then stripped the XML, comment lines, and
whitespace-only lines. This yielded a monolithic document
that contained the source for the entire distributed system
equivalent to a concatenation of the generated files minus
whitespace and comments. We then measured the number of
non-comment lines of code (NC

C lts
After applying each aspect, we saved the produced XIP

document and then stripped the XML, comment lines, and
whitespace-only lines. This yielded a monolithic document
that contained the source for the entire distributed system
equivalent to a concatenation of the generated files minus
whitespace and comments. We then measured the number of
non-comment lines of code (NC

. Resu. Resu

r a samr a sample of woven code, see the Appendix which contains
an excerpt from the receiver’s pipe middle.

 Table 1 presents the lines of code added by each aspect.
The column "Where" denotes whether the aspect applied to
code generated for the sender or the reciever, and the "Lines
Added" metric is the number of non-comment lines added.
Generally, the aspects add C code, but in the case of the as-
pects pertaining to the control channel, con-
trol_receiver and control_sende

ple of woven code, see the Appendix which contains
an excerpt from the receiver’s pipe middle.

 Table 1 presents the lines of code added by each aspect.
The column "Where" denotes whether the aspect applied to
code generated for the sender or the reciever, and the "Lines
Added" metric is the number of non-comment lines added.
Generally, the aspects add C code, but in the case of the as-
pects pertaining to the control channel, con-
trol_receiver and control_sende
Figure 4. The image stream application with rate controlling aspect.

215

7

able number of aspects, too. Another observation we may
make adding a given fu y not necessarily affect
ea application

nctionality ma
ch side of the s trically. ymme

215

8

e compared to
-
s

sed

terns
o

of
P

 a DSL. Instead, Bossa takes the view that

 DSL actually implements an aspect describing a single
aspect, schedulin , the developers
of

that are specific to
CORBA development, opers can not

In

h
XM

AOP
that t
expl
lang

to a
[6].
is a ension whereas AXpect works

C
Seco reas AX-

t
tribu

Of course, AspectJ and AspectC also implement aspect

are
tion
the nc-

F
used
as w mplementation level. They propose the Em-

spec
men rast to AXpect, which is

VI. CONCLUSION
W

can
AOP

ication that

tivel
O

WS
XPa e pointcuts and advice that operate on joinpoints
expl
mor
whi support for the general

E
XSL

rmation flow applications. Since our aspects are also coded
using XSLT, we can efficiently layer aspects to build on func-
tionality and further modularize aspect development. Finally,
XSLT allows us to retrieve data from the XML-based WSLA
specification document at "no extra cost" through its support
for multiple XML source documents.

APPENDIX
Below is sample code from the receiver side pipe function.

To highlight the aspect code, we have replaced the application

V. RELATED WORK
From a DSL standpoint, Spi/XIP may b

Spidle and Streamit. However, Spidle is oriented towards syn
chronous, single-process applications [9], and StreamIt aim
for streaming DSP applications and processors with grid ba
architectures [10], [11].

patOther AOP projects have taken advantage of DSL
various ways. For instance, Bossa applies AOP concepts t
scheduling in the kernel [12]. It defines a limited number

vent based AOpointcuts in the kernel code and then uses an e
nt the aspects. However, Bossa does notmodel to impleme

ac totually add AOP
the

g, of the Linux kernel. Also
 the ACE+TAO orb used aspect oriented and DSL tech-

niques to expose the real-time functionalities of their orb with
contract objects and associated Contract Description Lan-
guage (CDL) [5]. CDL is limited to monitor and control func-
tions only. However, they then used a second DSL, the Aspect
Structure Language (ASL), for applying aspects that mediate
interactions between distributed objects [13]. ASL, however,
recognizes only a few types of pointcuts

and application devel
extend the joinpoint space.

 AOP, XML has been used to capture and manage aspects

in t e requirements phase [7]. Schonger et al in [8] proposed
L as a generic markup for describing the abstract syntax

trees of general purpose languages and the concept of creating
 operators for weaving. We agree with their observation

 XML aids AOP experimentation; however, they did no
ore the use of XML and XSLT use with domain specific
uages and code generation.

ELIDE is an AOP extension of Java that allows developers
dd explicit, named pointcuts at any point in their programs
It differs from our approach in two respects: first, ELIDE
Java-specific language ext

on and uses generic, pre-existing XML and XSLT tools.
nd, ELIDE is general purpose mechanism whe

pec is targeted to our domain-specific stub generator and dis-
ted, streaming applications.

weavers [4] [14], but their weavers and pointcut declarations
closely tied to the implementation structure of the applica-
; therefore, changes to the original source code may break
aspects. AXpect relies instead on explicitly denoted fu

tionality and should be somewhat more robust in that regard.
inally, Gray et al in [16] propose that AOP techniques be
 in specific domains at the level of the domain abstraction
ell as at the i

bedded Constraint Language (ECL) for creating new domain-
ific weavers that process domain models and not imple-
tation source code. This is in cont

an implementation level weaver.

e have demonstrated the ease with which WSLA support
be added to an existing domain specific framework using
 and explicit programming techniques to an existing. Us-

ing the AXpect weaver, we build an example appl
uses resource constraints from a WSLA document to coopera-

y manage resource usage through adaptation.
ur AOP framework entails aspect specification using
LA to parameterize an aspect, and then use XSLT and
th to writ
icitly denoted in our code generation templates. Further-
e, our code weaving occurs in C source code, a language
ch does not yet enjoy robust AOP

application space.
xplicit joinpoints are feasible because our templates are in
T and because we operate in the specific domain of in-

fo

TABLE 1
NCLO C ADDED

Aspect Where Lines Added
control sender sender 1
sla_sender sender
timing receiver
cpumon receiver
sla_receiver receiver
Total from aspects 3
Base Implementation 9
Base + Aspects 12
 TABLE 2

SENDER-SIDE FILES AFFECTED.

Aspect

A
ff

ec
te

d
Fi

le

M
ak

ef
ile

re
ce

iv
er

.h

re
ce

iv
er

.c

pp
m

In
.h

pp
m

In
.c

co
nt

ro
l.h

co
nt

ro
l.c

sl
a.

c

sl
a.

h

control_receiver X X X (X) (X)
sla_receiver X X X X (X) (X)
 TABLE 3

RECEIVER-SIDE FILES AFFECTED.

Aspect

A
ff

ec
te

d
Fi

le

M
ak

ef
ile

re
ce

iv
er

.h

re
ce

iv
er

.c

pp
m

In
.h

pp
m

In
.c

co
nt

ro
l.h

co
nt

ro
l.c

sl
a.

c

sl
a.

h

timing X X
control_receiver X X X (X) (X)
cpumon X
sla_receiver X X X X (X) (X)

215

9

code with ellipses. It shows the additional include statements,
timing code, and call to evaluate the SLA metrics:

——
control aspect (control_receiver.xsl)
timing aspect (timing.xsl)
cpu usage metric aspect (cpumon.xsl)
SLA evaluation aspect (sla_receiver.xsl)

——
#include "receiver.h"
#include "ppmIn.h"
#include "control.h"
#include <sys/time.h>
#include <stdio.h>
extern long usec_to_port_startup;
extern long usec_to_port_shutdown;
extern long usec_to_recv;
long usec_to_pipe_startup;
long usec_to_pipe_shutdown;
long usec_to_process;
#include <sys/time.h>
#include <sys/resource.h>
#include <unistd.h>
float CPUUsage;
static long lastUTimeUse = 0;
static long lastSTimeUse = 0;
static struct rusage usingNow;
#include "sla.h"
int receiver() {
 ; // USER DECLARES VARS HERE
.
.
 struct timeval base;
 struct timeval end;
 gettimeofday(&base,NULL);
 ; // USER CODE GOES HERE
.
.
.
 gettimeofday(&end,NULL);
 usec_to_process = (end.tv_sec -
 base.tv_sec) * 1e6 + (end.tv_usec -
 base.tv_usec);
 fprintf(stdout,"Time to process: %ld\n",
 usec_to_process);
 getrusage(RUSAGE_SELF, &usingNow);
 CPUUsage = ((float) usingNow.ru_utime.tv_usec +
 usingNow.ru_stime.tv_usec - lastUTimeUse +
 ((float) usingNow.ru_utime.tv_sec +
 usingNow.ru_stime.tv_sec –
 lastSTimeUse) * 1.0e6)
 / (usec_to_recv + usec_to_process);
 lastUTimeUse = usingNow.ru_utime.tv_usec +
 usingNow.ru_stime.tv_usec;
 lastSTimeUse = usingNow.ru_utime.tv_sec +
 usingNow.ru_stime.tv_sec;
 fprintf(stdout, "Use pct %0.2f.\n",
 CPUUsage * 100);
 processSLA();

 return 0;
}

ACKNOWLEDGMENTS
This work is partially funded by DARPA/IXO as a project

in the PCES program, by DoE as a project in the SciDAC’s
Scientific Data Management Center, by NSF/CISE as a pro-
ject in the CCR division’s Distributed Systems program, IIS
division’s Data and Application Security program, and the
ITR program. Also, we would like to thank Charles Consel
of INRIA/ENSEIRB (Bordeaux, France),

REFERENCES
[1] M. Debusmann, and A. Keller, “SLA-driven Management of Distributed

Systems using the Common Information Model,” IFIP/IEEE
International Symposium on Integrated Management. 2003.

[2] A. Sahai, S. Graupner, V. Machiraju, and A. van Moorsel, “Specifying
and Monitoring Guarantees in Commercial Grids through SLA,” Third
International Symposium on Cluster Computing and the Grid. 2003.

[3] G. Swint, C. Pu, and K. Moriyama, “Infopipes: Concepts and ISG Imple-
mentation,” The 2nd IEEE Workshop on Software Technologies for Em-
bedded and Ubiquitous Computing Systems, Vienna, Austria, 2004.

[4] S. Sarkar, “Model Driven Programming Using XSLT: An Approach to
Rapid Development of Domain-Specific Program Generators,”
www.XML-JOURNAL.com. August 2002.

[5] J. P. Loyall, D.E. Bakken, R.E. Schantz, J.A. Zinky, D.A. Karr, R. Vane-
gas, and K.R. Anderson, “QoS Aspect Languages and Their Runtime
Integration,” Proceedings of the 4th Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers (LCR98).
Pittsburgh, Pennsylvania, May 28-30, 1998.

[6] A. Bryant, A. Catton, K. de Volder, G. C. Murphy, “Explicit program-
ming,” 1st International Conference on Aspect-Oriented Software De-
velopment, Enschede, The Netherlands, April 22-26, 2002.

[7] A. Rashid, A. Moreira, and J. Araújo. “Modularisation and Composition
of Aspectual Requirements,” 1st International Conference on Aspect-
Oriented Software Development, Enschede, The Netherlands, April 22-
26, 2002.

[8] S. Schonger, E. Pulermüller, and S. Sarstedt, “Aspect-Oriented Program-
ming and Component Weaving: Using XML Representations of Abstract
Syntax Trees,” Proceedings of the 2nd German GI Workshop on Aspect-
Oriented Software Development (In: Technical Report No. IAI-TR-
2002-1), University of Bonn, February 2002, pp. 59 – 64.

[9] C. Consel, H. Hamdi, L. Réveillère, L. Singaravelu, H. Yu, and C. Pu.
“Spidle: A DSL Approach to Specifying Streaming Applications,” in
Proceedings of the Second International Conference on Generative Pro-
gramming and Component Engineering. LNCS 2830, September 22-25,
2003, pp. 1-17.

[10] W. Thies, M. Karczmarek, M. Gordon, D.Z. Maze, J. Wong, H.
Hoffman, M. Brown, and S. Amarasinghe. “A Common Machine
Language for Grid-Based Architectures,” ACM SIGARCH Computer
Architecture News. New York, June, 2002, pp. 13-14.

[11] W. Thies, M. Karczmarek, and S. Amarasinghe. “StreamIt: A Language
for Streaming Applications,” in Proceedings of the 2002 International
Conference on Compiler Construction, LNCS, Grenoble, France, April,
2002.

[12] L.P. Barreto, R. Douence, G. Muller, and M. Südholt, “Programming OS
Schedulers with Domain-Specific Languages and Aspects: New Ap-
proaches for OS Kernel Engineering,” International Workshop on As-
pects, Components, and Patterns for Infrastructure Software at AOSD,
April 2002.

[13] BBN Technologies. QuO Toolkit Reference Guide. 2001.
[14] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. “Using AspectC to

Improve the Modularity of Path-Specific Customization in Operating
System Code,” in Proceedings of the 8th European software engineering
conference held jointly with 9th ACM SIGSOFT international sympo-
sium on Foundations of Software Engineering, Vienna, Austria, 2001,
pp. 88-98.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G.
Griswold. "An Overview of AspectJ," in Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Budapest,
Hungary, June 18-22, 2001, pp. 327-353.

[16] J. Gray, T. Bapty, S. Neema, D.C. Schmidt, A. Gokhale, and B.
Natarajan, “An Approach for Supporting Aspect-Oriented Domain
Modeling,” in Proceedings of the Second International Conference on
Generative Programming and Component Engineering, LNCS 2830,
September 22-25, 2003, pp. 151-168.

	INTRODUCTION
	Motivation and Background
	Motivating Example
	ISL, ISG and Infopipes

	Aspect support in the ISG
	Aspect Specification
	Aspect Support in the Templates
	Implementing an Aspect
	The AXpect Weaver

	USING AXPECT
	Scenario
	Implementation
	Results

	RELATED WORK
	CONCLUSION

