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Abstract

Conventional operating system code is written to deal with
all possible system states, and performs considerable inter-
pretation to determine the current system state before tak-
ing action. A consequence of this approach is that kernel
calls which perform little actual work take a long time to
execute. To address this problem, we use specialized oper-
ating system code that reduces interpretation for common
cases, but still behaves correctly in the fully general case.
We describe how specialized operating system code can be
generated and bound incrementally as the information on
which it depends becomes available. We extend our special-
ization techniques to include the notion of optimistic incre-
mental specialization: a technique for generating specialized
kernel code optimistically for system states that are likely
to occur, but not certain. The ideas outlined in this paper
allow the conventional kernel design tenet of \optimizing for
the common case" to be extended to the domain of adap-
tive operating systems. We also show that aggressive use of
specialization can produce in-kernel implementations of op-
erating system functionality with performance comparable
to user-level implementations.

We demonstrate that these ideas are applicable in real-
world operating systems by describing a re-implementation
of the HP-UX �le system. Our specialized read system call
reduces the cost of a single byte read by a factor of 3, and
an 8 KB read by 26%, while preserving the semantics of the
HP-UX read call. By relaxing the semantics of HP-UX read

we were able to cut the cost of a single byte read system
call by more than an order of magnitude.

1 Introduction

Much of the complexity in conventional operating system
code arises from the requirement to handle all possible sys-
tem states. A consequence of this requirement is that oper-
ating system code tends to be \generic", performing exten-
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sive interpretation and checking of the current environment
before taking action. One of the lessons of the Synthesis
operating system [25] is that signi�cant gains in e�ciency
can be made by replacing this generic code with specialized

code. The specialized code performs correctly only in a re-
stricted environment, but it is chosen so that this restricted
environment is the common case.

By way of example, consider a simpli�ed Unix File Sys-
tem interface in which open takes a path name and returns
an \open �le" object. The operations on that object include
read, write, close, and seek. The method code for read

and write can be specialized, at open time, to read and
write that particular �le, because at that time the system
knows, among other things, which �le is being read, which
process is doing the reading, the �le type, the �le system
block size, whether the inode is in memory, and if so, its
address, etc. Thus, a lot of the interpretation of �le system
data structures that would otherwise have to go on at ev-

ery read can be done once at open time. Performing this
interpretation at open time is a good idea if read is more
common than open, and in our experience with specializing
the Unix �le system, loses only if the �le is opened for read
and then never read.

Extensive use of this kind of specialization in Synthe-
sis achieved improvement in kernel call performance rang-
ing from a factor of 3 to a factor of 56 [25] for a subset of
the Unix system call interface. However, the performance
improvements due directly to code specialization were not
separated from the gains due to other factors, including the
design and implementation of a new kernel in assembly lan-
guage, and the extensive use of other new techniques such
as lock-free synchronization and software feedback.

This paper describes work done in the context of the Syn-
thetix project which is a follow-on from Synthesis. Synthetix
extends the Synthesis results in the following respects. First,
Synthetix de�nes a conceptual model of specialization. This
model de�nes the basic elements and phases of the special-
ization process. Not only is this model useful for deploying
specialization in other systems, it has also proved essential
in the development of tools to support the specialization
process.

Second, Synthetix introduces the idea of incremental and
optimistic specialization. Incremental specialization allows
specialized modules to be generated and bound as the in-
formation on which they depend becomes available. Op-
timistic specialization allows modules to be generated for
system states that are likely to occur, but not certain.

Finally, we show how optimistic, incremental specializa-



tion can be applied to existing operating systems written
in conventional programming languages. In this approach,
performance improvements are achieved by customising ex-
isting code without altering its semantics. In contrast, other
extensible operating systems allow arbitrary customizations
to be introduced at the risk of altering the system semantics.

The long term goal of Synthetix is to de�ne a method-
ology for specializing existing system components and for
building new specialized components from scratch. To ex-
plore and verify this methodology we are manually specializ-
ing some small, but representative, operating system compo-
nents. The experience gained in these experiments is being
used to develop tools towards automating the specialization
process. Hence, the goal of our experiments is to gain an un-
derstanding of the specialization concept rather than simply
to optimize the component in question.

This paper illustrates our approach applying specializa-
tion in the context of a commercial Unix operating system
and the C programming language. Speci�cally, it focuses
on the specialization of the read system call, in HP-UX [12]
while retaining standard HP-UX semantics. Since read is
representative of many other Unix system calls and since
HP-UX is representative of many other Unix systems, we
expect the results of our study to generalize well beyond
this speci�c implementation.

The remainder of the paper is organized as follows. Sec-
tion 2 elaborates on the notion of specialization, and de-
�nes incremental and optimistic specialization. Section 3
describes the application of specialization to the HP-UX
read system call. Section 4 analyses the performance of
our implementation. Section 5 discusses the implications of
our results, as well as the key areas for future research. Re-
lated work is discussed in section 6. Section 7 concludes the
paper.

2 What is Specialization?

Program specialization, also called partial evaluation (PE),
is a program transformation process aimed at customizing
a program based on parts of its input [13, 30]. In essence,
this process consists of performing constant propagation and
folding, generalized to arbitrary computations.

In principle, program specialization can be applied to any
program that exhibits interpretation. That is, any program
whose control 
ow is determined by the analysis of some
data. In fact, this characteristic is common in operating
system code. Consider the read example of Section 1. At
each invocation, read does extensive data structure analysis
to determine facts such as whether the �le is local or re-
mote, the device on which it resides, and its block size. Yet,
these pieces of information are invariant, and can be deter-
mined when the �le is opened. Hence, the data structure
analysis could be factorized by specializing the read code
at open time with respect to the available invariants. Since
the specialized read code only needs to consist of operations
that rely on varying data, it can be more e�cient than the
original version.

Operating systems exhibit a wide variety of invariants.
As a �rst approximation, these invariants can be divided into
two categories depending on whether they become available
before or during runtime. Examples of invariants available
before runtime include processor cache size, whether there is
an FPU, etc. These invariants can be exploited by existing
PE technology at the source level. Other specializations

depend on invariants that are not known until runtime, and
hence rely on a specialization process that can take place at
runtime. In the context of operating systems, it is useful for
specialization to take place both at compile time and at run
time.

Given a list of invariants, which may be available either
statically or dynamically, a combination of compile-time and
run-time PE should be capable of generating the required
specialized code. For example, the Synthesis kernel [28] per-
formed the (conceptual) PE step just once, at runtime dur-
ing open. It is in principle possible to apply the run-time
partial evaluator again at every point where new invariants
become known (i.e., some or all of the points at which more
information becomes available about the bindings that the
program contains). We call this repeated application of a
partial evaluator incremental specialization [15].

The discussion so far has considered generating special-
ized code only on the basis of known invariants, i.e., bind-
ings that are known to be constant. In an operating system,
there are many things that are likely to be constant for long
periods of time, but may occasionally vary. For example, it
is likely that �les will not be shared concurrently, and that
reads to a particular �le will be sequential. We call these
assumptions quasi-invariants. If specialized code is gener-
ated, and used, on the assumption that quasi-invariants hold
most of the time, then performance should improve. How-
ever, the system must correctly handle the cases where the
quasi-invariants do not hold.

Correctness can be preserved by guarding every place
where quasi-invariants may become false. For example, sup-
pose that specialized read code is generated based on the
quasi-invariant \no concurrent sharing". A guard placed in
the open system call could be used to detect other attempts
to open the same �le concurrently. If the guard is triggered,
the read routine must be \unspecialized", either to the com-
pletely generic read routine or, more accurately, to another
specialized version that still capitalizes on the other invari-
ants and quasi-invariants that remain valid. We call the
process of replacing one version of a routine by another (in
a di�erent stage of specialization) replugging. We refer to
the overall process of specializing based on quasi-invariants
optimistic specialization. Because it may become necessary
to replug dynamically, optimistic specialization requires in-
cremental specialization.

If the optimistic assumptions about a program's behav-
ior are correct, the specialized code will function correctly.
If one or more of the assumptions become false, the spe-
cialized code will break, and it should be replugged. This
transformation will be a win if specialized code is executed
many times, i.e., if the savings that accrue from the opti-
mistic assumption being right, weighted by the probability
that it is right, exceed the additional costs of the replugging
step, weighted by the probability that it is necessary (see
Section 4 for details).

The discussion so far has described incremental and op-
timistic specialization as forms of runtime PE. However, in
the operating system context, the full cost of code genera-
tion must not be incurred at runtime. The cost of runtime
code generation can be avoided by generating code templates
statically and optimistically at compile time. At kernel call
invocation time, the templates are simply �lled in and bound
appropriately [14].



3 Specializing HP-UX read

To explore the real-world applicability of the techniques out-
lined above, we applied incremental and optimistic special-
ization to the HP-UX 9.04 read system call. read was cho-
sen as a test case because it is representative of many other
Unix system calls because it is a variation of the BSD �le
system [24]. The HP-UX implementation of read is also
representative of many other Unix implementations. There-
fore, we expect our results to be applicable to other Unix-
like systems. HP-UX read also poses a serious challenge
for our technology because, as a frequently used and well-
understood piece of commercial operating system code, it
has already been highly optimized. To ensure that our per-
formance results are applicable to current software, we were
careful to preserve the current interface and behavior of HP-
UX read in our specialized read implementations.

3.1 Overview of the HP-UX read Imple-

mentation

To understand the nature of the savings involved in our spe-
cialized read implementation it is �rst necessary to under-
stand the basic operations involved in a conventional Unix
read implementation. Figure 1 shows the control 
ow for
read assuming that the read is from a normal �le and that
its data is in the bu�er cache. The basic steps are as follows:

1. System call startup: privilege promotion, switch to
kernel stack, and update user structure.

2. Identify the �le and �le system type: translate the �le
descriptor number into a �le descriptor, then into a
vnode number, and �nally into an inode number.

3. Lock the inode.

4. Identify the block: translate the �le o�set value into a
logical (�le) block number, and then translate the log-
ical block number into a physical (disk) block number.

5. Find the virtual address of the data: �nd the block in
the bu�er cache containing the desired physical block
and calculate the virtual address of the data from the
�le o�set.

6. Data transfer: Copy necessary bytes from the bu�er
cache block to the user's bu�er.

7. Process another block?: compare the total number of
bytes copied to the number of bytes requested; goto
step 4 if more bytes are needed.

8. Unlock the inode.

9. Update the �le o�set: lock �le table, update �le o�set,
and unlock the �le table.

10. System call cleanup: update kernel pro�le information,
switch back to user stack, privilege demotion.

The above tasks can be categorized as either interpreta-
tion, traversal, locking, or work. Interpretation is the process
of examining parameter values and system states and mak-
ing control 
ow decisions based on them. Hence, it involves
activities such as conditional and case statement execution,
and examining parameters and other system state variables
to derive a particular value. Traversal can be viewed as

6.  Data transfer

1.  System call startup

2.  Identify file & file system type,

      translate into inode number

3.  Lock the inode

4.  Translate file offset into

      logical block number

5.  Translate logical block number

      into physical block number,

      get the buffer cache block

      containing the data

7.  Do another block?

8.  Unlock the inode

9 Update file offset

10. System call cleanup

Yes

No

Figure 1: HP-UX read Flow Graph

preparation for interpretation since it is concerned with dis-
covering system state information that has been stored pre-
viously (i.e., in data structures). Traversal is basically a
matter of dereferencing and includes function calling and
data structure searching. Locking includes all synchronization-
related activities. Work is the fundamental task of the call.
In the case of the read, the only work is to copy the desired
data from the kernel bu�ers to the user's bu�er.

Ideally, all of the tasks performed by a particular invoca-
tion of a system call should be in the work category. If the



necessary information is available early enough, code in all
other categories can be factored out prior to the call. Unfor-
tunately, in the case of read steps 1, 2, 4, 5, 7, and 10 consist
mostly of interpretation and traversal, and steps 3, 8, and
most of 9 are locking. Only step 6 and a small part of 9 can
be categorized as work.

Section 3.2 details the specializations applied to read to
reduce the non-work overhead. Section 3.3 outlines the code
necessary to guard the optimistic specializations. Section 3.4
describes the mechanism for switching between various spe-
cialized and generic versions of a system call implementa-
tion.

3.2 Invariants and Quasi-Invariants for Spe-

cialization

Figure 2 shows the specialized 
ow graph for our specialized
version of read (referred to here as is read). Steps 2, 3,
and 8 have been eliminated, steps 4 and 5 have been elim-
inated for small sequential reads, and the remaining steps
have been optimized via specialization. is read is special-
ized according to the invariants and quasi-invariants listed
in table 1. Only fs constant is a true invariant; the re-
mainder are quasi-invariants.

The fs constant invariant states that �le system con-
stants such as the �le type, �le system type, and block size
do not change once the �le has been opened. This invariant
is known to hold because of Unix �le system semantics.
Based on this invariant, is read can avoid the traversal
costs involved in step 2 above. Our is read implementa-
tion is specialized, at open time, for regular �les residing
on a local �le system with a block size of 8 KB. It is im-
portant to realize that the is read code is enabled, at open
time, for the speci�c �le being opened and is transparently
substituted in place of the standard read implementation.
Reading any other kind of �le defaults to the standard HP-
UX read.

It is also important to note that the is read path is spe-
cialized for the speci�c process performing the open. That
is, we assume that the only process executing the is read

code will be the one that performed the open that gener-
ated it. The major advantage of this approach is that a
private per-process per-�le read call has well-de�ned access
semantics: reads are sequential by default.

Specializations based on the quasi-invariant sequen-

tial access can have huge performance gains. Consider
a sequence of small (say 1 byte) reads by the same process
to the same �le. The �rst read performs the interpretation,
traversal and locking necessary to locate the kernel virtual
address of the data it needs to copy. At this stage it can
specialize the next read to simply continue copying from
the next virtual address, avoiding the need for any of the
steps 2, 3, 4, 5, 7, 8, and 9, as shown in Figure 2. This spe-
cialization is predicated not only on the sequential access

and no fp share quasi-invariants, but also on other quasi-
invariants such as the assumption that the next read won't
cross a bu�er boundary, and the bu�er cache replacement
code won't have changed the data that resides at that vir-
tual memory address. The next section shows how these
assumptions can be guarded.

The no holes quasi-invariant is also related to the spe-
cializations described above. Contiguous sequential reading
can be specialized down to contiguous byte-copying only for
�les that don't contain holes, since hole traversal requires

6.  Data transfer

1.  System call startup

4.  Translate file offset into

      logical block number

5.  Translate logical block number

      into physical block number,

      get the buffer cache block

      containing the data

7.  Do another block?

9 Update file offset

10. System call cleanup

Yes No

2a. Same block?
Yes

No

6a. Data transfer

Figure 2: is read Flow Graph

the interpretation of empty block pointers in the inode.
The no inode share and no fp share quasi-invariants

allow exclusive access to the �le to be assumed. This as-
sumption allows the specialized read code to avoid locking
the inode and �le table in steps 3, 8, and 9. They also al-
low the caching (in data structures associated with the spe-
cialized code) of information such as the �le pointer. This
caching is what allows all of the interpretation, traversal and
locking in steps 2, 3, 4, 5, 8 and 9 to be avoided.

In our current implementation, all invariants are vali-



(Quasi-)Invariant Description Savings

fs constant Invariant �le system parameters. Avoids step 2.
no fp share No �le pointer sharing. Avoids most of step 9 and allows caching of

�le o�set in �le descriptor.
no holes No holes in �le. Avoids checking for empty block pointers in

inode structure.
no inode share No inode sharing. Avoids steps 3 and 8.
no user locks No user-level locks. Avoids having to check for user-level locks.
read only No writers. Allows optimized end of �le check.
sequential access Calls to is read inherit �le o�set

from previous is read calls
For small reads, avoids steps 2, 3, 4, 5, 7, 8,
9.

Table 1: Invariants for Specialization

Quasi-Invariant HP-UX system calls that may
invalidate invariants

no fp share creat, dup, dup2, fork, sendmsg,
no holes open
no inode share creat, fork, open, truncate
no user locks lockf, fcntl
read only open
sequential access lseek, readv, is read itself,

and bu�er cache block
replacement

Table 2: Quasi-Invariants and Their Guards

dated in open, when specialization happens. A specialized
read routine is not generated unless all of the invariants
hold.

3.3 Guards

Since specializations based on quasi-invariants are opti-
mistic, they must be adequately guarded. Guards detect
the impending invalidation of a quasi-invariant and invoke
the replugging routine (section 3.4) to unspecialize the read

code. Table 2 lists the quasi-invariants used in our imple-
mentation and the HP-UX system calls that contain the
associated guards.

Quasi-invariants such as read only and no holes can
be guarded in open since they can only be violated if the
same �le is opened for writing. The other quasi-invariants
can be invalidated during other system calls which either ac-
cess the �le using a �le descriptor from within the same or a
child process, or access it from other processes using system
calls that name the �le using a pathname. For example,
no fp share will be invalidated if multiple �le descriptors
are allowed to share the same �le pointer. This situation can
arise if the �le descriptor is duplicated locally using dup, if
the entire �le descriptor table is duplicated using fork, or if
a �le descriptor is passed though a Unix domain socket us-
ing sendmsg. Similarly, sequential access will be violated
if the process calls lseek or readv.

The guards in system calls that use �le descriptors are
relatively simple. The �le descriptor parameter is used as an
index into a per-process table; if a specialized �le descriptor
is already present then the quasi-invariant will become in-
valid, triggering the guard and invoking the replugger. For
example, the guard in dup only responds when attempting

to duplicate a �le descriptor used by is read. Similarly,
fork checks all open �le descriptors and triggers replugging
of any specialized read code.

Guards in calls that take pathnames must detect colli-
sions with specialized code by examining the �le's inode. We
use a special 
ag in the inode to detect whether a specialized
code path is associated with a particular inode1 .

The guards for the sequential access quasi-invariant
are somewhat unusual. is read avoids step 5 (bu�er cache
lookup) by checking to see whether the read request will
be satis�ed by the bu�er cache block used to satisfy the
preceding read request. The kernel's bu�er cache block re-
placement mechanism also guards this specialization to en-
sure that the preceding bu�er cache block is still in memory.

With the exception of lseek, triggering any of the guards
discussed above causes the read code to be replugged back
to the general purpose implementation. lseek is the only in-
stance of respecialization in our implementation; when trig-
gered, it simply updates the �le o�set in the specialized read

code.
To guarantee that all invariants and quasi-invariants

hold, open checks that the vnode meets all the fs constant
and no holes invariants and that the requested access is
only for read. Then the inode is checked for sharing. If
all invariants hold during open then the inode and �le de-
scriptor are marked as specialized and an is read path is
set up for use by the calling process on that �le. Setting
up the is read path amounts to allocating a private per-
�le-descriptor data structure for use by the is read code
which is sharable. The inode and �le descriptor markings
activate all of the guards atomically since the guard code is
permanently present.

3.4 The Replugging Algorithm

Replugging components of an actively running kernel is a
non-trivial problem that requires a paper of its own, and
is the topic of ongoing research. The problem is simpli�ed
here for two reasons. First, our main objective is to test the
feasibility and bene�ts of specialization. Second, specializa-
tion has been applied to the replugging algorithm itself. For
kernel calls, the replugging algorithm should be specialized,
simple, and e�cient.

The �rst problem to be handled during replugging is
synchronization. If a replugger were executing in a single-

1The in-memory version of HP-UX's inodes is substantially larger
than the on-disk version. The specialized 
ag only needs to be added
to the in-memory version.



threaded kernel with no system call blocking in the kernel,
then no synchronization would be needed. Our environ-
ment is a multiprocessor, where kernel calls may be sus-
pended. Therefore, the replugging algorithm must handle
two sources of concurrency: (1) interactions between the re-
plugger and the process whose code is being replugged and
(2) interactions among other kernel threads that triggered
a guard and invoked the replugging algorithm at the same
time. Note that the algorithm presented here assumes that
a coherent read from memory is faster than a concurrency
lock: if specialized hardware makes locks fast, then the spe-
cialized synchronization mechanism presented here can be
replaced with locks.

To simplify the replugging algorithm, we make two as-
sumptions that are true in many Unix systems: (A1) kernel
calls cannot abort2, so we do not have to check for an in-
complete kernel call to is read, and (A2) there is only one
thread per process, so multiple kernel calls cannot concur-
rently access process level data structures.

The second problem that a replugging algorithm must
solve is the handling of executing threads inside the code
being replugged. We assume (A3) that there can be at most
one thread executing inside specialized code. This is the
most important case, since in all cases so far we have spe-
cialized for a single thread of control. This assumption is
consistent with most current Unix environments. To sep-
arate the simple case (when no thread is executing inside
code to be replugged) from the complicated case (when one
thread is inside), we use an \inside-
ag". The �rst instruc-
tion of the specialized read code sets the inside-
ag to in-
dicate that a thread is inside. The last instruction in the
specialized read code clears the inside-
ag.

To simplify the synchronization of threads during replug-
ging, the replugging algorithm uses a queue, called the hold-
ing tank, to stop the thread that happens to invoke the spe-
cialized kernel call while replugging is taking place. Upon
completion of replugging, the algorithm activates the thread
waiting in the holding tank. The thread then resumes the
invocation through the unspecialized code.

For simplicity, we describe the replugging algorithm as if
there were only two cases: specialized and non-specialized.
The paths take the following steps:

1. Check the �le descriptor to see if this �le is specialized.
If not, branch out of the fast path.

2. Set inside-
ag.

3. Branch indirect. This branch leads to either the hold-
ing tank or the read path. It is changed by the replug-
ger.

Read Path:

1. Do the read work.
2. Clear inside-
ag.

Holding Tank:

1. Clear inside-
ag.

2. Sleep on the per-�le lock to await replugger comple-
tion.

3. Jump to standard read path.

Replugging Algorithm:

2Take an unexpected path out of the kernel on failure.

1. Acquire per-process lock to block concurrent replug-
gers. It may be that some guard was triggered con-
currently for the same �le descriptor, in which case we
are done.

2. Acquire per-�le lock to block exit from holding tank.

3. Change the per-�le indirect pointer to send readers to
the holding tank (changes action of the reading thread
at step 3 so no new threads can enter the specialized
code).

4. Spinwait for the per-�le inside-
ag to be cleared. Now
no threads are executing the specialized code.

5. Perform incremental specialization according to which
invariant was invalidated.

6. Set �le descriptor appropriately, including indicating
that the �le is no longer specialized.

7. Release per-�le lock to unblock thread in holding tank.

8. Release per-process lock to allow other repluggers to
continue.

The way the replugger synchronizes with the reader
thread is through the inside-
ag in combination with the
indirection pointer. If the reader sets the inside-
ag before
a replugger sets the indirection pointer then the replugger
waits for the reader to �nish. If the reader takes the indi-
rect call into the holding tank, it will clear the inside-
ag
which will tell the replugger that no thread is executing the
specialized code. Once the replugging is complete the al-
gorithm unblocks any thread in the holding tank and they
resume through the new unspecialized code.

In most cases of unspecialization, the general case, read,
is used instead of the specialized is read. In this case, the
�le descriptor is marked as unspecialized and the memory
is read occupies is marked for garbage collection at �le
close time.

4 Performance Results

The experimental environment for the benchmarks was
a Hewlett-Packard 9000 series 800 G70 (9000/887) dual-
processor server [1] running in single-user mode. This server
is con�gured with 128 MB of RAM. The two PA7100 [16]
processors run at 96 MHz and each contains one MB of in-
struction cache and one MB of data cache.

Section 4.1 presents an experiment to show how incre-
mental specialization can reduce the overhead of the read

system call. Sections 4.2 through 4.4 describe the over-
head costs of specialization. Section 4.5 describes the basic
cost/bene�t analysis of when specialization is appropriate.

4.1 Specialization to Reduce read Over-

head

The �rst microbenchmark is designed to illustrate the re-
duction in overhead costs associated with the read system
call. Thus the experiment has been designed to reduce all
other costs, to wit:

� all experiments were run with a warm �le system bu�er
cache 3

3The use of specialization to optimize the device I/O path and
make better use of the �le system bu�er cache is the subject of a
separate study currently underway in our group.



1 Byte 8 KB 64 KB

read 3540 7039 39733

is read 979 5220 35043

Savings 2561 1819 4690

% Improvement 72% 26% 12%

Speedup x3.61 x1.35 x1.13

copyout 170 3400 NA4

Table 3: Overhead Reduction: HP-UX read versus is read

costs in CPU cycles
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is read
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Figure 3: Overhead Reduction: 1 Byte HP-UX read versus
is read costs in CPU cycles

� the same block was repeatedly read to achieve all-hot
CPU data caches

� the target of the read is selected to be a page-aligned
user bu�er to optimize copyout performance

The program consists of a tight loop that opens the �le,
gets a timestamp, reads N bytes, gets a timestamp, and
closes the �le. Timestamps are obtained by reading the PA-
RISC's interval timer, a processor control register that is
incremented every processor cycle [20].

Table 3 numerically compares the performance of HP-
UX read with is read for reads of one byte, 8 KB, and
64 KB, and Figures 3 through 5 graphically represents the
same data. The table and �gures also include the costs for
copyout to provide a lower bound on read performance5. In
all cases, is read performance is better than HP-UX read.
For single byte reads, is read is more than three times as
fast as HP-UX read, re
ecting the fact that specialization
has removed most of the overhead of the read system call.

Reads that cross block boundaries lose the specialization
of simply continuing to copy data from the previous position
in the current bu�er cache block (the sequential access

quasi-invariant), and thus su�er performance loss. 8 KB
reads necessarily cross block boundaries, and so the spe-
cialization performance improvement for the 8 KB is read

has a smaller performance gain than the 1 Byte is read.
For larger reads, the performance gain is not so large be-
cause the overall time is dominated by data copying costs
rather than overhead. However, there are performance ben-
e�ts from specialization that occur on a per-block basis, and
so even 64 KB reads improve by about 12%.

4.2 The Cost of the Initial Specialization

The performance improvements in the read fast path come
at the expense of overhead in other parts of the system.

4Large reads break down into multiple block-sized calls to copyout.
5
copyout performs a safe copy from kernel to user space while cor-

rectly handling page faults and segmentation violations.
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is read costs in Thousands of CPU cycles

The most signi�cant impact occurs in the open system call,
which is the point at which the is read path is generated.
open has to check 8 invariant and quasi-invariant values,
for a total of about 90 instructions and a lock/unlock pair.
If specialization can occur it needs to allocate some kernel
memory and �ll it in. close needs to check if the �le descrip-
tor is or was specialized and if so, free the kernel memory.
A kernel memory alloc takes 119 cycles and free takes 138
cycles.

The impact of this work is that the new specialized open

call takes 5582 cycles compared to 5227 cycles for the stan-
dard HP-UX open system call. In both cases, no inode
traversal is involved. As expected, the cost of the new open

call is higher than the original. However, notice that the
increase in cost is small enough that a program that opens
a �le and reads it once can still bene�t from specialization.

4.3 The Cost of Nontriggered Guards

The cost of guards can be broken down into two cases: the
cost of executing them when they are not triggered, and
the cost of triggering them and performing the necessary
replugging. This sub-section is concerned with the �rst case.

Guards are associated with each of the system calls
shown in Table 2. As noted elsewhere, there are two sorts
of guards. One checks for specialized �le descriptors and is
very cheap, the other for specialized inodes. Since inodes
can be shared they must be locked to check them. The
lock expense is only incurred if the �le passes all the other
tests �rst. A lock/unlock pair takes 145 cycles. A guard
requires 2 temporary registers, 2 loads, an add, and a com-
pare, 11 cycles, and then a function call if it is triggered. It
is important to note that these guards do not occur in the
data transfer system calls, except for readv which is not
frequently used.

In the current implementation, guards are �xed in place
(and always perform checks) but they are triggered only
when specialized code exists. Alternatively, guards could be



inserted in-place when associated specialized code is gener-
ated. Learning which alternative performs better requires
further research on the costs and bene�ts of specialization
mechanisms.

4.4 The Cost of Replugging

There are two costs associated with replugging. One is the
overhead added to the fast path in is read for checking if
it is specialized and calling read if not, and for writing the
inside-
ag bit twice, and the indirect function call with zero
arguments otherwise. A timed microbenchmark shows this
cost to be 35 cycles.

The second cost of replugging is incurred when the re-
plugging algorithm is invoked. This cost depends on whether
there is a thread already present in the code path to be re-
plugged. If so, the elapsed time taken to replug can be
dominated by the time taken by the thread to exit the spe-
cialized path. The worst case for the read call occurs when
the thread present in the specialized path is blocked on I/O.
We are working on a solution to this problem which would
allow threads to \leave" the specialized code path when ini-
tiating I/O and rejoin a replugged path when I/O completes,
but this solution is not yet implemented.

In the case where no thread is present in the code path
to be replugged, the cost of replugging is determined by
the cost of acquiring two locks, one spinlock, checking one
memory location and storing to another (to get exclusive
access to the specialized code). To fall back to the generic
read takes 4 stores plus address generation, plus storing
the specialized �le o�set into the system �le table which
requires obtaining the File Table Lock and releasing it. After
incremental specialization two locks have to be released. An
inspection of the generated code shows the cost to be about
535 cycles assuming no lock contention. The cost of the
holding tank is not measured since that is the rarest subcase
and it would be dominated by spinning for a lock in any
event.

Adding up the individual component costs, and multi-
plying them by the frequency, we can estimate the guarding
and replugging overhead attributed to each is read. If we
assume that 100 is read happen for each of the guarded
kernel calls (fork, creat, truncate, open, close and re-
plugging), then less than 10 cycles are added as guarding
overhead to each invocation of is read.

4.5 Cost/Bene�t Analysis

Specialization reduces the execution costs of the fast path,
but it also requires additional mechanisms, such as guards
and replugging algorithms, to maintain system correctness.
By design, guards are located in low frequency execution
paths and in the rare case of quasi-invariant invalidation,
replugging is performed. We have also added code to open

to check if specialization is possible, and to close to garbage
collect the specialized code after replugging. An informal
performance analysis of these costs and a comparison with
the gains is shown in Figure 6.

In Equation 1, Overhead includes the cost of guards,
the replugging algorithm, and the increase due to initial in-
variant validation, specialization and garbage collecting for
all �le opens and closes. Each Guardi (in di�erent kernel

calls) is invoked f isyscall times. Similarly, Replug is invoked
fReplug times. A small part of the cost of synchronization

with the replugger is born by is read (the setting and reset-
ting of inside-
ag), but overall is read is much faster than
read (Section 4). In Equation 2, fis is the number of times
specialized is read is invoked and fTotalRead is the total
number of invocations to read the �le. Specialization wins
if the inequality in Equation 2 is true.

The following sections outline a series of microbench-
marks to measure the performance of the incrementally and
optimistically specialized read fast path, as well as the over-
head associated with guards and replugging.

5 Discussion

The experimental results described in Section 4 show the
performance of our current is read implementation. At the
time of writing this implementation was not fully special-
ized: some invariants were not used and, as a result, the
measured is read path contains more interpretation and
traversal code than is absolutely necessary. Therefore, the
performance results presented above are conservative. Even
so, the results show that optimistic specialization can im-
prove the performance of both small and large reads.

At one end of the spectrum, assuming a warm bu�er
cache, the performance of small reads is dominated by con-
trol 
ow costs. Through specialization we are able to re-
move, from the fast path, a large amount of code, concerned
with interpretation, data structure traversal and synchro-
nization. Hence, it is not surprising that the cost of small
reads is reduced signi�cantly.

At the other end of spectrum, again assuming a warm
bu�er cache, the performance of large reads is dominated by
data movement costs. In e�ect, the control-
ow overhead,
still present in large reads, is amortized over a large amount
of byte copying. Specializations to reduce the cost of byte
copying will be the subject of a future study.

Specialization removes overhead from the fast path by
adding overhead to other parts of the system: speci�cally,
the places at which the specialization, replugging and guard-
ing of optimistic specializations occur. Our experience has
shown that generating specialized implementations is easy.
The real di�culty arises in correctly placing guards and
making policy decisions about what and when to special-
ize and replug. Guards are di�cult to place because an
operating system kernel is a large program, and invariants
often correspond to global state components which are ma-
nipulated at numerous sites. Therefore, manually tracking
the places where invariants are invalidated is a tedious pro-
cess. However, our experience with the HP-UX �le system
has brought us an understanding of this process which we
are now using to design a program analysis capable of de-
termining a conservative approximation of the places where
guards should be placed.

Similarly, the choice of what to specialize, when to spe-
cialize, and whether to specialize optimistically are all non-
trivial policy decisions. In our current implementation we
made these decisions in an ad hoc manner, based on our
expert knowledge of the system implementation, semantics
and common usage patterns. This experiment has prompted
us to explore tools based on static and dynamic analyses
of kernel code, aimed at helping the programmer decide
when the performance improvement gained by specializa-
tion is likely to exceed the cost of the specialization process,
guarding, and replugging.
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Figure 6: Cost/Bene�t Analysis: When is it Bene�cial to Specialize?

5.1 Interface Design and Kernel Structure

From early in the project, our intuition told us that, in the
most specialized case, it should be possible to reduce the cost
of a read system call that hits in the bu�er cache. It should
be little more than the basic cost of data movement from
the kernel to the application's address space, i.e., the cost of
copying the bytes from the bu�er cache to the user's bu�er.
In practice, however, our specialized read implementation
costs considerably more than copying one byte. The cost of
our specialized read implementation is 979 cycles, compared
to approximately 235 cycles for entering the kernel, �elding
the minimum number of parameters, and safely copying a
single byte out to the application's address space.

Upon closer examination, we discovered that the remain-
ing 744 cycles were due to a long list of inexpensive actions
including stack switching, masking 
oating point exceptions,
recording kernel statistics, supporting ptrace, initializing
kernel interrupt handling, etc. The sum of these actions
dominates the cost of small byte reads.

These actions are due in part to constraints that were
placed upon our design by an over-speci�cation of the UNIX
read implementation. For example, the need to always sup-
port statistics-gathering facilities such as times requires ev-
ery read call to record the time it spends in the kernel. For
one byte reads, changing the interface to one that returns a
single byte in a register instead of copying data to the user's
address space, and changing the semantics of the system call
to not support statistics and pro�ling eliminates the need for
many of these actions.

To push the limits of a kernel-based read implementa-
tion, we implemented a special one-byte read system call,
called readc, which returns a single byte in a register, just
like the getc library call. In addition to the optimizations
used in our specialized is read call, readc avoids switch-
ing stacks, omits ptrace support, and skips updating pro-
�le information. The performance of the resulting readc

implementation is 65 cycles. Notice that aggressive use of
specialization can lead to a readc system call that performs
within a factor of two of a pure user-level getc which costs
38 cycles in HP-UX's stdio library. This result is encour-
aging because it shows the feasibility of implementing oper-
ating system functionality at kernel level with performance
similar to user-level libraries. Aggressive specialization may
render unnecessary the popular trend of duplicating operat-
ing system functionality at user level [2, 19] for performance
reasons.

Another commonly cited reason for moving operating
system functionality to user level is to give applications
more control over policy decisions and operating system im-
plementations. We believe that these bene�ts can also be
gained without duplicating operating system functionality
at user level. Following an open-implementation (OI) phi-
losophy [22], operating system functionality can remain in
the kernel, with customization of the implementation sup-
ported in a controlled manner via meta-interface calls [23].

A strong lesson from our work and from other work in the
OI community [22] is that abstractly speci�ed interfaces,
i.e., those that do not constrain implementation choices un-
necessarily, are the key to gaining the most bene�t from
techniques such as specialization.

6 Related Work

Our work on optimistic incremental specialization can be
viewed as part of a widespread research trend towards
adaptive operating systems. Micro-kernel operating sys-
tems [5, 6, 11, 9, 21, 27, 29] were an early example of this
trend, and improve adaptiveness by allowing operating sys-
tem functionality to be implemented in user-level servers
that can be customized and con�gured to produce special-
purpose operating systems. While micro-kernel-based archi-
tectures improve adaptiveness over monolithic kernels, sup-
port for user-level servers incurs a high performance penalty.

To address this performance problem Chorus [29] allows
modules, known as supervisor actors, to be loaded into the
kernel address space. A specialized IPC mechanism is used
for communication between actors within the kernel address
space. Similarly, Flex [8] allows dynamic loading of oper-
ating system modules into the Mach kernel, and uses a mi-
grating threads model to reduce IPC overhead.

One problem with allowing applications to load modules
into the kernel is loss of protection. The SPIN kernel [4]
allows applications to load executable modules, called spin-

dles, dynamically into the kernel. These spindles are written
in a type-safe programming language to ensure that they do
not adversely a�ect kernel operations.

Object-oriented operating systems allow customization
through the use of inheritance, invocation redirection, and
meta-interfaces. Choices [7] provides generalized compo-
nents, called frameworks, which can be replaced with spe-
cialized versions using inheritance and dynamic linking. The
Spring kernel uses an extensible RPC framework [18] to redi-
rect object invocations to appropriate handlers based on the
type of object. The Substrate Object Model [3] supports ex-
tensibility in the AIX kernel by providing additional inter-
faces for passing usage hints and customizing in-kernel im-
plementations. Similarly, the Apertos operating system [31]
supports dynamic recon�guration by modifying an object's
behavior through operations on its meta-interface.

Other systems, such as the Cache kernel [10] and the
Exo-kernel [17] address the performance problem by moving
even more functionality out of the operating system kernel
and placing it closer to the application. In this \minimal-
kernel" approach extensibility is the norm rather than the
exception.

Synthetix di�ers from the other extensible operating sys-
tems described above in a number of ways. First, Synthetix
infers the specializations needed even for applications that
have never considered the need for specialization. Other ex-



tensible systems require applications to know which special-
izations will be bene�cial and then select or provide them.

Second, Synthetix supports optimistic specializations
and uses guards to ensure the validity of a specialization
and automatically replug it when it is no longer valid. In
contrast, other extensible systems do not support automatic
replugging and support damage control only through hard-
ware or software protection boundaries.

Third, the explicit use of invariants and guards in Syn-
thetix also supports the composability of specializations:
guards determine whether two specializations are compos-
able. Other extensible operating systems do not provide
support to determine whether separate extensions are com-
posable.

Like Synthetix, Scout [26] has focused on the special-
ization of existing systems code. Scout has concentrated
on networking code and has focused on specializations that
minimize code and data caching e�ects. In contrast, we have
focused on parametric specialization to reduce the length of
various fast paths in the kernel. We believe that many of
the techniques used in Scout are also useful in Synthetix,
and vice versa.

7 Conclusions

This paper has introduced a model for specialization based
on invariants, guards, and replugging. We have shown how
this model supports the concepts of incremental and opti-
mistic specialization. These concepts re�ne previous work
on kernel optimization using dynamic code generation in
Synthesis [28, 25]. We have demonstrated the feasibility
and usefulness of incremental, optimistic specialization by
applying it to �le system code in a commercial operating
system (HP-UX). The experimental results show that signif-
icant performance improvements are possible even when the
base system is (a) not designed speci�cally to be amenable to
specialization, and (b) is already highly optimized. Further-
more, these improvements can be achieved without altering
the semantics or restructuring the program.

Our experience with performing incremental and opti-
mistic specialization manually has shown that the approach
is worth pursuing. Based on this experience, we are devel-
oping a program specializer for C and a collection of tools
for assisting the programmer in identifying opportunities for
specialization and ensuring consistency.

8 Acknowledgements

Bill Trost of Oregon Graduate Institute and Takaichi
Yoshida of Kyushu Institute of Technology performed the
initial study of the HP-UX read and write system calls,
identifying many quasi-invariants to use for specialization.
Bill also implemented some prototype specialized kernel calls
that showed promise for performance improvements. Luke
Horno� of University of Rennes contributed to discussions
on specialization and tools development. Finally, we would
like to thank the SOSP referees for their extensive and thor-
ough comments and suggestions.

References

[1] Thomas B. Alexander, Kenneth G. Robertson, Dean T.
Lindsey, Donald L. Rogers, John R. Obermeyer,

John R. Keller, Keith Y. Oka, and Marlin M. Jones II.
Corporate Business Servers: An Alternative to Main-
frames for Business Computing. Hewlett-Packard Jour-
nal, 45(3):8{30, June 1994.

[2] Thomas E. Anderson, Brian N. Bershad, Edward D.
Lazowska, and Henry M. Levy. Scheduler Activations:
E�ective Kernel Support for the User-Level Manage-
ment of Parallelism. ACM Transactions on Computer

Systems, 10(1):53{79, February 1992.

[3] Arindam Banerji and David L. Cohn. An Infrastructure
for Application-Speci�c Customization. In Proceedings

of the ACM European SIGOPS Workshop, September
1994.

[4] Brian N. Bershad, Stefan Savage, Przemys law Pardyak,
Emin G�un Sirer, Marc Fiuczynski, David Becker, Su-
san Eggers, and Craig Chambers. Extensibility, Safety
and Performance in the SPIN Operating System. In
Symposium on Operating Systems Principles (SOSP),
Copper Mountain, Colorado, December 1995.

[5] D.L. Black, D.B. Golub, D.P. Julin, R.F. Rashid, R.P.
Draves, R.W. Dean, A. Forin, J. Barrera, H. Tokuda,
G. Malan, and D. Bohman. Microkernel operating sys-
tem architecture and Mach. In Proceedings of the Work-

shop on Micro-Kernels and Other Kernel Architectures,
pages 11{30, Seattle, April 1992.

[6] F. J. Burkowski, C. L. A. Clarke, Crispin Cowan,
and G. J. Vreugdenhil. Architectural Support for
Lightweight Tasking in the Sylvan Multiprocessor Sys-
tem. In Symposium on Experience with Distributed and

Multiprocessor Systems (SEDMS II), pages 165{184,
Atlanta, Georgia, March 1991.

[7] Roy H. Campbell, Nayeem Islam, and Peter Madany.
Choices: Frameworks and Re�nement. Computing Sys-
tems, 5(3):217{257, 1992.

[8] John B. Carter, Bryan Ford, Mike Hibler, Ravindra
Kuramkote, Je�rey Law, Lay Lepreau, Douglas B. Orr,
Leigh Stoller, and Mark Swanson. FLEX: A Tool for
Building E�cient and Flexible Systems. In Proceed-

ings of the Fourth Workshop on Workstation Operating

Systems, pages 198{202, Napa, CA, October 1993.

[9] David R. Cheriton. The V Distributed System. Com-

munications of the ACM, 31(3):314{333, March 1988.

[10] David R. Cheriton and Kenneth J. Duda. A Caching
Model of Operating System Kernel Functionality. In
Symposium on Operating Systems Design and Imple-

mentation (OSDI), pages 179{193, November 1994.

[11] David R. Cheriton, M. A. Malcolm, L. S. Melen, and
G. R. Sager. Thoth, A Portable Real-Time Operating
System. Communications of the ACM, 22(2):105{115,
February 1979.

[12] Frederick W. Clegg, Gary Shiu-Fan Ho, Steven R. Kus-
mer, and John R. Sontag. The HP-UX Operating Sys-
tem on HP Precision Architecture Computers. Hewlett-
Packard Journal, 37(12):4{22, December 1986.

[13] C. Consel and O. Danvy. Tutorial notes on partial eval-
uation. In ACM Symposium on Principles of Program-

ming Languages, pages 493{501, 1993.



[14] C. Consel and F. No�el. A general approach to run-time
specialization and its application to C. Report 946,
Inria/Irisa, Rennes, France, July 1995.

[15] C. Consel, C. Pu, and J. Walpole. Incremental spe-
cialization: The key to high performance, modularity
and portability in operating systems. In Proceedings of

ACM Symposium on Partial Evaluation and Semantics-

Based Program Manipulation, Copenhagen, June 1993.

[16] Eric DeLano, Will Walker, and Mark Forsyth. A High
Speed Superscalar PA-RISC Processor. In COMPCON

92, pages 116{121, San Francisco, CA, February 24-28
1992.

[17] Dawson R. Engler, M. Frans Kaashoek, and
James O'Toole Jr. Exokernel: An Operating System
Architecture for Application-level Resource Manage-
ment. In Symposium on Operating Systems Principles

(SOSP), Copper Mountain, Colorado, December 1995.

[18] Graham Hamilton, Michael L. Powell, and James G.
Mitchell. Subcontract: A 
exible base of distributed
programming. In Proceedings of the Fourteenth ACM

Symposium on Operating System Principles, pages 69{
79, Asheville, NC, December 1993.

[19] Kieran Harty and David R. Cheriton. Application-
controlled physical memory using external page-cache
management. In Proceedings of the Fifth International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-V), pages
187{197, Boston, MA, October 1992.

[20] Hewlett-Packard. PA-RISC 1.1 Architecture and

Instruction Set Reference Manual, second edition,
September 1992.

[21] Dan Hildebrand. An Architectural Overview of QNX.
In Proceedings of the USENIX Workshop on Micro-

kernels and Other Kernel Architectures, pages 113{123,
Seattle, WA, April 1992.

[22] Gregor Kiczales. Towards a new model of abstraction
in software engineering. In Proc. of the IMSA'92 Work-

shop on Re
ection and Meta-level Architectures, 1992.
See http://www.xerox.com/PARC/spl/eca/oi.html

for updates.

[23] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bo-
brow. The Art of the Metaobject Protocol. MIT Press,
1991.

[24] Samuel J. Le�er, Marshall Kirk McKusick, Michael J.
Karels, and John S. Quarterman. 4.3BSD UNIX Op-

erating System. Addison-Wesley Publishing Company,
Reading, MA, 1989.

[25] H. Massalin and C. Pu. Threads and input/output in
the Synthesis kernel. In Proceedings of the Twelfth Sym-

posium on Operating Systems Principles, pages 191{
201, Arizona, December 1989.

[26] David Mosberger, Larry L. Peterson, and Sean
O'Malley. Protocol Latency: MIPS and Reality. Re-
port TR 95-02, Dept of Computer Science, University
of Arizona, Tuscon, Arizona, April 1995.

[27] S. J. Mullender, G. van Rossum, A. S. Tanenbaum,
R. van Renesse, and H. van Staveren. Amoeba | A dis-
tributed Operating System for the 1990's. IEEE Com-

puter, 23(5), May 1990.

[28] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis
kernel. Computing Systems, 1(1):11{32, Winter 1988.

[29] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrman, C. Kaiser,
S. Langlois, P. Leonard, and W. Neuhauser. Overview
of the Chorus distributed operating system. In Pro-

ceedings of the Workshop on Micro-Kernels and Other

Kernel Architectures, pages 39{69, Seattle, April 1992.

[30] P. Sestoft and A. V. Zamulin. Annotated bibliogra-
phy on partial evaluation and mixed computation. In
D. Bj�rner, A. P. Ershov, and N. D. Jones, editors,
Partial Evaluation and Mixed Computation. North-
Holland, 1988.

[31] Yasuhiko Yokote. The Apertos Re
ective Operating
System: The Concept and Its Implementation. In Pro-

ceedings of the Conference on Object-Oriented Program-

ming Systems, Languages, and Applications (OOP-

SLA), pages 414{434, Vancouver, BC, October 1992.


