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ABSTRACT
Learning from Demonstration (LfD) explores techniques for learning a task policy from exam-
ples provided by a human teacher. e field of LfD has grown into an extensive body of literature
over the past 30 years, with a wide variety of approaches for encoding human demonstrations
and modeling skills and tasks. Additionally, we have only recently seen a focus on gathering data
from non-expert human teachers (i.e., domain experts but not robotics experts). In this book, we
provide an introduction to the field with a focus on the unique technical challenges associated
with designing robots that learn from naive human teachers. We begin, in the introduction, with
a unification of the various terminology seen in the literature as well as an outline of the design
choices one has in designing an LfD system. Chapter 2 that gives a brief survey of psychology
literature that provides insights from human social learning that are relevant to designing robotic
social learners. Chapter 3 walks through an LfD interaction, surveying the design choices one
makes and state of the art approaches in prior work. First, is the choice of input, how the hu-
man teacher interacts with the robot to provide demonstrations. Next, is the choice of modeling
technique. Currently, there is a dichotomy in the field between approaches that model low-level
motor skills and those that model high-level tasks composed of primitive actions. We devote a
chapter to each of these. Chapter 7 on interactive and active learning approaches that allow the
robot to refine an existing task model. And finally, Chapter 8 provides on best practices for eval-
uation of LfD systems, with a focus on how to approach experiments with human subjects for
this domain.

KEYWORDS
Learning from Demonstration, imitation learning, Human-robot Interaction
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C H A P T E R 1

Introduction
Machine Learning techniques have had great success in many robotics applications. Today’s
robots are able to study the depths of the Earth’s oceans, carry equipment while following soldiers
through mountainous terrain, and explore the peaks and valleys of Mars. Robots build (and will
soon drive) our cars, gather the items for shopping orders in busy warehouses, and keep hospital
shelves stocked with supplies. Robots can vacuum your floor, mow your lawn, and clean your pool.
Yet robots, or more specifically the algorithms that control them, are still unable to handle many
of the complexities of the real world. Today, and for the foreseeable future, it is not possible to
go to a store and bring home a robot that will clean your house, cook your breakfast, and do your
laundry. ese everyday tasks, while seemingly simple, contain many variations and complexities
that pose insurmountable challenges for today’s machine learning algorithms.

What separates impossible domains from challenging-yet-achievable ones for today’s au-
tonomous technologies is the degree of structure and consistency within the problem domain.
Vacuuming robots require a flat floor to operate and not much else. Since the vast majority of
house floors meet this requirement, the deployment of robotic vacuum cleaners has been highly
successful. e new owner of such a robot simply needs to press the Clean button and in most
cases the robot performs its function as expected (until it gets stuck on that sock you left on the
floor, but that’s why it’s not a room cleaning robot).

Now consider the scenario of bringing a new house cleaning robot home, putting it in
the kitchen, and pressing a similar Clean button for the first time. Some of the tasks such a robot
might be expected to do is to load the dishwasher with all the dirty dishes, toss waste into the trash,
and return clean items to their correct locations. e level of complexity of these tasks is higher
not only in terms of perception and manipulation capabilities, but also in the required degree of
adaptation to the new environment. Each house is unique, with custom layouts, preferred object
locations, and rules (e.g., “never put the knife with the red handle in the dishwasher or it will
rust”). Just as a human house guest arriving to a home for the first time, the robot needs to adapt
to the customs of a particular household. is means that a single Clean button is no longer
sufficient for such a system, instead the platform, and its underlying algorithms, must support
the ability for the user to customize the robot’s policy of behavior.

Robot Learning from Demonstration (LfD) explores techniques for learning a task policy
from examples provided by a human teacher. e field of LfD has grown into an extensive body
of literature over the past 30+ years, with a wide variety of approaches for encoding human demon-
strations and modeling skills and tasks. In this book we provide an introduction to the field with a
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focus on the unique technical challenges associated with designing robots that learn from human
instruction.e book is written for AI researchers who are interested in developing Learning from
Demonstration methods, or who would like to learn more about different modes of interaction
or evaluation methods for such systems.

1.1 MACHINELEARNINGFOREND-USERS
e above household robot scenario describes one possible application area for LfD techniques.
More generally, this scenario is motivated by the challenge of enabling a novice user, a non-
programmer, to customize existing robot behaviors or develop new ones through intuitive teach-
ing methods. e motivation for tackling this challenge centers on the belief that it is impossible
to pre-program all the necessary knowledge into a robot operating in a diverse, dynamic and un-
structured environment. Instead, end-users must have the ability to customize the functionality
of these robotic systems. Since it is impractical to assume that every end-user will have pro-
gramming experience, natural and intuitive methods of interactions must be developed to enable
non-roboticists to effectively use such systems.

LfD techniques build upon many standard Machine Learning methods that have had great
success in a wide range of applications. However, learning from a human teacher poses additional
challenges, such as limited human patience and inconsistent user input. Traditional Machine
Learning techniques have not been designed for learning from ordinary human teachers in a
real-time interaction, resulting in a need for new, or modified, methods. Figuring out at which
level of the algorithm to involve the user is also a challenge, with different approaches being
applicable to different aspects of the learning problem. Some of the design choices that go into
structuring a learning problem include the following.

• Data collection. In any Supervised Learning process, collecting the training and testing data
sets is critical to a successful learning process. e data must be representative of the states
and actions that the robot will encounter in the future. e size and diversity of the training
and testing data set will determine the speed and accuracy of learning and the quality of the
resulting system, including its generalization characteristics. How can the teacher decide
what training data to include? Can the robot make the selection or influence the decision
process?

• Selecting the feature space and its structure. Deciding what input features and similarity met-
rics are most important for discriminating in the task and environment at hand is a critical
step. e designer must be careful to include input features that are in fact discriminatory
and the algorithm will learn faster if the redundant or non-discriminatory features are ex-
cluded. Who is responsible for performing feature selection for learning a new task through
LfD?

• Defining a reward signal. In many learning systems, such as Reinforcement Learning
(RL) [245], the reward function serves a central role in the learning process. How can the
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teacher effectively define a reward or objective function that accurately represents the task
to be learned?

• Subtasking the problem. Learning speed can often be dramatically improved by splitting a
task into several less complicated subtasks, although determining the subtask structure can
be challenging in some domains. Should the teacher determine the task structure, or will
it be determined automatically by the robot? Can the robot guide the teacher’s choices and
provide feedback?

ese are some of the design choices that developers face in implementing interactive ma-
chine learning methods. While in many cases the answers to these questions are predetermined
by the target application domain, in other situations the choice is left up to the developer.

Additionally, it’s important to note that working with novice users is not the only moti-
vation for LfD, some techniques are designed specifically with expert users in mind. Most such
application areas focus on techniques for generating control strategies that would be very difficult
or time consuming to program through traditional means, such as when the dynamics of the un-
derlying system are poorly modeled or understood. In this scenario the user is often assumed to
be at the very least a trained task expert, if not a roboticist. Potential application areas include a
wide variety of professional fields, including manufacturing and the military.

1.2 THELEARNINGFROMDEMONSTRATIONPIPELINE
Regardless of whether the target user is a novice or an expert, all Learning from Demonstration
techniques share certain key properties. Figure 1.1 illustrates the LfD pipeline. is is an abstract
oversimplification, but is a useful abstraction with which to frame the design process for building
an LfD system. In this book, we explore the field of Learning from Demonstration from both
algorithmic and Human-Robot Interaction (HRI) perspectives, by stepping through each stage
of this pipeline.

Figure 1.1: A simplified illustration of the Learning from Demonstration pipeline. is also serves
as a roadmap for this book, in which chapters are devoted to each stage of the pipeline.

e assumption in all LfD work is that there exists a Human Teacher who demonstrates
execution of a desired behavior. In Chapter 2, we consider the learning process from the human’s
point of view. We look at the social learning mechanisms used by humans, particularly children,
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in order to gain possible insights into how LfD systems might be developed and to better under-
stand how learning robots might one day fit within the established human social norms. en in
Chapter 3, we address theDemonstrations component, reviewing commonmodes of human-robot
interaction that are used to provide demonstrations.

e learner is provided with these demonstrations, and from them derives a policy—a map-
ping from perceived state to desired behavior—that is able to reproduce the demonstrated behav-
ior. e ability to generalize across states is considered critical, since it is impractical, and often
impossible, for the teacher to demonstrate the correct behavior for every possible situation that
the robot might encounter. Our goal in this book is to present an overview of state of the art tech-
niques for this policy derivation process. We do this by organizing the field into those algorithms
focused on Low-level Skill Learning (Chapter 4) and those focused on High-level Task Learning
(Chapter 5).

In Chapter 6 we address the ways in which this process can be made into a loop, such
that an initially learned model is further refined. e ability to perform incremental learning or
refinement over time, as well as the ability to generalize from a small number of demonstrations
will be crucial in many domains. Factors such as the interpretability or transparency of the policy,
and techniques for enabling the user to understand what knowledge the robot possesses and why it
behaves in the way it does will be critical to the success of LfD methods in real-world applications.

After stepping through each aspect of the LfD pipeline, in Chapter 7 we turn the focus
to evaluation. In particular, we argue for the importance of validating LfD algorithms with HRI
studies. As such, this chapter contains guidelines for conducting such experiments to evaluate
LfD methods with end-users. Finally, Chapter 8 is a discussion of where we see the field heading,
and what we consider the most crucial future work in this exciting field.

1.3 ANOTEONTERMINOLOGY
is book builds on an extensive collection of research literature, and one of the goals of the book
is to familiarize the reader with many of the seminal works in this area. Within this research lit-
erature, LfD techniques are described by a variety of terms, such as Learning by Demonstration
(LbD), Learning from Demonstration (LfD), Programming by Demonstration (PbD), Learn-
ing by Experienced Demonstrations, Assembly Plan from Observation, Learning by Showing,
Learning by Watching, Learning from Observation, behavioral cloning, imitation and mimicry.
While the definitions for some of these terms, such as imitation, have been loosely borrowed
from other sciences, the overall use of these terms is often inconsistent or contradictory across
articles. Within this book, we refer to the general category of algorithms in which a policy is
derived based on demonstrated data as Learning from Demonstration, and we reference other
terms as appropriate in the coming chapters.
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Human Social Learning
When a machine learner is in the presence of a human that is motivated to help, social interaction
can be a key element in the success of the learning process. Although robots can also learn from
observing demonstrations not directed at them, albeit less efficiently, the scenario we address here
is primarily the one where a person is explicitly trying to teach the robot something in particular.

In this chapter, we review some key insights from human psychology that can influence
the design of learning robots. We focus our discussion on findings in situated learning, a field of
study that looks at the social world of a child and how it contributes to their development. In a
situated learning interaction, a good instructor maintains a mental model of the learner’s under-
standing and structures the learning task appropriately with timely feedback and guidance. e
learner contributes to the process by expressing their internal state via communicative acts (e.g.,
expressing understanding, confusion, attention, etc.). is reciprocal and tightly coupled interac-
tion enables the learner to leverage from instruction to build the appropriate representations and
associations.

e situated learning process stands in contrast to typical scenarios of machine learning
which are often neither interactive nor intuitive for a non-expert human partner. Since social
learning mechanisms used by humans are both proven to be effective and naturally occurring
across society, enabling robots to engage in social interaction with the user can lead to more flex-
ible, efficient, personable and teachable machines that more closely match the user’s expectations
in behavior.

It is worth noting that despite its reliance on human teachers, the field of Learning from
Demonstration has not focused much attention on the interactivity of the learning system. As we
will see in Chapters 4 and 5, it is quite typical to first collect demonstrations in batch and then

Figure 2.1: In this chapter we start with a look at theHumanTeacher component of the LfD pipeline.
A survey of human social learning provides insight into biases and expectations that a humanmay bring
to the LfD process.
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Figure 2.2: Starting at an early ages, children use the information around them to learn from obser-
vation, experience, and instruction, striving to imitate the adults around them.

have a learning algorithm use this data to model a skill or task later. What the work highlighted
in this chapter points out is the distinction between a typical batch process and the interactivity
of a social learning process. We will return to this topic in Chapter 6, where we consider how
to make an LfD process interactive through online learning, high level critiques of the robot’s
exploration, and the incorporation of Active Learning.

In this chapter, we highlight characteristics of human social learning in the first three sec-
tions. We look at human motivation for learning, how human teachers scaffold the learning pro-
cess, and what feedback human learners provide. All of these topics have implications for the
technical design of robot learners, which are the focus of the remaining chapters of this book
(Figure 2.1).

2.1 LEARNING IS A PARTOFALLACTIVITY
In most Machine Learning scenarios, learning is an explicit activity. e system is designed to
learn a particular thing at a particular time. With humans, on the other hand, there is an ever-
present motivation for learning, a drive to improve oneself, and an ability to seek out the expertise
of others. Some inspiring characteristics of a motivated learner include: a curiosity about new
environments and experiences; the ability to recognize and exploit good sources of information,
and to adopt such an information source as a role model; the desire to “be more like” that role
model, which underlies all activity; and a sense of one’s level of mastery with acquired skills,
further driving the motivation to explore and learn about the world at opportune times.

Self-Determination eory seeks to understand the mechanisms behind both intrinsic and
extrinsic motivation in human behavior in general [224]. Here our focus is on situated learning
interactions rather than self-motivated learning. We summarize two types of human motivation
that lay the foundation for social learning interactions.
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Motivated to Interact
A critical part of learning is gaining the ability to exploit the expertise of others [203]. Children
put themselves in a good position to learn new things by being able to recognize, seek proxim-
ity to, and interact with their caregivers. ey assume that the caregiver has their best interest
in mind and even very young infants use this to their advantage when faced with an unknown
situation [219].

e ability and desire to engage, communicate, and interact with others is seen from an
early age. By the time infants are two months old, they can actively engage in communicative in-
teractions or turn-taking routines with adults. Studies have shown that infants can start and stop
communication with their mother through gesture and gaze, and that it is the infants that control
the pace of the turn taking interaction [130, 257]. is turn taking capability is the foundation
of many situated learning activities, and is a precursor to more sophisticated interactions, such as
imitation. For example, Arbib characterizes learning as assisted imitation, a dynamic turn-taking
activity [274]. Bruner characterizes social scaffolding interactions in general as asymmetric coop-
eration that becomes symmetric over time [99]. us, turn-taking engagements are an underlying
framework in which learning takes place.

Turn-taking abilities are characteristically based on causal assumptions about the world.
ere is an expectation that the world, and particularly other actors in the world, will have some
contingent response to one’s activity. us, the ability to take advantage of these social interactions
requires a robot to have models of engagement, turn taking, and other fundamental social skills.
A growing body of research within the HRI field has focused on models for engagement and
turn-taking. e work of [218] and [110] identifies and generates “connection events” in order
for a robot to maintain engagement with a human interaction partner. Other systems have been
developed to control multimodal dialog for social robots, such as the work of [128] that controls
dynamic switching of behaviors in the speech and gesture modalities, and the framework of [185]
that controls task-based dialog using parallelized processes with interruption handling. e work
of [62] and [63] centers on building autonomous robot controllers for successfully engaging in
human-like turn-taking interactions, with a computational model for regulating the speaking
floor that explicitly represents and reasons about all four components of the behavior regulation
problem: seizing the speaking floor, yielding the floor, holding the floor, and auditing the owner
of the floor.

Motivated to Learn
Another important influence on human learning is the idea of a “like-me” bias—the propensity
and ability to map between actions seen by others and done by self is seen at a very early age [174].
As the child grows older, interacting with adults, they come to understand that the adult is “like-
me” and is therefore a source of information about actions and skills [274]. For example, both
Bruner and Leontiev indicate that play is intrinsically motivated and that the object of play is the
desire to be like adults and participate in the adult world [107]. Lave and Wenger make a similar
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argument for the motivation of learning altogether [155]. ey develop of theory of “Legitimate
Peripheral Participation,” in which the driving force for learning a new practice is the learner’s
motivation to form their identity and become a full participant in the practice. On a large scale
this is the motivation of all learning, children “wanting to become full participants in the adult
world.”

Litowitz has a similar explanation: the child wishes to be like the adult and is thusmotivated
to imitate and be lead through activities by the adult. He goes one step further, however, and poses
an elegant theory of why the process stops. e child gets out of the subordinate learner role and
becomes capable on its own through the very same mechanism. e desire to be like the adult
extends to the meta-activity level, the child comes to want to have the adult-role of structuring
activity (wanting to choose the clothes they wear, resisting being told what to do, etc.) [163].

Given this motivation to imitate, there are several ways in which an adult’s behavior can
influence a child’s exploration or learning process. e following four social learning mechanisms
have been identified in both human and animal learners [56, 254].

• Stimulus (local) enhancement is a mechanism through which an observer (child, novice) is
drawn to objects others interact with. is facilitates learning by focusing the observer’s
exploration on interesting objects—ones useful to other social group members.

• Emulation is a process where the observer witnesses someone produce a particular result on
an object, but then employs their own action repertoire to produce the result. Learning is
facilitated both by attention direction to an object of interest and by observing the goal.

• Mimicking corresponds to the observer copying the actions of others without an apprecia-
tion of their purpose. e observer later comes to discover the effects of the action in various
situations. Mimicking suggests, to the observer, actions that can produce useful results.

• Imitation refers to reproducing the actions of others to obtain the same results with the same
goal.

Cakmak et al. [46] present an implementation of these four social learning mechanisms and artic-
ulate the distinct computational benefits of each. eir results show that all four social strategies
provide learning benefits over self exploration, particularly when the target goal of learning is a
rare occurrence in the environment. e work characterizes the differences between strategies,
showing that the “best” one depends on both the nature of the problem space and the current
behavior of the social partner.

e general concept of motivation has also been studied in the context of reinforcement
learning. Intrinsically motivated RL been proposed as a framework within which agents exploit
“internal reinforcement” that rewards novel situations or experiences [65, 233]. A number of
other techniques for integrating self-motivation and curiosity have also been studied within the
context of developmental learning [121, 200, 229], however these methodologies have not yet
been applied in the context of interactive learning agents or LfD.
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(a) Attention Direction (b) Dynamic Scaffolding

Figure 2.3: Examples of scaffolding the learning process through attention direction and simplifica-
tion of the task or environment.

2.2 TEACHERS SCAFFOLDTHELEARNINGPROCESS
An important characteristic of a good learner is the ability to learn both on one’s own and by
interacting with another. Children are capable of exploring and learning on their own, but in the
presence of a teacher they can take advantage of the social cues and communicative acts provided
to accomplish more. For instance, the teacher often guides the child’s search process by providing
timely feedback, luring the child to perform desired behaviors, and controlling the environment
so the appropriate cues are easy to attend to, thereby allowing the child to learn more effectively,
appropriately, and flexibly. Scaffolding is the process by which an adult organizes a new skill into
manageable steps and provides support such that a child can achieve something they would not be
able to accomplish independently [99, 265]. A good teacher will scale instruction appropriately
and create a good environment for learning the task at hand. In robotics, the human may be able
to help the robot with hard problems like “what to learn,” “when to learn,” “what action to try,”
and “how to measure success” [35].

2.2.1 ATTENTIONDIRECTION
Attention direction is one of the essential mechanisms that contributes to the learning pro-
cess [268, 274]. Analyzing parent-child tutoring sessions reveals a number of ways that adults
provide structure and guide attention to let children succeed: placing important objects close to
the child’s face, arranging the physical environment such that the desired action is within reach,
or doing a demonstration in the infant’s line of sight to introduce object affordances.

e adult is also implicitly directing the child’s attention with their gaze direction. e
tendency to follow eye gaze is seen very early on, this is a first step to reference and joint attention.
It has also been shown that in order to hold joint attention and direct the infant’s attention,
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a communicative situation must first be established. is can be with a period of eye contact,
verbal, or behavioral contingent responses [76].

Within HRI research, a growing body of work has focused on social gaze behavior [117,
127, 153, 181, 182, 230, 256, 270], for example in the use of gaze for regulating turn-taking
in two-party [153, 270] and multi-party conversations [24, 171, 182, 256]. ese studies pro-
vide strong evidence that gaze cues from a robot support conversational functions and result in
a more natural interaction with a human. As an example of applying this to context of learning,
[183] showed how using human-like visual saliency detection may help a robot learner segment
a teaching demonstration into steps, and determine the right aspects of the state to pay attention
to during the demonstration.

Another way of directing attention is to emphasize or exaggerate parts of the desired move-
ment. is form of instruction is challenging to adapt to LfD because the goal is not to reproduce
the exaggeration itself, but instead to direct the focus of attention during learning.

2.2.2 DYNAMIC SCAFFOLDING
Dynamic scaffolding is the notion that adults create a learning situation that is the right level
of complexity for the learner. e adult adjusts dynamically to make sure the child is working
within the Zone of Proximal Development, defined as the gap between what a learner has already
mastered and what he or she can achieve with the aid of a teacher. In a way, the teacher creates
“microworlds” for the learner to master parts of the task in isolation before moving on, providing
safety and intermediate attainable goals [42]. For example, with language parents first treat any-
thing as conversational speech, but eventually they raise their expectations, scaffolding the child’s
conversational abilities [257]. In book reading, the parent will at first ask and answer their own
questions, and later they will expect the child to participate in the question/answer game.

Closely related to this idea is Lave and Wenger’s theory of legitimate peripheral participa-
tion, which states that the best way to learn is by starting on the sidelines and gradually gaining
responsibility. is limits the opportunity for failure while still letting the newcomer play a legit-
imate part in the community. e level of scaffolding provided is an important factor in learning,
instructors that always intervene to prevent problems may actually inhibit learning and the devel-
opment of abilities to detect and prevent errors [219].

e idea of scaffolding has been adapted into machine learning, and LfD specifically. Sev-
eral LfD techniques have leveraged the human teacher in spacial scaffolding, in which the teacher
restructures the learning environment to direct or focus the attention of the learner on the most
relevant aspects of the task being learned [26, 227, 228]. Within other techniques, scaffolding is
used as a means to build complex behaviors by combining or adapting simpler previously taught
skills [13, 14, 129].
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2.2.3 EXTERNALIZINGANDMODELINGMETACOGNITION
When working with children, adults often externalize the thinking process [23, 57]. In problem
solving, a common simplification is to switch from an open-ended “wh” question (where, who,
why, etc.), to yes/no questions when the child is having trouble. For example when asking “do you
know where X is?” and the child says “no” or has trouble, the adult will switch to yes/no questions
like “is it ... ?” to frame the search space. Often the yes/no questions are absurd to define the
extremes of the space, instead exemplifying the process that the child should be using to come up
with the answer for the question.

Greenfield also observes that if a child turns to an adult during a task, the adult may ask
a question or give a gesture hint. e questions asked are meant to elicit the thinking process.
Additionally, an important role that the adult plays in a child’s learning process is linking new
information to old, showing or suggesting to the child similarities between new problems and
old ones [219]. A good teacher makes the information in a new problem compatible with what is
known, guiding the generalization process, helping the child apply skills across various contexts.

Importantly, in humans, the key element that enables the above techniques to be successful
is meta-learning. Children can go from being directed in a task through leading questions and
hints to internalizing that process and being able to achieve the task on their own. us, in robots,
it is important to not only follow instructions and model the specific activity, but to learn task
strategies (e.g., questions to ask, what to pay attention to, etc.), from these interactions.

2.3 ROLEOFCOMMUNICATION IN SOCIAL LEARNING

2.3.1 EXPRESSIONPROVIDES FEEDBACKTOGUIDEATEACHER
To be a good instructor, one must maintain a mental model of the learner’s state (e.g., what is
understood so far, what remains confusing or unknown) in order to appropriately structure the
learning task with timely feedback and guidance. e learner helps the instructor by expressing
their internal state via communicative acts (e.g., expressions, gestures, or vocalizations that reveal
understanding, confusion, attention, etc.). rough reciprocal and tightly coupled interaction,
the learner and instructor cooperate to aid both the instructor’s ability to maintain a good mental
model of the learner, and the learner’s ability to leverage from instruction to build the appropriate
models, representations, and associations.

With this view of learning as a tightly coupled collaboration, theories of human cooper-
ative and collaborative activity help inform the design of robot learners. Cohen et al. analyzed
task dialogs in which an expert instructed a novice assembling a physical device, and found that
much of task dialog can be viewed in terms of joint intentions [72]. eir study identified key dis-
course functions including: organizational markers that synchronize the start of new joint actions
(“now,” “next,” etc.), elaborations and clarifications for when the expert believes the apprentice
does not understand, and confirmations establishing the mutual belief that a step was accom-
plished. Another important work is that of Bratman, in which he defines prerequisites for an
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activity to be considered shared and cooperative, stressing the importance of mutual responsive-
ness, commitment to the joint activity and commitment to mutual support [34]. Cohen et al.
support these guidelines and also predict that an efficient and robust collaboration scheme in a
changing environment needs an open channel of communication.

ese theories argue for the importance of sharing information through communication
in order to maintain a successful collaborative activity. us, a robot learner that people will find
collaborative and cooperative, must take into account nonverbal communication, such as ges-
tures and gaze, to facilitate the interaction and maintain an understandable transparent interface
between the human and the machine.

2.3.2 ASKINGQUESTIONS
In developmental psychology, the role of curiosity and inquiry is highlighted time and again as
a crucial component to the learning process. Early in development this is characterized in self-
learning where there is an active process of effectively asking questions of the environment. Piage-
tian self-regulatory reflexes (e.g., sucking, grasping, circular reactions) are crucial to early learning,
helping infants/children obtain developmentally appropriate experiences for learning [207]. e
work of Gopnik has additionally shown that children (and adults) are highly efficient in this pro-
cess. In one study, Gopnik and colleagues demonstrated to children a “blicket machine” that made
a sound when certain objects were put near it but not others. When asked to figure out how to
make it go, they observed that 2, 3, and 4-year olds would efficiently explore the environment
with actions (interventions) to uncover the pattern of conditional dependence between objects
and the sound, inferring the causal structure of the machine [97].

Later, children become experts in actively seeking knowledge from their social environ-
ment, first becoming proficient at deciding to whom to pay attention. Movellan showed that
children are highly efficient in their behavior, and in the face of deciding whether or not some-
one or something is reacting contingently to themselves, optimize their actions to gain the most
information [178]. us, even pre-verbal children that cannot “ask questions” in the traditional
sense of the term, are not passive observers but active learners in their world.

Educational psychology gives another view, looking at questions in a pedagogical context.
Grasser and Person studied tutoring sessions in both grade school and college students, classifying
a variety of question categories, under two main groups, those requiring short answers vs. long
answers. ey then studied the frequency and intent of various questions in real tutorial settings.
ey found the frequency of different types of questions was similar across two different settings,
and that students primarily ask questions because of a knowledge deficit and to maintain common
ground (e.g., confirming knowledge) [98]. In other research they have shown that the quality of
a student’s questions and the completeness of their answers are the best predictors of final exam
performance. Hence, performance was not correlated with answers students gave to confirming
questions like “did you get that” [204]. us, a good teacher must do more than ask for knowledge
confirmations to maintain a good mental model of the learner’s current knowledge.
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Figure 2.4: Simon, at Georgia Tech, is one example of a robot designed with both learning and social
interaction in mind. Techniques for making use of scaffolding, attention direction, transparency, and
question asking are central to the development of this system.

ese experiments quantifying question usage are closely related to HRI goals, and tech-
niques integrating some of these principles into LfD will be discussed in Chapter 6.

2.4 IMPLICATIONS FORTHEDESIGNOFROBOT
LEARNERS

e human learning process serves as an inspiration in the design of social learning robots. By
studying human learning we gain insights into the design of advanced learning systems. Further-
more, because learning from demonstration inherently requires interaction between the robot and
the user, designing the interaction to conform to the user’s expectations leads to a more natural
and effective learning process. e extent to which social elements need to be integrated into
LfD often depends on the application. In some circumstances, the robot may benefit from the
full range of social interactions, taking into account social cues such as gestures, gaze, direction of
attention, and possibly even extending to affect. In other applications, minimal or no social un-
derstanding may be required, with the interaction instead limited to a human-computer interface.
In all cases, the designers of the robot strive for the most natural, flexible, and efficient learning
system for the given task. e following design elements are some that should be considered in
the design of robots that learn from demonstration.

• Social interaction. Should the robot leverage the social aspect of the interaction? Would
learning be aided if the robot understood the social cues of the user? Would learning be
aided if the robot could exhibit social cues? Which social cues are most effective for LfD
interactions? Which social cues, whether from the robot or teacher, are most informative
for task learning, and which social cues are most preferred by users?

• Motivation for learning. Does the robot require intrinsic motivation for learning, or will
all learning be initiated and directed by the human user?
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• Transparency. To be effective, a teacher must be able to maintain an as accurate a mental
model of the learner’s knowledge as possible. How can the robot externalize what it has
learned and make elements of the internal model transparent to the user? What techniques
for communicating the learner’s knowledge should be used to aid the learning process? Is
it necessary that the communication techniques mimic the way humans communicate, or
is it equally (or more) effective to leverage interfaces that are not part of natural human
communication, such as screen-based devices?

• Question asking. Asking questions is a critical part of the human learning process. How
does the robot effectively communicate the limits of its knowledge or pose a question? How
can the user frame the answer in a way that the robot can understand, and how should
the gained information be used to improve the underlying model? Many different types of
questions can be designed, such as “what should I do now?” or “what is the intended goal?”
Given multiple possible questions, how can the robot determine which questions to ask?

• Scaffolding. Just as for humans, complex tasks can be easier for machines to learn if they are
broken down into simpler components. Organization of knowledge or skills into simpler
parts also often allows for greater efficiency through reuse. How can the robot leverage
scaffolding in its learning and interaction with the user? How can previously learned policies
be built upon and reused in new settings? Note that in addition to simply saving learned
policies, this could involve parameterizing the action space of the robot, allowing a previously
learned skill (e.g., pick up box) to generalize to new objects or scenarios.

• Directing attention.Humans use a number of techniques to control the direction and scope
of attention within a conversation. In the context of learning, both in the role of a teacher
and a student asking a question, this skill is often used to focus learning, akin to feature
selection inmachine learning.How can control of attention be leveraged to simplify learning
in complex domains?How can the robot direct the attention of the user, and vice versa?How
does the learning algorithm respond to shifts in attention?

• Online vs. batch learning. e majority of traditional machine learning techniques make
use of a batch learning process, examining all the training data at once and producing a
model. Learning from demonstration can be cast as a batch learning process that occurs
at the end of a training session, or once enough new demonstrations are acquired. How-
ever, it can also be viewed as an online learning process in which training data is acquired
incrementally, similar to active learning. e choice between online and batch learning is
important in the design of an interactive learning system as it will determine the flow of
interaction and how new training data is acquired and integrated into the model.

As can be seen from this discussion, social learning mechanisms have the potential to play
an important role in every part of the LfD process. In the next chapter, and the ones that follow,
we switch to looking at LfD from a computational perspective, studying the Machine Learning
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techniques that can be applied to this problem. However, human involvement remains a critical
factor in the discussed methods, and we return to this topic in Chapter 6, where we consider
interactive techniques for policy refinement.





17

C H A P T E R 3

Modes of Interaction with a
Teacher

With insights from human social learning in mind, in this chapter we turn to a central design
choice for every Learning from Demonstration (LfD) system: how to solicit demonstrations from
the human teacher. As highlighted in Figure 3.1, this chapter forms the introduction to the tech-
nical portion of the book, laying the foundation for the discussion of both high-level and low-level
learning methods. We do not entirely ignore the issues of usability and social interaction, after all,
the choice of interaction method will impact not only the type of data available for policy learning,
but also many of the topics discussed in the previous chapter (e.g., transparency, question asking,
directing attention). However, these topics will remain in the background until Chapters 6 and 7,
in which we discuss policy refinement and user study evaluation, respectively.

Figure 3.1: In this chapter, we discuss a wide range of techniques for collecting demonstration input
for LfD algorithms.

In this chapter, we first introduce readers to the correspondence problem, which pertains to
the differences in the capabilities and physical embodiment between the robot and user. We then
characterize demonstration techniques under three general modes of interaction, which enable a
robot to learn through doing, through observation, and from critique.

3.1 THECORRESPONDENCEPROBLEM
An LfD dataset is typically composed of state-action pairs recorded during teacher executions of
the desired behavior, sometimes supplemented with additional information. Exactly how demon-
strations are recorded, and what the teacher uses as a platform for the execution, varies greatly
across approaches. Examples range from sensors on the robot learner recording its own actions as
it is passively teleoperated by the teacher, to a camera recording a human teacher as she executes
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Figure 3.2: e correspondence problem arises due to the differences in the sensing abilities and
physical embodiment between the human and robot, making it more challenging to accurately map
between their respective state and action representations [49].

the behavior with her own body. Some techniques have also examined the use of robotic teachers,
hand-written control policies and simulated planners for demonstration.

For LfD to be successful, the states and actions in the learning dataset must be usable by
the learner. In the most straightforward setup, the states and actions recorded during the demon-
strations map directly to the sensing and movement capabilities of the robot. In other cases,
however, a direct mapping does not exist between the teacher and learner due to differences in
sensing ability, body structure or mechanics. For example, a robot learner’s camera will not detect
state changes in the same manner as a human teacher’s eyes, nor will its gripper apply force in the
same manner as a human hand. e challenges which arise from these differences are referred to
broadly as the correspondence problem [186]. Specifically, the issue of correspondence deals with
the identification of a mapping between the teacher and the learner that allows the transfer of
information from one to the other.

e correspondence problem lies at the heart of Learning from Demonstration, and is
intertwined in the choice of both the human-robot interaction method and computational tech-
nique used for learning. Using a direct demonstration technique that does not require correspon-
dence simplifies the learning process significantly as it removes one source of possible error—the
mapping function that translates human capabilities to those of the robot. As discussed below,
several demonstration techniques directly map between the actions of the teacher and those of
the student, the primary examples of which are teleoperation of the robot through kinesthetic
teaching [51] or a controller such as a joystick or computer interface [1, 237]. However, not all
systems are amenable to teleoperation. For example, low-level motion demonstrations are difficult
on systems with complexmotor control, such as high degree of freedom humanoids. Furthermore,
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(a) (b)

Figure 3.3: (a) Kinesthetic teaching with the iCub robot [13]. (b) User controlling the full-body
motions of an Aldebaran Nao robot using the Xsens MVN inertial motion capture suit [141].

physically controlling the robot may not be natural, or even possible, in a given situation. Instead,
the teacher may find it more effective to perform the task with their own body while the robot
watches. Enabling the robot to learn from observations of the teacher requires a solution for the
correspondence problem, the states/actions of the teacher during the execution must be to be
inferred and mapped onto the abilities of the robot. Learning in such settings depends heavily
upon the accuracy of this mapping. Finally, the teacher may not demonstrate the task at all, and
instead observe the robot and provide critique or corrections to the current behavior. In the fol-
lowing sections we discuss techniques for enabling the robot to learn from its own experiences,
observation of the teacher and the teacher’s critiques. We conclude the chapter with a discussion
of the tradeoffs and implications that the choice of interaction mode has on the design of the
overall robot learning system.

3.2 LEARNINGBYDOING
Teleoperation provides the most direct method for information transfer within demonstration
learning. During teleoperation, the robot is operated by the teacher while recording from its own
sensors. Demonstrations recorded through human teleoperation via a joystick have been used in
a variety of applications, including flying a robotic helicopter [1], soccer kicking motions [40],
robotic arm assembly tasks [64], and obstacle avoidance and navigation [118, 237]. Teleopera-
tion has also been applied to a wide variety of simulated domains, such as mazes [70, 214], driv-
ing [3, 66], and soccer [7], and many other applications. Teleoperation interfaces vary in com-
plexity from hand-held controllers to teleoperation suits [159]. Hand-written controllers have
also been used to teleoperate the robot in the place of a human teacher [11, 102, 221, 237].

Kinesthetic teaching offers another variant for teleoperation. In this method, the robot is
not actively controlled, but rather its passive joints are moved through the desired motions while
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the robot records the trajectory [51]. Figure 3.3(a) shows a person teaching a humanoid robot to
manipulate an object. is technique has been extensively used in motion trajectory learning, and
many complementary computational methods are discussed in Chapter 4. A key benefit of teach-
ing through this method of interaction is that it ensures that the demonstrations are constrained to
actions that are within the robot’s abilities, and the correspondence problem is largely eliminated.
Additionally, the user is able to directly experience the limitation of the robot’s movements, and
thus gain greater understanding about the robot’s abilities.

Another alternative to direct teleoperation is shadowing, in which the robot mimics the
teacher’s demonstrated motions while recording from its own sensors. In comparison to teleoper-
ation, shadowing requires an extra algorithmic component which enables the robot to track and
actively shadow (rather than be passively moved by) the teacher. Body sensors are often used to
track the teacher’s movement with a high degree of accuracy. Figure 3.3(b) shows an example
setup used by [141], in which the Xsens MVN inertial motion capture suit worn by the user is
used to control the robot’s pose. is example demonstrates tightly coupled interaction between
the user and the robot, since almost every teacher movement is detected by the sensors.

Shadowing also allows for loosely coupled interactions, and has even been applied to robotic
teachers. Hayes and Demiris [109] perform shadowing with a robot teacher whose platform is
identical to the robot learner; the learner follows behind the teacher as it navigates through a
maze. Nehmzow et al. [187] present an algorithm for robotmotion control in which the robot first
records the human teacher’s execution of the desired navigation trajectory, and then shadows this
execution. While repeating the teacher’s trajectory, the robot records data about its environment
using its onboard sensors. e action and sensor data are then combined into a feedback controller
that is used to reproduce future instances of the demonstrated task.

Trajectory information collected through teleoperation, kinesthetic teaching or shadow-
ing can be combined with other input modalities, such as speech. Nicolescu and Mataric [190]
present an approach in which a robot learns by shadowing a robotic or human teacher. In addition
to trajectory information, their technique enables the teacher to use simple voice cues to frame
the learning (“here,” “take,” “drop,” “stop”), to provide informational cues about the relevance or
irrelevance of observation inputs and indications of the desired behavioral output. In Rybski et
al. [225], demonstration of the desired task is also performed through shadowing combined with
dialog in which the robot is told specifically what actions to execute in various states. Meriçli et
al. [175] present a similarly motivated approach which additionally supports repetitions (cycles)
in the task representation and enables the user to modify and correct an existing task. Breazeal et
al. [36] also explore this form of demonstration, enabling a robot to learn a symbolic high-level
task within a social dialog.

Finally, some learning methods pay attention only to the state sequences, without record-
ing any actions. is makes it possible to communicate the task objective function to the learner
without traditional action demonstrations. For example, by drawing a path through a 2-D repre-
sentation of the physical world, Ratliff et al. provide high-level path planning demonstrations to
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(a) (b)

Figure 3.4: (a) User teaching a forehand swing motion to a humanoid robot using the Sarcos Sen-
Suit [115]. (b) Humanoid robot learning to play air hockey from observation of opponent player [25].

a rugged outdoor robot [215] and a small quadruped robot [143, 216]. Human-controlled tele-
operation demonstrations are also utilized with the same outdoor robot for lower-level obstacle
avoidance [216]. Since actions are not provided in the demonstration data, at run time a learned
state-action mapping does not exist to provide guidance for action selection. Instead, actions are
selected by employing low level motion planners and controllers [215, 216], and provided transi-
tion models [143].

3.3 LEARNINGFROMOBSERVATION

In many situations, it is more effective or natural for the teacher to perform the task demonstra-
tion using their own body instead of controlling the robot directly. As discussed above, this form
of demonstration introduces a correspondence problem with respect to the mapping between the
teacher’s and robot’s state and actions. As a result, this technique is commonly used with hu-
manoid or anthropomorphic robots, since the robot’s resemblance to a human results in a simpler
and more intuitive mapping, though learning with other robot embodiments is also possible. Un-
like in the use of shadowing, the robot does not simultaneously mimic the teacher’s actions during
the observation.

Accurately sensing the teacher’s actions is critical for the success of this approach. Tradi-
tionally, many techniques have relied on instrumenting the teacher’s body with sensors, including
the use of motion capture systems and inertial sensors. Ijspeert et al. [114, 115] use a Sarcos Sen-
Suit worn by the user to simultaneously record 35 DOF motion. e recorded joint angles were
used to teach a 30-DoF humanoid to drum, reach, draw patterns, and perform tennis swings
(Figure 3.3(a)). is work is extended in [184] to walking patterns. e same device, supple-
mented with Hall sensors, is used by Billard et al. to teach a humanoid robot to manipulate boxes
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in sequence [29]. In later work, Calinon and Billard combine demonstrations executed by human
teacher via wearable motion sensors with kinesthetic teaching [50].

Wearable sensors, and other forms of specialized recording devices, provide a high degree of
accuracy in the observations. However, their use restricts the adoption of such learning methods
beyond research laboratories and niche applications. A number of approaches have been designed
to use only camera data. One of the earliest works in this area was the 1994 paper by Kuniyoshi
et al. [152], in which a robot extracts the action sequence and infers and executes a task plan
based on observations of a human hand demonstrating a blocks assembly task. Another example
of this demonstration approach includes the work of Bentivegna et al. [25], in which a 37-DoF
humanoid learns to play air hockey by tracking the position of the human opponent’s paddle
(Figure 3.3(b)). Visual markers are also often used to improve the quality of visual information,
such as in [30], where reaching patterns are taught to a simulated humanoid.Markers are similarly
used to optically track human motion in [122, 123, 259] and to teach manipulation [209] and
motion sequences [10]. In recent years, the availability of low-cost depth sensors (e.g., Microsoft
Kinect) and their associated body pose tracking methods makes this a great source of input data
for LfD methods that rely on external observations of the teacher (e.g., [79]).

Related to the learning by observation problem, several works focus exclusively on the
perceptual-motor mapping problem of LfD, where in order to imitate the robot has to map a
sensed experience to a corresponding motor output. Often this is treated as a supervised learn-
ing problem, where the robot is given several sensory observations of a particular motor action.
Demiris and Hayes use forward models as the mechanism to solve the dual-task of recognition
and generation of action[80]. Mataric and Jenkins suggest behavior primitives as a useful action
representation mechanism for imitation [122]. In their work on facial imitation, Breazeal et al.
use an imitation game to facilitate learning the sensory-motor mapping of facial features tracked
with a camera to robot facial motors. In a turn-taking interaction the human first imitates the
robot as it performs a series of its primitive actions, teaching it the mapping, then the robot is
able to imitate [37].

Finally, observations can also focus on the effects of the teacher’s actions instead of the
action movements themselves. Tracking the trajectories of the objects being manipulated by the
teacher, as in [249], can enable the robot to infer the desired task model and to generate a plan
that imitates the observed behavior.

3.4 LEARNINGFROMCRITIQUE
e approaches described in the above sections capture demonstrations in the form of state-action
pairs, relying on the human’s ability to directly perform the task through one of the many possible
interaction methods. While this is one of the most common demonstration techniques, other
forms of input also exist in addition to, or in place of, such methods.

In learning from critique or shaping, the robot practices the task, often selecting actions
through exploration, while the teacher provides feedback to indicate the desirability of the ex-
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Figure 3.5: A robot learning from critique provided by the user through a hand-held remote [138].

hibited behavior. e idea of shaping is borrowed from psychology, in which behavioral shaping
is defined as a training procedure that uses reinforcement to condition the desired behavior in a
human or animal [234]. During training, the reward signal is initially used to reinforce any ten-
dency towards the correct behavior, but is gradually changed to reward successively more difficult
elements of the task.

Shaping methods with human-controlled rewards have been successfully demonstrated in
a variety of software agent applications [33, 135, 252] as well as robots [129, 138, 242]. Most of
the developed techniques extend traditional Reinforcement Learning (RL) frameworks [245]. A
common approach is to let the human directly control the reward signal to the agent [91, 119,
138, 241]. For example, in Figure 3.4, the human trainer provides positive and negative reward
feedback via a hand-held remote in order to train the robot to perform the desired behavior [138].

omaz and Breazeal extended critique-based methods to additionally allow the user to
influence the selection of the next action, showing that this provides performances gains of up to
50% over a feedback-only approach [253]. Several other approaches let the human supervise an
RL agent by occasionally biasing action selection rather than directly controlling all of the agent’s
actions [69, 148, 170]. All of these techniques have the benefit that the human need not know
exactly how the agent should perform the task, and learning does not require their undivided
attention. However, in many of the approaches above, one could argue that the machine does
not take enough advantage of the human teacher that is actively willing to help. A more detailed
discussion of Machine Learning techniques that leverage feedback and critique is included in
Chapter 6.
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3.5 DESIGN IMPLICATIONS
Given the range of input modalities seen across LfD approaches, a system designer should care-
fully consider which to use in a given learning domain for a given learning task. Several compo-
nents should be considered in this decision.

One is the available forms of human-robot interaction. In some cases the choice of in-
teraction modality may be restricted by environmental conditions or user factors of the target
application. For example, kinesthetic teaching is ruled out if the user is not co-present with the
robot, is physically unable to perform the task, or if physical contact with the robot is unsafe. In
other cases, it may be possible to do kinesthetic teaching, but if the teacher is not very familiar
with operating the robot or with the robot’s kinematic workspace, it may be more intuitive for
them to provide input by demonstrating the task themselves.

In both learning from experience and observation, an important consideration is how pro-
ficient the teacher is expected to be in demonstrating the target task. Many demonstration tech-
niques rely only on demonstrated data to learn the task policy. In such cases, the performance of
the robot can be limited by that of the teacher. It is important to remember that human demon-
strations are often noisy and suboptimal in performance. As discussed in detail in Chapter 6, a
number of interactive techniques exist for refining a policy, which help to mitigate the effects of
suboptimal demonstrations. For example, exploration based techniques (e.g., RL) can be used to
allow the robot to refine the task on its own, possibly in combination with teacher critique.

Additionally, demonstration data recorded by real robots frequently does not represent the
full observation state of the teacher. is occurs if, while executing the task, the teacher employs
extra data which is not recorded. For example, if the teacher makes decisions based on what he
observes in parts of the world which are inaccessible from the robot’s cameras (e.g., behind the
robot, if its cameras are forward-facing). In this case, the state as observed by the teacher differs
from what is actually recorded as data, sometimes making it impossible for the robot to learn
the task correctly. While in many cases this is viewed simply as an additional factor to take into
account, a small number of works have addressed this problem; for example, in [104] and [102]
a vision-based robot is teleoperated while the teacher looks exclusively at a screen displaying the
robot’s camera output.

In the following chapters we study how demonstration data, collected through one of the
methods described in this chapter, can be used to learn low-level or high-level policies from
demonstration. As we will see, the choice of demonstration technique does little to restrict the
choice of learning method, so in the future we will often talk about training sets of state-action
pairs without discussing exactly the way in which they were recorded.
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C H A P T E R 4

Learning Low-LevelMotion
Trajectories

We have thus far covered the first two stages of the LfD pipeline (Figure 4.1), looking at human
social learning, as well as the range of input a LfD algorithm can be designed to work with. We
now turn our attention to the wide range of algorithms for building skill and task models from
demonstration data. In this chapter we focus on approaches that learn new motions or primitive
actions. e motivation behind learning new motions is typically that they would be used in
service of some specific task in a given domain. Hence, we will also refer to these primitive actions
as low-level motions in contrast to the high-level tasks in which they would be used (covered in
Chapter 5). In the literature there are several different names given to this class of “low-level”
action learning, thus in this chapter we use the terms skill, motor skill, primitive action, and low-
level motion interchangeably.

Figure 4.1: In this chapter we focus on approaches that learn new low-level skills, motions, or prim-
itive actions.

egoal of learning in this context is to build an accuratemodel of a demonstrated primitive
action, such that it could be generally applied to a variety of domain specific tasks. e notions of
“accuracy” and “generality” will differ across approaches and also depend on the target domain.

Virtually all methods of supervised learning have been applied in the context of skill learn-
ing. Some seminal early examples of skill learning from demonstration include the use of Neural
Networks [17], Inductive Logic [89], and Petri Nets [172] to model skills. e vast majority of
modern approaches, however, are based on either Dynamic Movement Primitives (DMPs) or
probabilistic modeling methods such as Hidden Markov Models (HMMs), Gaussian Mixture
Regression (GMR), or some combination thereof. In this chapter, we first discuss the feature se-
lection problem for low-level skills. We then introduce the primary approaches to skill learning,
and finish with a discussion of sensitivity to sub-optimal input data.
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4.1 STATE SPACES FORMOTIONLEARNING
Let us start the topic of motion learning with a discussion that is rarely addressed, the choice
of state space. When surveying the field of motion learning one sees that there is a vast range
of state spaces that have been employed for representing skills. In particular, the choice of state
space tends to be specific to a particular target domain or skill set. us, it is an important design
choice to consider for your LfD problem.

e easiest state for the robot learner to record and reproduce is often simply joint positions
of the entire kinematic chain over time. For gestures and other free space motion this is a good
state space for learning [53, 122]. However, in some cases the goal of a skill is not captured only by
joint positions over time, so the state representation needs to be augmented in order to promote
learning a general form of the skill. A common solution is to instead represent the same joint space
trajectory as motion with respect to some target task object, also called the task frame. Take for
example the skill of touching or picking up a particular object. Given multiple demonstrations
of the skill with the target object in different locations, these trajectories may show very little
similarity in the robot frame, but when converted to the task frame a general skill model is easily
represented. For object directed skills, a further simplification on the task frame representation is
often to only consider the Cartesian position of the end-effector with respect to a target object,
rather than the entire kinematic chain. In this case, when reproducing a learned skill, a planner
is used to determine appropriate positions for all the joints given a desired end-effector position
over time.

A particular object-directed skill that has been a common target domain for LfD is assem-
bly tasks, and several different state spaces have been used for learning primitive actions in this
context. e task goal for assembly involves skills that have an end-effector make contact with
objects and/or move some object in a particular way with respect to other objects (e.g., a canonical
peg-in-hole skill). One way this has been addressed is by modeling the compliance of the robot’s
end-effectors, where the learned skill model represents the expected forces over time at either just
the end-effector or in all joints of the manipulator [17, 235, 267]. An alternative is to explicitly
represent the set of all possible contact states between the objects of interest [113]. e use of
relational representations of contact forces has been a common approach to assembly tasks since
the 1980s [88]. More modern approaches to this problem are focused on automatically extracting
a skill specific discretization of the state space, e.g., the approach in [173] simultaneously esti-
mates object contact formations and their constraints from a human demonstration of the skill.
For complex dexterous manipulation tasks or learning specific grasp strategies for particular ob-
jects, a simple object contact representation may not be high enough resolution to represent the
skill, forces measured at the manipulator fingertips may be necessary [162].

e goal of the representations above are to be generic, to represent any kind of motion or
any kind of object directed motion. In addition to these, it is common to see state representations
in LfD that are carefully constructed with perceptual information specific to a given control task,
such as playing pool [202], playing tennis [180], flipping pancakes [145], or flying a helicopter [2].
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In these examples the designer knows the space in which a general skill model exists and defines
this for the learner. is is often seen in the case of complex dynamic skills, where even when
the state space of the objective function is known, programming an optimal motor controller is
nontrivial and learning from demonstration is a nice alternative.

It is also important to note that the choice of state representation has been biased by the
capabilities of the hardware and platforms available. LfD has been biased toward learning skill
models comprised of motion signals due to the availability of platforms for which recording and
reproducing a particular motor trajectory is possible. As we see progress on robot actuators and
sensors, the field of LfD will be able to address learning from other signals. For example, it is
becoming increasingly common to see LfD approaches that incorporating force or compliance
profiles of a skill, due to advances and availability of robots with compliant actuators.

4.2 MODELINGANACTIONWITHDYNAMIC
MOVEMENTPRIMITIVES

e Dynamic Movement Primitive (DMP) framework has its roots in a paper published by
Ijspeert et al. [114]. It was created to learn the attractor landscape of a controller from a single
demonstration. ere are various formulations of the DMP framework since its first introduction.
Here we provide a basic introduction to the approach.

is approach is designed for single shot motion where the goal is to reach a particular
target by the end of the skill. is is represented as a damped spring that is attached to the goal
position and is modulated by a nonlinear term:

Rx D K.g � x/ �D Px C f .!; s/: (4.1)
In Eq. 4.1, x, Px, and Rx are the position, velocity and acceleration of the system (or of a single

dimension of the system in a multi-DOF control policy), and g is the goal state of the skill. K is
a spring constant, and D is the damping term. e first part of this equation resembles a simple
PD-controller where the K and D are the position gain and derivative gain respectively. With
appropriate setting of these parameters, and f D 0, g becomes the point attractor for the system.
e parameters are either estimated or empirically chosen such that there is no overshoot if the
PD portion was used alone (i.e., ideally the parameters are set such that the system is critically
damped).

e f term adds acceleration to the simple point attractor system, such that it moves to
the target position in a particular way. f is a nonlinear function with the parameters !, and s is
the phase variable:

f D

P
i  i .s/!isP

i  i .s/
: (4.2)

e variable s lets f not depend explicitly on time, rather it depends on this phase term
that has either linear first-order or second-order decay dynamics (e.g., Ps D �˛s) independent of
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the state x. Typically, this decays exponentially from 1 to 0, ensuring that the skill converges to
the target point. Each dimension of the controller has an individual version of Eq. 4.1. e phase
variable acts as a coupling term between them.

e usual form of f is the sum of Gaussian basis functions with s as the variable. e basis
functions have distributed centers ci throughout the Œ0I 1� decay zone of s; and varying widths hi :

 i .s/ D exp.hi .s�ci /2/ :

Learning a DMP typically uses just a single skill demonstration, and involves estimating
the form of f that defines how to perturb the point attractor system in the right way. Rearranging
Eq. 4.1, we have the following:

f .!; s/ D Rx �K.g � x/CD Px: (4.3)

First, x.t/, Px.t/ and Rx.t/ are calculated from the example trajectory. e decay speed of
s (e.g., the parameter ˛) is determined from the demonstration. en, calculating ! given f .s/
is a supervised linear regression problem. One method is to assume all c basis functions have
the same form (e.g., same h), evenly distributed throughout the range of s. en the problem is
reduced to learning the weight parameters !, and a method like Locally Weighted Regression has
been shown to accomplish this task [20]. ere are three main parameters to tune for the DMP
method: the number of basis functions in the non-linear term; the decay term ˛; and the position
gain (derivative gain can be calculated from position gain by assuming critical damping.) For the
basis functions, the distribution of centers and the variance of the widths should be done with the
decay speed considered, with centersmore tightly spaced in themore dynamic portions of the skill.
Alternatively, the Locally Weighted Projection Regression method can be used to simultaneously
learn this weight vector along with the location and width of the basis functions [264].

e set of equations (in the form of Eq. 4.1) for all the dimensions with all the parame-
ters initialized can be treated as the model of the skill. e resulting policy can be summarized
as Px D �.x; t/. Different versions of DMPs generalize the skill differently (affine transformed,
scaled versions, etc.) but the assumption is typically that the skill can be taught with a single
demonstration, and hence the resulting controller will closely resemble the seed demonstration.

Next, we give examples of using DMPs in practice. In [201], Pastor et al. extend the basic
DMP formulation such that the initial position x0 and the goal position g are model parameters.
is enables a single DMP to handle workspace perturbations, such as moving the target object
of a manipulation action to a new location. Such perturbations were demonstrated with stacking
objects and pouring into a cup. Building on this, [202] is a state of the art example of LfD with
DMPs, where a PR2 robot learns two different complex dynamic skills: learning a pool stroke,
and learning to flip a box with chopsticks (Figure 4.2).

One place in which a system designer encodes domain knowledge into the DMP learning
process is through the definition of the task space representation x. For the pool stroke skill the
designers selected the five task frame variables: translational offset of the right gripper to the pool
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Figure 4.2: State of the art example in learning DMPs from a single demonstration, applied for the
complex dynamic skills of playing pool and using chopsticks [202].

cue bridge, the roll, pitch and yaw of the cue around the bridge, as well as the elbow pose. For
the chopsticks skill on the other hand the relevant variables include data from the pressure sensor
array on the gripper finger tips.

Once an initial DMP model is estimated using a process similar to the basic one described
above, eodorou et al. employ a Reinforcement Learning (RL) algorithm (Policy Improvement
with Path Integrals (PI 2) [251]) to further optimize the DMP estimated from demonstration.
is optimization requires a cost function to be minimized, which needs to be provided by the
system designer. For example, the objective of the pool stroke skill is to maximize the cue ball
speed while having the ball cross the center of the scan line. With this objective function their
results show that the system was able to optimize skill performance in approximately 20 min.
In the chopsticks skill, the initial DMP estimated from the single successful demonstration was
only able to successfully flip the box 3 of 100 runs. After the optimization step (which they report
took 35 min) the robot achieved the box flip skill 172 of 200 runs. In related work, Peters and
Schaal [205] compare four different such policy searchmethods of Reinforcement Learning in the
scenario of optimizing a learned DMP motor skill. eir method, time-variant episodic Natural
Actor-Critic, is shown to be the preferred method with experiments in learning a baseball swing.

DMPs are meant to be primitives used in the context of a larger task, but only a few works
have pushed on this higher level aspect of the problem. One example is Mulling et al. [180] which
uses a mixture of several DMPs (learned separately) to solve the larger task of playing table tennis.
e specification of how to blend the control signals from two DMPs is task dependent and pre-
defined. A related problem is to learn multiple DMPs from a single set of demonstration data.
Almingol et al. [8] assume that each demonstration trajectory in the set represents one DMP, and
simultaneously infer the number of primitives contained in the demonstration data as well as the
DMPs themselves. Niekum et al. [193] assume that a single demonstration trajectory exhibits a
sequence of motion primitives, and their approach clusters and segments trajectories in order to
learn a separate DMP for each segment. Chiappa and Peters [68] also extract motion primitives
from a larger time series data by detecting changes in the motion dynamics.
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(a) (b)

Figure 4.3: (a) First three time steps of a Markov Model for the evolution of the state variable X .
e model is fully specified by the probabilities P.X1/ and P.Xt jXt�1/. (b) First three time steps of
a Hidden Markov Model where the observation Y is only dependent on the underlying state X , i.e.,
the observation probabilities P.Yt jXt /.

4.3 MODELINGACTIONWITHPROBABILISTICMODELS
e second class of approaches we introduce is those based on probabilistic models, which encom-
passes a large number of the prior work in skill learning. First we introduce the general approach
to modeling an action with a Hidden Markov Model, the most basic instantiation of a Dynamic
Bayes Net. We then discuss several different ways people have used and extended the basic ap-
proach over the years.

For a detailed introduction to the topic ofHMMs the reader should refer to [211]. Here, we
briefly introduce the terminology and focus our discussion on its typical usage in an LfD context.
A Markov Model is a chain-structured Bayesian Network with a state variable X that evolves
over time. e most commonly used form is the first-order Markov Model, which makes the
simplifying independence assumption that the value of X at one point in time only depends on
its value in the previous time step (Figure 4.3(a)). A Markov Model is represented by two proba-
bility distributions: the prior probability P.X1/, and the transition probabilities P.Xt jXt�1/. In
a Hidden Markov Model the state X is only indirectly observable through observations Y that
we assume depends only on the current state (Figure 4.3(b)). us, in addition to the priors and
transition probabilities, we now have the observation probabilities P.Yt jXt /.

In the case of skill learning from demonstration, the model of a skill is a sequence of hidden
states, with prior probabilities, transition probabilities and observation probabilities. e obser-
vation is the continuous time series demonstration trajectory (robot joint positions, or Cartesian
position of the end-effector, or position of the end-effector with respect to a target object, etc.).
e problem of learning this model has two parts: structure learning and parameter learning.

Structure learning involves determining the number, k, of hidden states there are for the
skill, and the connectivity of the states. A commonly used technique is to try values for k, starting
with k D 1, and then use Bayesian Information Criterion or Minimum Description Length to
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select the k that best balances a tradeoff between model complexity and fit to the demonstration
data. Growing HMMs is an incremental approach for learning HMM skill models [261] that
explicitly deals with the structure learning problem of deciding how to set k, and changing that
over time after seeing more examples of the skill. is work was done in the context of learning
models of car and pedestrian behavior from video, but the approach is relevant to skill learning
on robots.

Parameter learning involves estimating the three probability distributions mentioned above
(also called the model �) from the demonstrated examples of the skill. is is accomplished with
the Baum-Welch algorithm [81]. Baum-Welch is an expectation-maximization (EM) algorithm
that alternates between the E-step of computing the log likelihood of the observation sequence
Y given the current model �, and the M-step of adjusting the parameters in � to maximize this
likelihood. e algorithm is guaranteed to provide a monotonically increasing convergence of
P.Y j�/. To avoid EMconverging to a singular solution, it is typical to set aminimum value for the
eigenvalues of the covariances (or add a regularization term). is advice is even more important
when training a model from a single demonstration, in order to avoid numerical problems in the
estimation of the model’s parameters. However, most of the works in LfD employing HMMs
to represent observed trajectories exploited the use of multiple demonstrations, promoting the
extraction of additional relevant information about the task, in the form of local variation and
correlation information. us, it is more appealing to use multiple demonstrations to fully exploit
the representational properties of the model.

e learned HMM can be used for recognition, as in the common application for speech
or gesture recognition. Given an observation sequence, the Viterbi algorithm gives the optimal
sequence through HMM states for this observation. But an HMM is also a generative model. To
execute the skill, the probability distributions can be used to forward simulate a likely sequence
of X and Y , i.e., the canonical way to run this action from a particular initial state Y1. en a
controller is used to follow the determined Y trajectory. It is important to note that in practice,
generating a trajectory in this way is not as simple as it sounds since Y does not necessarily form
a smooth trajectory, but a discontinuous stepwise trajectory. One solution is to generate many
stochastic samples and average over them, but this has the side effect of potentially smoothing
important desired peaks in the movement trajectory.

e work of Kulic et al. exemplifies using HMMs for skill learning from demonstration
in a robust and realistic scenario [149, 150, 151]. Figure 4.4 shows the entire pipeline of the
approach. Most approaches assume that the data for a motion primitive is nicely segmented into
a portion of data that represents each action that is to be modeled. Moreover it is assumed that
the learning process operates over this data set of segmented examples in batch. Instead, Kulic et
al. relaxes both of these assumptions and performs unsupervised segmentation of an input motion
into several candidate primitive motions using the Kohlmorgen and Lemm algorithm [142] for
segmentation. is results in a set of short segments that are candidate motion primitives, and
an HMM is learned for each candidate. ese are then clustered into a hierarchical tree structure
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Figure 4.4: A state of the art example in learning HMMs from human demonstrations.¹ is il-
lustrates the learning pipeline seen in the work of Kulic et al. A continuous input stream of marker
position data is converted into joint angle data for a humanoid kinematic model. is input data is
segmented online with the approach described in [151], and then incrementally clustered and rep-
resented in a tree structure [150]. Temporal sequences or relationships between the HMM motion
primitives are captured in a motion graph and used to generate motion for a humanoid robot [149].

based on model similarity, and a group level HMM is learned for each subtree. Finally, a motion
graph is learned to represent the sequential dependencies between the different motion primitives.
eir approach has been tested with a 38 degree of freedom humanoid robot, with input from
motion capture demonstrations using 34 markers locations on the human. e data consisted of
16 min of whole body motion from a single human subject, where the person did motions such
as walking, squatting, kicking and raising arms. e video from this input data was manually
segmented and labeled, providing ground truth which could be used for evaluation. e resulting
system was able to achieve error rates below 10% on correctly identifying the motion primitives.
e learned motion graph is successfully able to generate real-time continuous sequences of these
motion primitives on a humanoid robot.

Similar to Kulic, the work of Kruger et al. [147] is focused on learning primitives from a
continuous observation stream. In their work, each primitive is its own Parametric HMM which
represents primitive actions and their effects on objects in a tabletop manipulation environment.
In Lee et al. [156] a humanoid robot learns to imitate gestures (dance moves, free space gestures
as well as contact gestures like high-five) from human demonstration, explicitly accounting for
missing data in the demonstrations. e observation sequence includes all of the robot’s joint
angles, and, in the case of physical contact, additionally includes distance between the human
hand and the robot [157].

Asfour et al. [18] introduce a method in which continuous motion trajectories are prepro-
cessed to select “key points” when some feature of the trajectory reaches an extremum, changes
direction, stops changing, or a minimum amount of time since the last key point has passed. is

¹Image taken from: ”Incremental learning of full body motion primitives and their sequencing through human motion obser-
vation,” Dana Kulic, Christian Ott, Dongheui Lee, Junichi Ishikawa and Yoshihiko Nakamura, e International Journal of
Robotics Research, Vol. 31, No. 3, pp. 330–345, © 2011 by the authors. Reprinted by permission of SAGE.
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representation results in a sparse trajectory of keyframes as input to train an HMM for dual arm
manipulation tasks. e HMM is used to detect temporal dependencies between the arms in
dual-arm tasks.

e work of Calinon et al. [55], uses HMMs for skill learning, but combines this with
a Gaussian Mixture Model (GMM) approach to address the different � parameter estimation
problems separately. ey estimate the observation probability P.Y jX/ as a GMM, followed by
using the Baum-Welch algorithm to estimate only the temporal sequencingP.Xt jXt�1/.e first
step in this approach is k-means clustering of the demonstrations (using Bayesian Information
Criterion to select the optimal number of clusters k). is clustering result is the initialization
for an expectation-maximization (EM) algorithm to fit a multivariate Gaussian Mixture Model
(GMM) with K components of dimensionality D:

p.yi / D

KX
kD1

˛kp.yi jk/

p.yi jk/ D N .yi I�k; ˙k/:

e symbols ˛k; �k; ˙k represent the prior, mean, and covariance matrix of the Gaussian distri-
butions k D 1:::K. As a final learning step the Baum-Welch algorithm is used to estimate just
the transition probabilities between the K components of the GMM.

To reproduce a skill with this HMM/GMM model, Calinon et al. apply Gaussian Mixture
Regression (GMR). is approach overcomes the problem that in order for an HMM to forward
simulate a smooth trajectory in the observation space, in practice it needs to have a lot of training
data. In the case of LfD we want to have good behavior after just a handful of demonstrations.
For a D-dimensional variable y, and the means and covariance matrices already computed, the
GMR regression is done along the time dimension, producing a canonical trajectory for the skill
given the desired time-stamps, i.e., P.yjt/. A controller is then used to follow this trajectory.
In [55], an optimal control formulation is used with inverse of the covariance matrices utilized as
cost.

An alternative to the HMM/GMM combination is to explicitly add time as a dimension
of the observation sequence [55]. In the combined approach, the GMM is doing the work of
representing the spatial variance of the skill, while the HMM is representing the temporal vari-
ation seen in the skill. By adding time to the observation state, the temporal dynamics become
part of the GMM as well. e state vector y.t/ is augmented with its time-stamp (or index),
Ny.t/ D Œt I y.t/�. But now it is important that all of the trajectories in the demonstration set are
aligned temporally. To do this, the data is subsampled in the time dimension to a constant length,
typically using Dynamic Time Warping. Now the GMM process is run (initialize with k-means
and do EM to estimate parameters of the k components), and the resulting set of �k , ˙k , and
�k where k D 1 : : : K is the model of the skill.

ere are two main parameters for an approach utilizing GMM and GMR. One we have
mentioned already is the number of Gaussians in the model. e second, not-so-obvious one
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is the relative weight of each dimension in the regression step. For example, consider a typical
state-space for an end effector trajectory composed of time (1), position (3), and rotation (4)
components, totaling 8 dimensions. However, time is measured in seconds, position is measured
in inches and rotation is in a quaternion representation, i.e., they have different units. We would
get differing results if we change the units, which effectively set the relative scale of each com-
ponent. However, the most important relative scale is related with time, since we only use time
as our independent variable in the GMR phase. In the source code accompanying [55], the unit
of time is discarded and replaced with indices, effectively scaling the time dimension with the
sampling rate.

e approach of modeling the skill with a GMM and reproducing it with GMR has been
widely used since its introduction, e.g., [5, 14, 51, 52, 179]. Two drawbacks of the approach
are its dependence on explicit time indices, and that it is essentially an open-loop controller.
Khansari et al. introduced the Stable Estimator of Dynamical Systems (SEDS) approach [131],
which bears similarities with the GMM+GMR method. e difference is that it directly learns
a closed-loop policy and that it forces this policy to be stable. In [54], Calinon et al. extend the
HMM/GMM+GMR approach, with an acceleration-based controller that is essentially a spring-
damper system in which the HMM/GMM model of the demonstration trajectories acts as an
attractor. us, the system is no longer open-loop but will track the desired GMR output and
will force the system back to the known subspace in response to a perturbation. is is a very
similar approach to that of DMPs discussed previously, the primary difference being that DMPs
have a single demonstration as the attractor being tracked, whereas here the attractor is an entire
model of the input demonstrations, which has the advantage of being able to encode several skill
alternatives in the same model.

4.4 TECHNIQUES FORHANDLINGSUBOPTIMAL
DEMONSTRATIONS

In all of the approaches mentioned in this chapter there is a big assumption that the input set
of demonstrations is an accurate representation of the skill to be learned. ere has been little to
no testing of these approaches with demonstration trajectories of naïve end-users. One exception
is [83], in which HMMs for welding tasks are learned via teleoperation input. eir evaluation
included testing that three different users were able to successfully teach a variety of welding skills.

Despite the lack of testing with end-users, the notion of the potential sub-optimality of
human demonstrations is widely recognized.When discussed in the literature, themost suggested
approach is to try to identify and eliminate noisy or sub-optimal demonstrations, as seen in [64]
and [232]. Even since 1995 this has been a topic of discussion; Kaiser et al. [126] provide an
analysis suggesting five sources of sub-optimality with human teacher: unnecessary actions in the
demonstration, incorrect actions, unmotivated action, demonstration scenario is too limited for
generalization, or specification of a wrong intention. eir conclusion is a set of conditions under
which demonstrations can be deemed sub-optimal and removed.
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e removal of sub-optimal demonstrations is unsatisfying, since even a failed demonstra-
tion should provide some information about the skill. Grollman and Billard take such a view in
their work, and argue that data from failed human demonstrations of a task should not be dis-
carded [103]. Instead, the authors show that it is possible to build models from this data that can
bias a robot’s exploration to find a successful way to perform a novel task.
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C H A P T E R 5

LearningHigh-Level Tasks
In this chapter, we look at how the actions that were derived from motion trajectories in the
previous chapter can be used to learn higher level tasks (Figure 5.1). While the line between
high-level and low-level learning is not concrete, the distinction we make here is that techniques
in this chapter assume the existence of a discrete set of action primitives that can be combined to
perform a more complex behavior. As in the previous chapter, we begin by discussing the state
space representation for this learning problem. We then organize policy learning approaches into
three categories: learning a reactive task policy representing a functional mapping of states to
actions, learning a task plan, and learning the task objectives. We go on to discuss the role that
feature selection, reference frame identification and object affordances play in the learning process.

Figure 5.1: In this chapter we present techniques for learning high-level tasks.

5.1 STATE SPACES FORHIGH-LEVELLEARNING
Compared to the previous chapter, the algorithms in this chapter are targeted at learning more
abstract high-level tasks. As a result, the demonstrations themselves are typically performed at a
higher level. Instead of trajectories, the teacher’s demonstrations consist of action primitives, such
as [pick up], selected from among a library of actions executable by the robot. Action primitives can
be hand-coded, executed by a planner or learned through one of the techniques in the previous
chapter. eir execution also typically lasts a non-negligible duration of time, and the actions
themselves are often parametarized (e.g. [pickup(targetObj)]).

e state space is represented using a set of features, which describe the relevant state of the
world and can take on continuous, categorical or binary values. Some algorithms use the changes
observed in feature values to infer the pre- and post-conditions of action primitives. As discussed
later in this chapter, the problem of identifying which features are relevant to a particular task is
also an active research area.
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Another powerful means of communicating the desired behavior to the robot is through
the specification of task goals. Several algorithms enable the teacher to specify the goal state that
needs to be achieved, such as a particular configuration of objects. Reward functions also capture
the goals of a task. For example, consider a robot learning to navigate to a target location. We
might assign a reward of +1 for reaching the goal, -1 each time the robot collides with an obstacle,
and 0 otherwise. is type of model is referred to as a sparse reward function because it has a
value of zero in most states, with a small number of non-zero values. Sparse reward functions are
relatively easy to specify for most tasks. Unfortunately, they are difficult to learn from because
the robot is given no feedback about its performance in most states. A dense reward function is
one which contains a reward value for most states in the domain. In our navigation example, a
dense reward function might calculate the value for a given state based on the distance to the
nearest obstacle and the distance to the goal. Specifying a dense reward function by hand is a very
challenging process that typically requires a significant amount of trial and error. Learning from
Demonstration provides two options for generating this input through other means. In the first,
the teacher can manually provide rewards to the robot while observing the robot’s actions in a
process called shaping, and in the second, demonstrations of the desired behavior by the teacher
can be algorithmically converted to a reward function in a process called inverse optimal control.

5.2 LEARNINGAMAPPINGFUNCTION
e techniques presented in this section formulate LfD as a supervised learning, or function
approximation, problem focused on learning a mapping from input states to output actions. In
this representation, demonstration data typically consists of state-action pairs, or trajectories of
state-action pairs, that are examples of completing the skill or task. Given these demonstrations,
the goal of the algorithm is to reproduce the underlying teacher policy, which is unknown except
for the (usually sparse and noisy) demonstrations, by generalizing over the set of available training
examples. e result of learning is a policy model that outputs actions given states. e following
texts provide an overview of supervised learning methods: [9, 146, 206]. In this book, we focus
only on methods that have particularly strong applications for LfD.

Decision trees [210] have been shown to be successful in a number of LfD applications, and
can be used both in the case of a few demonstration and many. For example, Sullivan et al. [243,
244] leverage decision trees as part of a hierarchical finite-state automaton learning framework.
In this context, given a small number of demonstrations, decision trees with probabilistic leaf
nodes are used to learn the probabilistic transition functions between automata states. In a very
different setting, Crick et al. [75] crowdsource hundreds of demonstrations by allowing online
users to teleoperate a robot through a maze using a web interface. Nearly 80,000 demonstration
data points are then combined into a single policy learned by a decision tree, resulting in nearly
perfect ability to replicate the maze task, as well as some degree of adaptation to other similar
mazes. Interestingly, the authors report little benefit from pruning in this domain, hypothesizing
that overfitting is not a major concern in their particular setting.
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Memory-based techniques [4], sometimes known as lazy-learning algorithms, have also
been applied to LfD. In the context of LfD, each learning instance represents a robot state, and
the label corresponds to the action that was demonstrated in that state. For example, Saunders
et al. [227] use k-nearest neighbors algorithm to learn a number of navigation tasks. Another
example of instance-based learning is Case-Based Reasoning (CBR), which utilizes a library of
past experiences (cases) to solve new problems by finding a similar past cases and reusing them
in the new situation. CBR techniques can support more complex training examples than k-NN,
including symbolic representations, and often rely on more complex similarity metrics. CBR has
been successfully applied to autonomous robot control in a number of applications, such as indoor
navigation [161] and autonomous robot soccer [220], but in these applications individual cases
are hand-coded by the developers. Extensions to LfD, in which cases are generated directly from
human demonstrations, have been shown in real time strategy games by Ontañón et al. [198],
and in learning human-robot collaboration by DePalma et al. [38].

Bayesian methods have been used extensively in LfD. Rao et al. [214] present a human-
inspired Bayesianmodel of imitation in which they frame the task learning problem as the compu-
tation of a set of actions that will lead to the goal state sN , given a set of observed and memorized
states s1; s2; :::; sN . For example, consider a simple imitation learning task where the imitator
has observed and memorized a sequence of states (for example, S7 ! S1 ! ::: ! S12). ese
states can also be regarded as the sequence of sub-goals that need to be achieved in order to
reach the goal state S12. e objective then is to pick the action that will maximize the proba-
bility of taking us from a current state st D Si to a memorized next state stC1 D Sj , given that
the goal state is sG D Sk . In other words, we would like to select the action Ai that maximizes
P.at D Ai jst D Si ; stC1 D Sj ; sG D Sk/. Rao et al. show how structuring the learning problem
within this probabilistic framework can enable the robot to infer the intent of the teacher and
estimate the probability distribution over the goal states.

Finally, many supervised learning methods provide a measure of confidence in their classi-
fication and regression results. is can be very helpful in LfD to convey the degree of certainty
of the robot’s actions and regulate the robot’s autonomy. Inamura et al. [118] and Lockerd and
Breazeal [165] both use Bayesian methods to estimate the robot’s classification confidence and
communicate it to the teacher. Chernova and Veloso [66] present the Confidence-Based Auton-
omy algorithm, a supervised learning technique that leverages the classification confidence of the
underlying supervised learning algorithm (the authors use Support vector machines and Gaussian
mixture models) in order to regulate the robot’s autonomy and prevent execution in low confi-
dence areas of the state space. Grollman and Jenkins [102] utilize Locally Weighted Projection
Regression to similarly estimate the robot’s confidence with respect to selecting an action in the
current state.
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5.3 LEARNINGATASKPLAN
An alternative to presenting policies as a direct state-to-action mapping is to represent the desired
robot behavior as a plan. Within the planning framework, the policy is represented as a sequence
of actions that lead from the initial state to the final goal state. Actions are often defined in terms
of pre-condititions, the state that must be established before the action can be performed, and post-
conditions, the state resulting from the action’s execution. Unlike other LfD approaches, planning
techniques frequently rely not only on state-action demonstrations, but also on additional infor-
mation in the form of annotations of goals or intentions from the teacher. Demonstration-based
algorithms differ in how the rules associating pre- and post-conditions with actions are learned,
and whether additional information is provided by the teacher.

Planning has been extensively studied in the software agents community, including in the
context of LfD. Lent andLaird [260] present amethod for learning non-deterministic plans based
on demonstration traces annotated with goal transition data. Garland and Lesh [95] introduce
an algorithm for learning a domain-specific hierarchical task model from demonstration. Within
this approach, the teacher is able to annotate the sequence of demonstrated actions and provide
high level instructions, for example, the fact that some actions can occur in any order. Note that
in both of the above examples, state-action demonstrations are supplemented with additional
information from the teacher to aid in generalization.

One of the earliest LfD works that was demonstrated on physical robots was Learning by
Watching by Kuniyoshi et al. [152], in which a plan was learned for object manipulation based
on observations of the teacher’s hand movements. is, and other early work in this area [116],
enabled robots to replay actions observed during demonstration, however, the learned models
had little ability to generalize beyond the demonstrated environment. More recent work in this
area has focused on generalizability, as well as techniques for learning complex plan structures
through various interaction modalities. For example, Veeraraghavan and Veloso [262] present an
algorithm for learning generalized plans that represent sequential tasks with repetitions. In this
framework, a humanoid robot is taught the repetitive task of collecting colored balls into a box
based on only two demonstrations. Nicolescu and Mataric [191] also contribute techniques for
learning from multiple demonstrations, presenting a framework for learning behavior networks,
a high-level task structure that models the interaction between abstract and primitive behaviors
and their effects. e framework enables the robot to generalize across multiple demonstrations
and to refine the learned model based on speech input from the teacher. Rybski et al. [225] incor-
porate speech to an even greater degree, enabling the user to generate complex plan models based
on spoken dialog with the robot. e teacher presents the robot with a series of conditional state-
ments which are processed into a plan, and the robot is additionally able to verify any unspecified
parts of the plan by asking questions.

e above techniques construct plan representations based on demonstrations of discrete,
high-level action primitives, such as pick up(x). A number of techniques have also focused on
bridging the gap between low-level trajectory input and high-level task learning, providing a
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means for extracting abstract task structures from motion trajectories. For example, Ehrenmann
et al. [82, 90] introduce a system that records the movements of a human hand using a camera,
data glove and a magnetic field based tracking system, segments the resulting data to identify tra-
jectories and grasps, and then generates a hierarchical task representation based on the identified
movements.

Niekum et al. [192, 193, 194] present a series of algorithms that draw from recent advances
in Bayesian nonparametric statistics and control theory to automatically detect and leverage re-
peated structure in low level demonstrations in order to produce a task plan. At the core of the
presented algorithms are Bayesian nonparametric models—models that do not have a fixed size,
but instead infer an appropriate complexity in a fully Bayesian manner without overfitting the
data or requiring model selection. ese models are used to discover repeated structure in the
demonstration data, identifying subgoals and primitive motions that best explain the demonstra-
tions and that can be recognized across different demonstrations and tasks. is process converts
noisy, continuous demonstrations into a simpler, coherent discrete representation. e resulting
discrete representation can then be leveraged to find additional structure, such as appropriate co-
ordinate frames for actions, task-level sequencing information, and higher-level skills that are
semantically grounded. Finally, this collection of data is combined to construct robust controllers
that use an understanding of the world to adaptively perform complex, multi-step tasks.

e authors demonstrate their approach by teaching a PR2 mobile manipulator to assemble
a small table. e table consists of a tabletop with four pre-drilled holes and four legs that each
have a screw protruding from one end. Eight kinesthetic demonstrations of the assembly task
were provided, in which the tabletop and one leg were placed in front of the robot in various
positions. In each demonstration, the robot was made to pick up the leg, insert the screw-end
into the hole in the tabletop, switch arms to grasp the top of the leg, hold the tabletop in place,
and screw in the leg until it is tight. An example of this progression is shown in Figure 5.2(a)-
(f ). To make the insertion more robust, a bit of human insight is applied by sliding the screw
around the area of the hole until is slides in. is allows the insertion to be successful even when
perception is slightly inaccurate.

e demonstrations were then segmented and used to generate a Finite-State Automaton
(FSA), shown in Figure 5.2(g). Importantly, the authors note that initial demonstrations do not
always cover all the possible contingencies that may arise during the execution of a task. In the
case of table assembly, task replay was sometimes successful, but several types of errors occurred
intermittently. Two particular types of errors that occurred were (a) when the table leg was at
certain angles, the robot was prone to missing the grasp, and (b) when the leg was too far from
the robot, it could not reach far enough to grasp the leg at the desired point near the center of
mass.

To address this problem, Niekum et al. use interactive corrections, which provide additional
training data to the model. ese corrections are provided by the user at the time of failure and are
treated as additional demonstrations that can be segmented, used to improve the structure of the
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Figure 5.2: From [194]: (a)–(f ) A kinesthetic demonstration of the table assembly task. (g) FSA
structure for the table assembly task from original demonstration data. (h) FSA structure with the
addition of data acquired through interactive correction.
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FSA, and provide additional examples of relevant primitives. Together, this allows for iterative,
incremental learning and improvement of a complex task from unsegmented demonstrations. For
table assembly, interactive corrections were provided to recover from the above listed contingen-
cies. In the first case, a re-grasp was demonstrated, and then the task was continued as usual.
In the second case, the robot was shown how to grasp the leg at a closer point, pull it towards
itself, and then re-grasp it at the desired location. After the interactive corrections were collected,
the old data was re-segmented with the two new corrections and used to re-build the FSA. Fig-
ure 5.2(h) shows the FSA that results from this process. Using this new FSA, the robot was able
to recover from both types of errors in novel situations.

5.4 LEARNINGTASKOBJECTIVES
An alternative to representing a task as a set of actions, is for the robot to infer the purpose behind
the observed behavior and model the task in term of its goals or objective. Modeling goals has
been explored in a number of programming by demonstration techniques [94, 260].

e work of Breazeal et al. [36], inspired by the goal-oriented nature of human learning,
takes this as the primary task in an LfD process. In this work, the robot is instructed through
speech commands on how to achieve a new task. e learning algorithm pays attention to what
actions the robot is asked to perform and infers goals for these actions by comparing the perceptual
state before and after the action.e algorithm expands a hypothesis space about this state-change
goal of all representations consistent with the current task example, i.e., expanding a version space
of the goal concepts consistent with the demonstration [41]. e result is a lattice of hypotheses
consistent with the positive examples, ordered from most specific to most general. Hypotheses are
eliminated as more examples of the concept are seen. e current best hypothesis is used for task
execution, and is selected by Bayesian likelihood, where the likelihood of each of the hypotheses
is calculated according to P.hjD/ / P.Djh/P.h/. e data,D, is the set of all examples seen for
the task. P.Djh/ is the percentage of the examples where the state change seen is consistent with
the goal representation in h. For priors, P.h/, the algorithm prefers a more specific hypothesis
over a more general one. For example, when a task is first learned, every hypothesis is equally
represented in the data, so the algorithm chooses the most specific representation for the next
execution. is same formulation of goal learning has been extended by Gray and Berlin to the
context of visual perspective taking [39], and by Chao et al. for the purpose of perceptual symbol
grounding [61].

In the context of Reinforcement Learning, the goal of the task is captured in the represen-
tation of the reward function. For example, the learner may receive a high reward for reaching
the target state or for maintaining a trajectory free of collisions. us, approaches that learn the
reward function from human demonstrations can be considered a form of goal learning. One
of the earliest works in which the reward was inferred from demonstration was by Atkeson and
Schaal [19], in which the robot infers the task model and reward function from demonstrations,
and then uses this information to derive a task policy for a pole-balancing task. In this algorithm,
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a specific reward function is not derived, instead greater reward is given for states similar to those
demonstrated by a human. In a similarly motivated approach, Guenter and Billard [105] present
an algorithm for learning motion trajectories in which greater reward is given to the robot for
similarity between the executed trajectory and the demonstration, and for achieving a position
close to the goal. Using this representation, the authors present an algorithm that enables the
robot to adapt to changes in the task, such as a new goal location or an obstacle in the robot’s
movement path, through the use of exploration and RL.

Konidaris et al. [144] incorporates goals in a different way by leveraging the options frame-
work, a hierarchical RL formalism [246]. e authors present CST, an online algorithm for con-
structing skill trees from demonstration trajectories. CST segments a demonstration trajectory
into a chain of component skills, where each skill has a goal and is assigned a suitable abstraction
from an abstraction library. ese properties permit skills to be improved efficiently using a policy
learning algorithm. Chains from multiple demonstration trajectories are merged into a skill tree.

In the above techniques, human demonstration influences the reward function, but is not
used to derive the reward function explicitly. e problem of deriving an explicit reward func-
tion from demonstration data is referred to as Inverse Reinforcement Learning (IRL) [189]. In
this paradigm, demonstrations observed by the learner are used to generate the reward function,
which is then used by the learner to construct its own policy and solve the target task. Abbeel
and Ng pioneered the use of IRL techniques in robotic application, demonstrating the use of this
technique first in simulation [3] and then in teaching autonomous helicopter flight [1, 2]. eir
work was extended in Kolter et al. [143] to consider the decomposition of task demonstration
into hierarchies. Syed et al. [247, 248] have explored this problem from a game-theoretic per-
spective, and proposed algorithms to learn from demonstration with provable guarantees on the
performance of the learner.

e work of Ramachandran and Amir [213] introduced Bayesian Inverse Reinforcement
Learning, in which IRL is cast as a Bayesian inference problem. Given a prior distribution over
possible target tasks, the algorithm uses the demonstration by the expert as evidence to compute
the posterior distribution over tasks and identify the target task. Lopes et al. [167] and Babes
et al. [21] improved on the computational complexity of this method by taking advantage of
the underlying IRL problem structure and gradient-based methods to determine the maximum
likelihood task representation. In two other closely related techniques, Ziebart et al. [272] and
Neu and Szepesvari [188] also present gradient based IRL methods.

Finally, a series of papers by Ratliff et al. [217] and Silver et al. [232] present the LEARCH
(LEArning to seaRCH) algorithm that uses demonstrations to infer the objective function that
is used to score potential future actions and derive optimal plans. For example, in an offroad au-
tonomous navigation domain, the user is able to draw a path on a map representing the desired
behavior, such as preferred terrain type. Maximum Margin Planning is then used to derive a cost
function that assigns values to states in a way that makes the demonstrated trajectory optimal.
is cost function can then be used with a wide variety of path planning algorithms, such as
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A*, to plan trajectories that imitate the teacher’s preferences in new locations. One limitation of
LEARCH is that by trying to imitate the teacher, the algorithm is limited by the quality of the
teacher’s demonstrations. Zucker and Bagnell [273] present an extension based on Reinforce-
ment Planning, which propagates the reward signal back through the controller and planner to
the parameters of the underlying cost function, this allowing the cost function to be improved
beyond the original teacher demonstration. In similarly motivated work, Ollis et al. [196] present
a Bayesian approach for calculating the terrain costs based on demonstrations.

5.5 LEARNINGTASKFEATURES
Correctly interpreting demonstrations is critical to the success of the above learning techniques,
which brings us to the problem of feature selection. Feature selection is the process of selecting
a subset of relevant features for use in model construction through elimination of redundant or
irrelevant features [106, 164]. Within LfD, the problem of feature selection has typically been
ignored under the assumption that the teacher or programmer has made the best selection of fea-
tures manually a priori. However, it is important to remember that in many target applications the
LfD end user is not expected to have sufficient technical knowledge to perform feature selection
accurately.

Cobo et al. [71] present Abstraction from Demonstration (AfD), an algorithm that learns a
policy for an MDP by building an abstract space S˛ and using RL to find an optimal policy that
can be represented in S˛. AfD obtains S˛ by selecting a subset of features from the original state
space S with which it can predict the action that a human teacher has taken in the set of demon-
strations. Learning in S˛ can be significantly more efficient than learning with the full feature set
because a linear reduction in the features leads to an exponential reduction in the size of the state
space. Additionally, the authors show that this use of naive human demonstrations for selecting
the feature space for RL is significantly more sample efficient than using the demonstrations for
supervised learning. Levine et al. propose an algorithm that selects relevant features to represent
the reward function in Inverse Reinforcement Learning by building logical conjunctions of the
features to the example policy [158].

In an idea that is complementary to feature selection, Meriçli et al. [176] contribute the
Multi-Resolution Task Execution algorithm. e authors present a general framework that em-
ploys a set of detail resolutions, in which each resolution has its own state and action represen-
tations, and an algorithm using these representations to perform the task. Over the course of a
training session, a teacher observes the robot executing the task using hand-coded algorithms,
and intervenes if the current algorithm needs a correction, or if the detail resolution in use is too
coarse to cope with the current situation. e robot learns a detail switching policy for deciding
which detail resolution to use in a particular state while also building up individual corrective
demonstration databases for the algorithms at each detail resolution. During the autonomous ex-
ecution of the task, the robot first chooses the most convenient detail resolution to run at, and
then computes the action to be performed in the perceived state at the selected detail resolution.
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Dong and Williams [84, 85] consider the problem of autonomously identifying what fea-
tures or relations, if any, are characteristic of a particular demonstrated motion. In this context,
the relevant motion variables are those that are preserved over different demonstrated trials of
that motion, while other motion variables may vary due to changes in the environment or the
human’s movement. For example, demonstrated sequences of the motion “move box to bin” will
show a pattern whereby the robot end effector starts at the location of the box, makes contact with
it, moves to the location of the bin, and breaks contact with the box. e system will learn that
the distance between the robot effector and the box is a relevant motion variable at the beginning
of the motion, and that the distance between the robot effector and the bin is a relevant motion
variable at the end of the motion. e system will also learn that the positions of any other objects
known in the environment are not relevant to this motion.

5.6 LEARNINGFRAMEOFREFERENCE

Related to the problem of feature selection is the problem of identifying the frame of reference.
Most physical actions are performed within a particular reference frame, and correctly inferring
that reference frame can help to understand the actions, their goals, and to generalize over ob-
served behavior. For example, the trajectory an arm follows while reaching towards several differ-
ent objects may be different, but significant similarities can be identified when the arm motion is
considered relative to the target object. Ideally, such analysis would enable the robot to identify
all of the above motions as belonging to the same class of behaviors.

Cederborg et al. [58] consider three possible reference frames in which a motion can be
performed: relative to the starting position, relative to the robot frame, and relative to an object
position. e desired velocity estimated at every state is the weighted sum of the desired velocities
in each reference frame, where the weights reflect how well the data trains in each frame. One
limitation of this representation is that each motion is restricted to exactly one of the reference
frames. As a result, it is not possible to model actions that span multiple reference frames within
a single model (e.g. picking up and moving an object to an absolute location). Niekum et al. [193]
similarly consider a single reference frame for each motion, determining the relevant reference
frame by clustering the end point of each motion within the candidate coordinate frames.

Dong and Williams [84, 85] present a more general model that enables different reference
frames to be applied to the beginning and end of the motion. Demonstrated motion trajectories
are segmented at a subset of time steps determined by the operator, and the learning algorithm
determines relevant motion variables at the endpoints of these segments, as discussed in the previ-
ous section. Typically, these are time points corresponding to a qualitative change in the behavior
of the task, such as the robot making or breaking contact with an object. For each of the contin-
uous, discrete, position, and orientation input variables of a demonstrated motion, the algorithm
considers up to five possible modes for candidate motion variables: absolute start, absolute end,
relative to initial, relative to object at start and relative to object at end (Figure 5.3). Cluster-
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relative to initial

Figure5.3: From [85]: Example illustration of five possible ways that motion variables can be relevant.
Arrows refer to the robot end effector trajectories.

ing is then applied to determine the correct reference frame for the beginning and end of each
trajectory.

5.7 LEARNINGOBJECTAFFORDANCES
Another line of work that can be put into the realm of high-level task knowledge is affordance
learning. Introduced as a concept by Gibson [96], affordances are properties of the environment
that afford a certain action to be performed by a human or an animal. e goal of affordance
learning is to build a model of the relation between objects in the world and the robot’s action
repertoire. Identifying object affordances enables the user to categorize objects by their function,
and thus this representation has been utilized in robotics as a compact and useful representation
for manipulation skills (e.g., Figure 5.4).

In many works the robot learns affordances from its own exploration by acting upon objects
in the environment and observing the reaction. In [92], a robot pushes, pokes, pulls, and grasps
objects with its end-effector, thereby learning about rolling, sliding, etc. One of the benefits of
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Figure 5.4: From [133]: Representing objects in terms of functionality and affordances. Top: Seman-
tic, appearance-based categories. Bottom: Functional, affordance-based categories.

learning through this type of interaction is that no correspondence problem is present, enabling
the robot to directly observe the effects of its own actions.

Affordances can also be learned from demonstrations by visually observing a human or
other robot making use of object affordances. omaz and Cakmak [47] compare learning of
object affordances in two settings, a social interaction that is structured by a human partner, and
a non-social setting in which the robot is presented with a systematic set of object configurations
to explore. e authors make six observations about how the social data set differs from the non-
social data set: people have a more balanced set of positive and negative examples; they intuitively
structure the environment with respect to complexity, both in number of examples per object and
order of examples; social data sets have a greater representation of rare affordances; and people’s
actions in the workspace can be used to infer action goals. Ultimately, the affordance classifiers
trained in the social setting were more effective at predicting rare affordances since people focused
on these, and they performed on par with non-social SVMs on the more common affordances.

Learning from observation of human actions has also be addressed in several other works.
In a series of papers by Lopes et al. [168, 169] and Montesano et al. [177], the authors present
techniques for affordance-based imitation learning for manipulation tasks. Affordances in this
framework are represented as Bayesian networks that encode the dependencies between actions,
object features and the effects of those actions. e learning of affordances with a Bayesian net-
work is performed in two phases. First the structure is learned using Markov Chain Monte Carlo,
and then the parameters of each node are estimated in a separate step. e resulting model can
then be used to interpret the effects of observed actions, as well as to predict the effects of the
robot’s own actions in terms of the world state. Alternate methods for learning objects affordances
for manipulation have also been presented. Aksoy et al. [6] introduce a representation of the rela-
tions between objects at decisive time points during a manipulation, providing the ability to en-
code the essential changes in a visual scenery in a condensed way such that a robot can recognize
and learn a manipulation without prior object knowledge. e presented algorithm continuously
tracks image segments in the video, constructs a dynamic graph sequence and stores topologi-
cal graph transitions within a matrix structure called a semantic event chain. Objects with similar
manipulation properties can then be recognized through sub-string search algorithms. Kjellström
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et al. [133] present an algorithm based on Conditional Random Fields [154] that enables ma-
nipulated objects and human manipulation actions to be categorized in the context of each other
by simultaneously identifying and classifying human hand actions and the objects involved in the
action.

In [263], Veloso et al. take a different approach to affordance learning, focusing on full-
body environmental interactions instead of simply object manipulation. e authors present the
FOCUS algorithm, which models inanimate objects in the environment by structural and func-
tional definitions. e structural part of the model aims at capturing a simple and generalized
visual definition of an object through robust feature detectors. e functional part of the model
captures the affordance properties of that object, such as the fact that chairs are for sitting. Objects
in the environment are recognized by associating an observed action with a particular environ-
mental feature. e classification of the object is dependent upon the specific activity for which
it is used by the person. As an example, if a robot equipped with the FOCUS algorithm observes
a human walk through a room and sit in a chair, then the visual features nearest to where the
human sat would fall under the classification of chair. In this case, a chair is anything that a hu-
man will sit upon. is classification of chair could very well be given to a small table, a couch,
or even a heat register if the human chose to sit upon it. e interesting aspect of this functional
view is that it can be rather robust to the specific environment conditions of the signal capture.
By connecting sitting with non-ambitious definition of a chair, the problem is converted mainly
into motion recognition and the robustness to the environment is achieved. By finding one object
in the image, we can then generalize and find multiple similar objects.

5.8 TECHNIQUES FORHANDLINGSUBOPTIMAL
DEMONSTRATIONS

Demonstration errors made by the user can be classified into one of three categories: (1) correct
but suboptimal (e.g. containing extra steps); (2) conflicting/inconsistent (e.g. sometimes the user
demonstrates to go left and sometimes right from the same state); and (3) entirely wrong (e.g.,
incorrect action selected). Techniques for improving on suboptimal demonstrations are the focus
of Chapter 6, where we present a variety of methods for improving the policy based on corrections
by the teacher or independent exploration by the robot. Conflicting and incorrect demonstrations
(categories 2 and 3) are often grouped together in the literature and simply referred to as “noisy
demonstration data.” However, some research suggests that making the distinction between these
categorizations can help to understand the cause of the noise, leading to improved learning meth-
ods.

In many domains, robots encounter equivalent action choices—situations in which multiple
actions are equivalently applicable. For example, a moving robot that encounters an obstacle di-
rectly in its path has the option of moving left or right to avoid it. If the space is empty, both
directions are equally valid for performing the desired task. Similar choices can arise in many
other situations, such as deciding among objects of equal value. Human demonstrators faced
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with a choice of equivalent actions typically do not perform demonstrations consistently, instead
selecting among the applicable actions arbitrarily each time the choice is encountered. As a re-
sult, training data obtained by the robot is conflicting, such that identical, or nearly identical,
states are associated with different actions. Distinguishing conflicting demonstrations from ran-
dom (or systematic) teacher error can enable the robot to correctly interpret the meaning of the
demonstrations—mainly that in this particular situations multiple actions are applicable. Cher-
nova and Veloso [67] present an algorithm for identifying regions of the state space in which
data from multiple classes overlaps as a result of inconsistent demonstrations. For these regions,
the authors make the assumption that a valid robot action can be selected at random among the
conflicting data classes. e choice between multiple actions is then modeled explicitly within
the robot’s action policy through Option Classes. is automated approach does not require the
teacher to predefine or demonstrate special choice actions, extending instead from the person’s
natural demonstration technique. A similarly motivated approach is also introduced by Butter-
field et al. [43] for real-valued demonstrations, in which the authors use a multi-valued function
regressor designed for time-series data to discover latent variables which represent hidden objec-
tives in the demonstrated data.

Techniques for handling simply noisy demonstrations are far more abundant, although
most approaches rely on the properties of the underlying machine learning technique for sim-
plicity. For example, an LfD technique that uses decision trees to learn the task policy inherently
adopts the decision tree’s ability to robustly handle noisy data. If sufficient demonstration data is
collected, statistical methods can also be used to filter out outliers prior to learning. An example of
this type of approach is presented by Breazeal et al. [38], in which data from hundreds of teachers
is analyzed to identify dominant patterns, which are then used to filter out noisy actions.

5.9 DISCUSSIONANDOPENCHALLENGES
As can be seen from the previous sections, task-level LfD has been explored not only through a
broad range of Machine Learning techniques, but also in the context of challenges such as feature
selection, goal extraction and affordance learning. In this section, we discuss a number of open
challenges that must be addressed in order to promote advances in this research area. We organize
our discussion around two themes: algorithmic advances and usability.

From the algorithmic perspective, many parallel advances are being made in learning from
different forms of human input, but most of the existing techniques in these areas have been
verified in single domains and in isolation. Integration of these ideas into a unified learning model
and more extensive testing with varied domains and real users is needed to gain understanding
of how learning can be scaled up to more complex domains. Among current methods, two areas
that are rarely addressed are techniques for learning tasks of increasing complexity based on skills
previously learnedwith LfD, as well as the use and learning of parametrized actions (e.g., pickup(x)
instead of separate pickupItem1 and pickupItem2 actions), which is critical for effective scalability
in learning.
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In conjunction with algorithmic development, greater focus needs to be placed on advanc-
ing the usability of LfD techniques. Human-robot interaction plays a central role in this research
area, and is critical to eventual successful deployment of LfD techniques in real world applica-
tions. From this perspective, many of the manual processes currently performed by developers will
need to become either automated or accessible to the target user. is includes processes such as
the selection of relevant features and parameter tuning for the underlying algorithm. Finally, it is
critical that the user be able to understand what the robot has learned and its degree of proficiency
at the task. Toward this end, more research needs to be conducted on transparency techniques
and ways to communicate the extent of the robot’s knowledge to the user.
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C H A P T E R 6

Refining a Learned Task
e teaching and learning processes of a situated learning interaction are tightly coupled, and a
good instructor is able to maintain a mental model of the learner (e.g., what is understood, what
remains unknown) in order to provide appropriate scaffolding to support the learner’s needs. Ex-
amples of scaffoldingmechanisms, introduced inChapter 2, include attention direction, feedback,
regulating the complexity of information, and guiding the learner’s exploration. In general, this
is a complex process where the teacher dynamically adjusts their support based on the learner’s
demonstrated skill level. e learner, in turn, helps the instructor by making their learning pro-
cess transparent through communicative acts, and by demonstrating their current knowledge and
mastery of the task.

Figure 6.1: is chapter addresses several ways in which a learned model can be refined and improved
interactively with the human teacher.

In this chapter, we discuss techniques for achieving tightly coupled interaction in LfD.
Having covered the individual pipeline components, we address the iterative nature of the LfD
process (Figure 6.1). First, we consider the difference between incremental versus batch LfD with
a human teacher. en we cover three different approaches to refinement: extensions to the RL
algorithm that incorporate human input, human-initiated corrective demonstrations and robot-
initiated Active Learning (AL) methods.

It is important to note that policy refinement does not require a human teacher. Refinement
of a policy (whether learned through demonstration or some other means) can also occur through
exploration and practice. A recent survey of the use of RL in robotics provides a summary of
such techniques [140]. As demonstrated by Pastor et al. [202], such methods can be particularly
powerful when training a task that humans find challenging themselves. In the sections below,
however, we focus our discussion specifically on methods that seek to further speed up learning
by integrating human input into the refinement process.
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6.1 BATCHVS. INCREMENTALLEARNING
We first consider the impact of performing learning as a batch versus an incremental learning
process. Within LfD, batch learning resembles much of traditional Machine Learning in which
the process of acquiring a dataset is independent of using the dataset to learn a model. In this
paradigm, the teacher demonstrates the task one or more times in order to record a dataset of
examples, and this data is then used to generate the learned policy. While interaction between the
teacher and robot does occur during the demonstration process, it is loosely coupled. Incremental
learning techniques interleave demonstrations and task execution, alternating between teacher
control (demonstrations) and autonomous control by the robot in a tightly coupled interaction.
e technique for determining how and when the switch of control is regulated lies at the heart
of such methods. Proposed methods have included enabling the teacher to observe autonomous
behavior and provide corrections for mistakes [14, 66, 102, 271], as well as querying mechanisms
that enable the robot to halt execution and request help [45, 66].

Given the choice of available batch and incremental learning algorithms, it is important to
consider the impact that a tightly vs. loosely coupled interaction has on the learning process. An
experiment by Zang et al. asked this question, and found that simply seeing an agent’s behavior
while it is learning significantly improves a human’s teaching demonstrations [271]. We detail
their experimental findings here as motivation for the need to consider refinement in an LfD
interaction.

e authors compared two teaching paradigms, interactive LfD and batch LfD, in an exper-
iment with a scaled down Pac-Man game (7x8 grid). e human teacher provides demonstrations
by playing the game, and the agent performs Q-Learning along the demonstrated trajectory to
build a policy. Half of the teachers in their experiment taught in batch mode, demonstrating 30
consecutive games. After the 30 demonstrations, the agent played 60 additional games to learn on
its own. us, the final policy is a result of learning from these 90 trajectories. e other half of
the teachers taught in interactive mode. ey first demonstrate 15 games, then the agent learned
on its own for another 30 games (this process was performed opaquely, with all animations show-
ing agent actions turned off). After this initial learning period, players were then allowed to see
the agent as it learned and explored on its own (i.e., they were able to watch the agent controlled
Pac-Man move around on the board). is continued for the remaining 45 games of the exper-
iment. Players were asked to watch agent play, and if they deemed necessary, provide corrective
demonstrations. To provide a corrective demonstration, they pause the game and rewind play to
an appropriate point from which to provide a demonstration of what Pac-Man should have done.
Players were allowed a maximum of 15 corrective demonstrations, thus the batch and interactive
modes both end up with 30 demonstrations from the teacher.

In analyzing the averaged learning curves for each of these two groups, Zang et al. report
that initially, batch and interactive performances were comparable. But around game 60, the in-
teractive group started outperforming batch with a statistically significant difference between the
groups, with that difference becoming more pronounced by the end of all 90 games.
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Next, Zang et al. show evidence that interactivity improves the teacher’s mental model of
the learner and encourages them to change their teaching strategy (i.e., give better demonstra-
tions) based on this. In exit interviews, 70 percent of interactive participants said they changed
their teaching strategy during the session. Empirically this can be seen by contrasting the teacher’s
demonstrations from the first fifteen games before they have a chance to see learner performance
with those used in the remaining teaching demonstrations. Looking at the policy difference be-
tween these, i.e., the shift in teaching strategy, shows a statistically significant difference for those
participants who said they changed policies over those who said they did not. In other words, par-
ticipants who said they changed policies actually did.

Moreover, the change was based (at least in part) on learner performance. Relative initial
performance of the agent was shown to predict the amount of policy change. And it was this
strategy change (at around game 60) that produced the jump in learning performance for the
interactive group. e adapted strategies accelerated the learning rate by causing low performing
teachers to give better demonstrations making their performance similar in the end to teachers
that gave good demonstrations from the beginning.

ese results provide concrete data to help guide practitioners on how best to obtain demon-
strations from non-expert humans for LfD applications. It highlights the importance of the
teacher having an accurate assessments and understanding of the learner in order to give good
demonstrations.

6.2 REINFORCEMENTLEARNINGBASEDMETHODS
One of the most common methods for refining a learned policy is through Reinforcement Learn-
ing. As noted earlier, RL can be used to refine an existing policy without human involvement by
learning directly from environmental reward and exploration. Details of different Reinforcement
Learning techniques can be found in surveys of the field [125, 140, 245]. In this section, we fo-
cus our discussion on techniques that integrate human input into the refinement process in an
attempt to further speed up learning over autonomous exploration methods.

In traditional RL, the reward function used to refine the policy through RL is hand-coded
by the developer. However, determining the reward values is a challenging process that requires
a lot of trial and error. ere are two ways to instead obtain the reward function from human
input. e first, is to derive the reward function directly from the demonstrations through inverse
optimal control methods. ese techniques were described in Section 5.4.

e secondmethod for integrating user input is a technique called interactive shaping, which
is defined as interactively training the learning agent by providing positive and negative reward
signals directly from the human. is technique assumes that a human trainer, who knows the
goals of the task, observes the robot’s actions and provides rewards that are positively correlated
with the trainer’s assessment of recent state-action pairs.

ere is an extensive body of work on shaping [33, 59, 120, 129, 134, 208, 226, 250]. Here,
we will explore this research area by studying the TAMER framework, shown in Figure 6.2, which
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Figure 6.2: Framework for Training an Agent Manually via Evaluative Reinforcement
(TAMER) [138].

was developed by Knox and Stone [134, 135, 138]. Within TAMER, the environmental reward
function R is removed from the task model, resulting in an MDP nR representation. Instead,
all reward comes from the human trainer, which is then modeled by the human reward function
ORH . Given the current state description, the agent’s goal is to choose the action that will receive
the most reward from the human. To do this, the agent uses ORH to greedily choose the action
that is expected to earn the most reward. After learning an accurate model of the human’s reward,
the agent can continue to perform the task in the absence of the human, choosing actions that are
predicted to maximize the received reward if the human were present. Note that the agent tries
to maximize immediate reward, not expected return (i.e. a discounted sum of all future reward),
under the assumption that the human trainer is already taking each action’s long-term implications
into account when providing feedback.

While the TAMER framework was originally applied in virtual worlds, recent work has
demonstrated its use for training physical robots. Figure 6.3 shows the results of a study in which
a mobile robot is taught to perform five interactive navigation behaviors: go to, keep conversa-
tional distance, look away, toy tantrum and magnetic control. On the left, the figure shows iconic
illustrations of the five behaviors performed relative to a training artifact located in the environ-
ment. On the right, are heat maps showing the reward model that was learned at the end of each
successful training session. e robot is shown as a transparent birds-eye rendering in each im-
age, positioned to face the top of the page. e map colors communicate the value of the reward
prediction for taking that action when the artifact is in the corresponding location relative to the
robot.

In this particular implementation of TAMER, the human reward function ORH is mod-
eled by the k-nearest neighbors algorithm, with a separate sub-model per action that estimates
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(a) (b)

Figure 6.3: (a) Iconic illustrations of the five interactive navigational behaviors. Each gray square
represents a category of state space. e arrow indicates the desired action in such state; lack of an
arrow corresponds to the stay action. (b) Heat maps showing the reward model that was learned at the
end of each successful training session. A legend indicating the mapping between colors and prediction
values for each behavior is given on the right.

the expected reward for performing the given action in the current state. During autonomous
execution, the robot selects the action with the highest expected reward. A key insight of the
TAMER framework is that the problem of credit assignment inherent in reinforcement learning
is no longer present with an attentive human trainer. e trainer can evaluate an action or short
sequence of actions, consider the long-term effects of each, and deliver positive or negative feed-
back within a small temporal window after the behavior. Assigning credit within that window
presents a unique challenge, in many domains the frequency of time steps is too high for human
trainers to respond to specific state-action pairs before the next one occurs. e Credit Assigner
module within TAMER addresses this problem by modeling the expected delay in receiving feed-
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back for a given state-action pair. In the case of the robot domain above, delay is modeled as a
Uniform(-0.8 s, -0.2 s) distribution, which rewards all state-action transitions that fall within that
temporal range.

Human input can also be used to modify the action selection mechanism of the Re-
inforcement Learning algorithm itself [69, 136, 137, 148, 170]. For example, omaz and
Breazeal [252, 253] combine environmental reward with human reward and a human guidance
input. A key insight of this work is that human teachers often use the reward mechanism to pro-
vide anticipatory reward, intended to represent future directed guidance for the learning agent, in
addition to providing the feedback for past actions. Reinforcement Learning is unable to interpret
reward as an anticipatory signal. As a result, the authors introduce guidance as a separate human
input that enables the human teacher to direct the action selection of the learner. eir result
show that this combined approach provides performances gains of up to 50% over a feedback-
only method. Originally demonstrated in simulation, this work was later extended to a physical
robot domain [242].

Another way to formulate LfD as an RL problem is for the teacher to perform demon-
strations of the correct actions instead of providing reward. ese demonstrations provide a good
baseline policy from which traditional RL can take over and improve on. A unique strength of
these techniques is that RL enables the learning robot to surpass the performance of the teacher,
which is particularly helpful when dealing with novice users or tasks in which human demon-
stration is suboptimal. Following this principle, Smart and Kaelbling [236] use demonstration
to highlight interesting areas of the state space in domains with sparse rewards. Teleoperation
is used to show the robot the reward states, eliminating the long periods of initial exploration
in which no reward feedback is acquired. Conn and Peters [74] similarly explore the use of RL
to learn an optimal path for navigation, using demonstrations acquired from a supervisor to bias
action selection.

Integrating elements of both reward and demonstration, the supervised actor-critic rein-
forcement learning algorithm [221] enables the teacher to influence the performance of the learner
through both reward and action demonstrations. Using reward feedback, the teacher is able to pe-
nalize negative and reinforce positive behavior, and action demonstrations are used to highlight
recommended actions and to suggest promising directions for state exploration. is technique
has been applied to a basic assembly task using a robotic manipulator.

As seen in the examples above, human input can be integrated into Reinforcement Learn-
ing in a variety of ways, ranging from demonstrations to reward feedback. is raises an important
question for this research area: What is the right level of human involvement? In addressing this,
it is useful to characterize the level of human interaction as a spectrum from shaping to explo-
ration. On the shaping end is a system that is completely dependent on a human instruction, and
on the exploration end is a system that learns through self exploration with limited input from
a human partner. In prior works that introduce a human to a machine learning process, we see
a dichotomy with respect to this spectrum with several approaches at either extreme. Addition-
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ally, the level of human interaction generally remains constant throughout the learning task. A
challenge for future work is to break this dichotomy and build interactive learning systems that
can effectively operate along the entire shaping-exploration spectrum, successfully incorporating
both self and social learning strategies within a single framework.

Finally, while our examples above have focused largely on high level learning domains, RL
has also been widely applied to refining low level motion trajectories.e survey of Reinforcement
Learning in Robotics by Kober et al. [139, 140] provides a detailed discussion of these methods.

6.3 CORRECTIVEREFINEMENTFROMTHETEACHER
In this sectionwe examine techniques for policy refinement that rely on corrective demonstrations.
In this context, we assume that the policy refinement process is controlled by the teacher; the
teacher observes robot task performance and provides corrections to identified mistakes. Letting
the teacher guide and control the policy refinement process is the most common way to improve
the performance of an existing policy. Techniques for controlling the flow of information include
placing the robot in a particular (often new) situation, providing more execution examples, and
providing critique. ese methods are in contrast to learner-guided refinement techniques, such
as Active Learning, which are discussed in the next section.

Corrections typically indicate a preferred state or action, and within the existing literature
corrections are most frequently provided within action spaces where the actions are discrete and
of significant time duration, and therefore allowing the user time to evaluate and respond to each
action choice. Nicolescu and Mataric [191] present a learning framework based on demonstra-
tion, generalization and teacher feedback, in which training is performed by having the robot
follow a human teacher and observe the teacher’s actions. A high-level task representation is then
constructed by analyzing the experience with respect to the robot’s underlying capabilities. e
correct action from a discrete set is provided by a human teacher. Lockerd and Breazeal [36, 165]
demonstrate a robotic system where high-level tasks are taught through social interaction. In this
framework, the teacher interacts with the robot through speech and visual inputs, and the learn-
ing robot expresses its internal state through emotive cues such as facial and body expressions
to help guide the teaching process. e outcome of the learning is a goal-oriented hierarchical
task model. Meriçli et al. [175] also enable the teacher to correct a task model through dialog.
Chernova and Veloso [66] introduce a mixed-initiative learning algorithm, Confidence-Based
Autonomy (CBA), which allows the teacher to additionally perform corrective demonstrations
when an incorrect action is selected by the robot. Inamura et al. [118] present a similarly motivated
method based on Bayesian Networks.

Correction methods for continuous trajectories have also been studied. Argall, Browning
and Veloso introduce a series of algorithms that build policies through a combination of demon-
stration and teacher feedback [15]. e algorithms Binary Critiquing and Advice-Operator Policy
Improvement use binary performance flags and corrective advice as feedback, respectively, to refine
motion control policies learned from demonstration. e algorithm Feedback for Policy Scaffold-
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ing uses multiple types of feedback to refine primitive motion policies learned from demonstra-
tion, and to scaffold them into complex behaviors. e algorithm Demonstration Weight Learning
treats different feedback types as distinct data sources, and through a performance-based weight-
ing scheme, combines data sources into a single policy able to accomplish a complex task. e
authors demonstrate the use of each of these four algorithms for robot navigation.

Finally, in providing feedback to the learner, the teacher must decide not only what infor-
mation to provide, but alsowhen, or for what states. Several approaches have explored techniques
for communicating the robot’s confidence in its task execution to the user in order to aid the user
in identifying problem areas. For example, Grollman and Jenkins present the Dogged Learning
algorithm [102], a confidence-based learning approach for teaching low-level robotic skills. In
this algorithm, the robot indicates to the teacher its certainty in performing various elements of
the task. e teacher may then choose to provide additional demonstrations based on this feed-
back.

6.4 ACTIVE LEARNING
One common assumption held by many demonstration learning approaches is that the teacher,
as an expert at the task, always knows when and which demonstrations are required to improve
robot performance based on observations of the robot’s behavior. However, the robot and teacher
represent knowledge in different ways. As a result, the teacher does not always know what addi-
tional information the robot requires. In some cases, the teacher is likely to perform redundant
demonstrations that provide little information for improving the policy [66].

In this section, we consider the robot as a more active participant that provides feedback
to the teacher about the learning process, indicating uncertainty or even asking questions about
the task. is approach forms a natural extension of demonstration learning as it builds upon an
existing interaction framework, while allowing the robot to help guide the learning process.

Within machine learning research, Active Learning [73] enables a learner to query an ex-
pert and obtain labels for unlabeled training examples. Aimed at domains in which a large quantity
of data is available but labeling is expensive, active learning directs the expert to label the more
informative examples with the goal of minimizing the number of queries. is is directly relevant
to the LfD problem—since getting demonstrations from a human teacher is inherently expensive,
we want to maximize the utility of demonstrations making the most efficient use of the human
teacher’s limited time. In this section we cover approaches for applying Active Learning in an
LfD setting.

As motivating evidence, the work of Chao et al. compared passive supervised learning to
active task learning and addresses the question of when to ask questions in a mixed-initiative
AL setting [45, 60]. ese works found that active learning outperformed passive supervised
learning, and users preferred AL (e.g., they thought the robot was more intelligent when it asked
questions). However, their experiments highlighted the need for understanding how to balance a
mixed initiative interaction, particularly how to determine when the robot should ask questions
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versus let the human provide any examples they like. Rosenthal et al. investigate how augmenting
questions with different types of additional information improves the accuracy of human teachers’
answers [222]. In later work, they explore the use of humans as information providers in a real-
world navigation scenario [223]. us we have evidence that designing robot learners that ask
questions is a good idea, but all questions are not equal since some will be more informative and
useful for the robot.

Inspired by these factors, Cakmak introduced embodied queries, a spectrum of three different
query types for robot active learners [44, 48]: label queries, demonstration queries, and feature
queries. We give a summary of each of these in the next three sections.

6.4.1 LABELQUERIES
e conventional query in the AL literature involves choosing an unlabeled instance and request-
ing a label for it, e.g. “What action should I perform here?” e instance can be chosen from a
pool of unlabeled instances or instantiated by the learner in some way. Such queries have been
used in learning skills on a robot, where a skill is represented as a policy that maps a state to a
discrete action. Chernova and Veloso introduce a classification-based technique that uses mea-
sures of similarity to past examples and classification confidence to determine when the robot
should act autonomously or stop to request a demonstration [66]. e demonstration is provided
in the modality of the original demonstrations for an action, in this case through a GUI. Lopes
et al. [167] introduce an active learning technique for inverse reinforcement learning, in which
the learner is able to query the demonstrator about the reward value of specific states.

Many robot skills involve continuous actions and the input from the teacher to the learner
is a sequence of state-action pairs (i.e. trajectories). In these cases it is impractical to ask for an
isolated state-action pair (e.g., asking for the motor commands of a given arm configuration),
Cakmak addresses this by having the robot execute an entire motion and ask whether the skill
was performed correctly. us, a label query on the entire demonstration, essentially asking the
teacher “Should I include this trajectory in my set of positive examples of this task?” Methods
for generating label queries depend on the particular framework used for representing the skill.
However, a general approach applicable to most frameworks is to sample trajectories from the
learned skill and evaluate them with a certain criterion. For instance, the robot can choose to
query the trajectory that it is least certain about or the trajectory that is most likely to increase the
applicability of the skill.

e information provided by this kind of query depends on the answer. If the response is
positive, then the motion can be used as another demonstration. What to do with negative exam-
ples is not as straightforward. LfD methods are designed to encode a skill from positive examples
only. e space of “what not to do” is so much larger that it is not typical to try to model the neg-
ative class explicitly. One way to make use of negative examples that arise from label queries, is
to update the learned model such that the probability of the negative data being generated by the
model is minimized while the probability of the positive data being generated is maximized. e
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main issue with this idea is the attribution of negativity to the whole trajectory, while only parts of
the trajectory might be responsible for the failure. A second approach for making use of negative
examples is to use them to guide the learner’s future queries towards positive examples. As an
example of this, Grollman and Billard explicitly make use of failed demonstrations by assuming
that they are likely to be a “near miss” [101]. By building a model of the failed demonstrations
their system can generate new exploratory trials in the neighborhood of this model but explicitly
not what the human showed. us the human’s failed demonstrations are a seed for the robot’s
exploration to build a successful model.

6.4.2 DEMONSTRATIONQUERIES
e second type of query in Cakmak’s framework is a demonstration query, where the robot finds
a configuration of the environment that its model does not cover, and asks for a demonstration
from here. ese are analogous to a method known as active class selection [166], which consist of
requesting an example from a certain class.

In demonstration queries, the learner only specifies certain constraints, while the trajectory
is still produced by the teacher. As a result, the learner has less control over what information
is acquired than in label queries. One way to constrain trajectories provided by the teacher is to
specify the starting state. Since trajectories are often represented with a sequence of end effector
configurations relative to a goal object frame, the robot can configure its end effector in a certain
way relative to the goal and request the demonstration. For example, in [100], the robot actively
selects points outside the region of stability of a learned policy, and requests demonstrations from
these states. A different way of constraining the demonstrations provided by the teacher is to
allow the teacher to control only a subset of the robot’s joints while the robot executes a certain
trajectory on the rest of the joints, as in [53].

6.4.3 FEATUREQUERIES
e final query type in Cakmak’s taxonomy is a feature query. In this query type, instead of
asking what to do, the robot asks about the variance or invariance of particular features of the
action (“is the location of X important in this situation?”). is is inspired from a technique in
AL that involves asking whether a feature is important or relevant for the target concept that is
being learned [87, 212], which has been successfully applied in document or email classification.
Whereas label queries would typically involve the teacher reading documents one by one and
providing category labels for them, which is cumbersome even in an AL setting, a feature query
directly asks whether a word is a strong indicator of a certain category. is allows the learner to
directly modify its model for categorizing new documents and drastically reduces the time spent
by the teacher.

e crucial element in the success of feature queries in these document text examples is
that the features (words) of each instance (document) are meaningful for humans, and the way
the features contribute to the classification problem is intuitive. Robot skill learning is in a unique
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Figure 6.4: Examples of label, demo, and feature queries [48].

position to take advantage of this method: while features might not be as human legible (i.e., fea-
ture names might be too technical and feature values might be arbitrary numbers) the robot’s
embodiment can be used to show the features instead of referring to them by name.

Methods for choosing feature queries are also dependent on the framework used for rep-
resenting and learning skills. One framework that allows feature queries to be directly integrated
is task space selection [124, 179]. is involves representing demonstrations in high dimensional
spaces that involve features that might or might not be relevant (e.g., relative position and orien-
tation of different points on the robot to different objects in the environment). Methods try to
identify a subspace or assign weights to each feature such that the skill is best represented. In this
context a feature query is to directly ask whether a feature is important for a skill. ese queries
can also be used for directly manipulating the skill representation or for guiding other queries.

Cakmak showed this in the context of a humanoid robot learning objectmanipulation skills,
where the underlying representation was analogous to a Gaussian Mixture Model [44]. In this
case, executing a feature query for the learned task involves generating a new skill trajectory that
perturbs a single dimension of one of the underlying Gaussian models in the skill. An interesting
aspect of this work was the use of the robot’s embodiment to show features rather than ask about
them. For example, in a pouring skill, the robot steps through the skill and stop at the point at
which it want to make a query, and then selecting the x-rotation as the dimension to query it
shows a range of values around the median value that its model would suggest while asking the
user “At this point in the skill, does this matter?” e alternative would be a question of the form:
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“At this point in the skill, does rotation about the x-axis matter?” us, making use of the robot’s
embodiment during the query can greatly improve the interaction.

6.5 SUMMARY
Our discussion of tightly coupled interactions within LfD brings us full circle by highlighting
the powerful role that the human teacher can play in robot learning. Very few of the algorithms
and approaches introduced in Chapters 4 and 5 have been utilized in an iterative or incremental
fashion, and even fewer with a social interaction with end-users in mind. Combining the ideas
presented in these three technical chapters offers some of the most promising areas of future work
for the design of LfD systems. Having covered the technical chapters of this book, we now go on
to present evaluation methods for interactive LfD studies.
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C H A P T E R 7

Designing and Evaluating an
LfD Study

So far in this book, Chapters 2–6 have walked through the entire LfD pipeline, surveying a variety
of state of the art algorithms, systems, and approaches. In this chapter, we turn the discussion to
the topic of evaluating such techniques. e chapter covers, very briefly, the general protocol for
conducting experiments with human subjects for the purpose of evaluating LfD systems. We step
through an example of designing, running, and analyzing an LfDHRI data collection experiment.
is is meant as a very introductory version of experimental design, assuming no background in
HCI or human factors, and focusing on the simplest type of study that one might run for LfD
evaluation. Our goal is to present a tutorial aimed at AI or Robotics researchers that want to begin
validating their systems with end-users. At the end of the chapter, we refer the interested reader
to additional resources that can provide more depth on the interesting complexities of conducting
HRI research. Our discussion will center on the following hypothetical scenario:

Researchers Sally and Bob have just completed the design and implementation of
their Amazing Task Learning (ATL) algorithm, which takes demonstration input as
teleoperated or kinesthetically provided experiences of the task. As the designers of
this algorithm, they have become expert demonstrators, and are able to achieve great
success with the ATL algorithm on the humanoid robot in their lab. Characterizing
the learning performance of the system with expert demonstrations is one type of
evaluation, and can be a nice way to systematically demonstrate various components
of the system or algorithm. In addition to this, they have decided to perform an HRI
study to see how ATL performs with people other than the designers in order to show
the generality of the approach.

7.1 EXPERIMENTALDESIGN

One of the main goals of an Human-Robot Interaction (HRI) study is to verify and validate the
performance of a designed robot system. e primary goal of fielding an interactive robot system
with people other than the system designers, is to be able to make claims about the generalization
of the designed interaction to the broader population. is is precisely the motivation for testing
LfD systems with an HRI study.
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While we will focus in this chapter on the specific LfD evaluation scenario described at
the beginning of this chapter, what we cover here is generally applicable to any experimental
design. e overall goal of our LfD experiment, and any experiment, is to understand and predict
the relationship between variables. And the goal of good experimental design is to isolate the
variables of interest such that we can draw concrete conclusions about their relationship. As such,
an experiment has two classes of variables.

• Independent Variables: e goal of a study is to test certain hypotheses about the relation-
ship between independent and dependent variables. e independent variables are aspects
of the experiment that the experimenter will purposely manipulate in order to test these
hypotheses. In the context of LfD, one example would be testing two different versions
of the ATL algorithm, or to test ATL versus some other baseline algorithm. In this case,
algorithm version is an independent variable the experimenter is manipulating.

• Dependent Variables: ese are aspects of the experiment that can be measured in order
to see the effects of the manipulation of the independent variable(s). e nature of the de-
pendent variables is related to what claims the researcher wants to make about the effects
of the independent variable. In general for LfD systems there are two classes of dependent
variables to consider. You will want to use standard Machine Learning metrics (e.g., conver-
gence rate, sample complexity, task performance) in order to make claims about how your
appropriately designed learning interactions result in learning performance gains. In addi-
tion to this, you may also want to use observation and survey methods to measure aspects of
the interaction itself, the human teacher’s behavior, and the teacher’s subjective perception
of the teaching/learning experience. More details about metrics are covered in the following
sections.

e first step in designing a study is to formulate the hypotheses in order to decide what
independent and dependent variables are necessary to address them. e hypotheses will be of
the form: “I expect that changing [insert independent variable] will have an impact on [insert
dependent variable]” For our ATL experiment, we are interested in having humans teach a robot
as it runs different interaction modes or different versions of a learning algorithm. is allows us
to draw conclusions about how the implemented changes impact the teaching/learning process.
For example:

H1: We expect that the ATL algorithm will have better learning performance than the Baseline,
in terms of learning rate and sample complexity.

H2: We expect that teachers will find kinesthetic teaching to be more satisfactory than teleop-
eration.

e type of the experiment can be described by the number and type of independent vari-
ables in the design, illustrated in Figure 7.1. Two group design: the simplest design is to have a



7.1. EXPERIMENTALDESIGN 67

Figure 7.1: e number and type of independent variables (IV) defines the experiment type.

single independent variable, testing two different conditions of this variable. For example, com-
paring the ATL algorithm (group A) to the Baseline algorithm (group B) yields a two-group
design. Multi-group design: the next level of complexity is to test several conditions of a single
independent variable. For example, testing four different parameter settings for the ATL algo-
rithm would be a multi-group design, one group (A, B, C, and D) for each manipulation of the
independent variable. Factorial design: if there are multiple independent variables that are manip-
ulated at once this is called a factorial design. is is necessary when the hypothesis is that there
is some interplay between the two manipulations. As an example, we may think that the expertise
level of the teacher (novice, expert) will impact their ability to use the ATL algorithm versus the
Baseline. So we have two levels of the expertise variable that we would like to test and two levels of
the ATL variable to test. is gives us a 2x2 design, yielding four experimental groups each with
a particular setting of the two independent variables (e.g., A: novice-ATL, B: novice-Baseline,
C: expert-ATL, D: expert-Baseline).

Given the design of the experimental conditions (or groups), the next question is how
participants will be assigned to those groups. One option is a between-subjects design. In this case
each participant in the experiment is assigned to only one of the experimental conditions (i.e, each
participant only does one of A, B, C, or D for any of the designs shown in Figure 7.1). e other
option is a within-subjects design, where each participant does all the experimental conditions
(e.g., in the two-group design, each participant does both A and B). A factorial experimental
design can also have amixed design, where one independent variable is assigned between-subjects
and another independent variable is assigned within-subjects. e choice of between vs. within
subjects design is going to depend on the particular experiment, domain, task, and measures. But
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the decision usually comes down to which choice will result in a better controlled experiment,
more on this later when we discuss experimental controls (Section 7.4).

7.2 EVALUATINGTHEALGORITHMICPERFORMANCE
Having determined the groups in the experiment, the next design question is how best to measure
the differences hypothesized between these groups. In this section, we discuss the use of standard
Machine Learning performance measures as dependent variables expected to reflect differences
across the experimental groups. In addition to this, one may want to claim something about the
interaction itself, to show a difference in teacher behavior across groups, or a difference in their
subjective account of the interaction. Techniques for measuring these changes are discussed in
the following section.

Differences in performance between different algorithms can be measured in a number of
ways. One of the most important considerations is the accuracy or success of the resulting be-
havior at the task being learned. Accuracy is reported as the proportion of actions that are correct;
its inverse, the error rate, reports the number of incorrect actions. Unfortunately, it is often dif-
ficult or impossible to measure the accuracy rate in robotic domains because the correct action
is not known for an arbitrary state. Consider, for example, teaching an autonomous helicopter
to perform aerial acrobatics. It is much easier to determine whether a particular maneuver has
succeeded than whether the correct control input was provided at every timestep of the trial. In
such cases, the success rate can be used to report the proportion of successful completions of the
target task.

In addition to measuring how well the learned model performs, it is important to compare
what it takes to achieve that level of performance. e primary measure of importance is the
number of training samples required for training. From a theoretical perspective, sample complexity
provides a high probability upper bound on the number of timesteps required by the algorithm
to learn the policy for tasks in some class. For algorithms that refine the policy over multiple
iterations, such as reinforcement learning, the convergence rate of an algorithm, averaged over
multiple runs, is often reported as an empirical estimate of sample complexity for a particular
domain.

Additionally, within the context of LfD, it is important to characterize the teacher’s input.
At the very least, results must report the number and type of interactions the teacher had with
the robot (e.g., number of demonstrations, number of corrections). If possible, the quality of the
demonstrations should also be measured. is can sometimes be done by measuing how well
the human teacher can perform the target task, how long the teacher takes to perform it, or
how consistent the demonstrations are from run to run. ese values provide insight into the
quantity and quality of teacher input required to train the algorithm in question, and the resulting
algorithmic performance. In the following section we now discuss techniques for evaluating the
interaction from the teacher’s perspective.
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7.3 EVALUATINGTHE INTERACTION
e options for measuring the interaction itself fall into two categories: subjective and objective.
Subjective measures are usually the first thing that comes to mind when one thinks of doing
experiments with human subjects. A common misconception with running an HRI study is that
it is sufficient to have a person complete some interaction with a robot and then give them a survey
to measure their subjective experience, hopefully seeing some difference in their answers across
the conditions. But it is important to not overlook the importance of supporting that claim with
objective measures.

As an example, the subjective measure of asking people “how frustrating” they found the
robot interaction can provide data to support a claim like: “our ATL Algorithm was significantly
less frustrating for the human teacher, compared to the Baseline Algorithm”. Now to support and
provide insight into this conclusion it is useful to also measure objective aspects of the interaction
that could point to why there was a difference in some subjective measure. Continuing the same
example, “We see that participants in the ATL condition had significantly fewer errors and com-
pleted the teaching task faster.” While the exact choice of metrics will depend on the particular
experiment and hypothesis, it is a good rule of thumb to include both subjective and objective
measures to support your claims. A 2006 survey of common metrics for HRI [240] provides a
useful overview of standard practices in the field.

7.3.1 SUBJECTIVEMEASURES
Subjectivemeasures include anymeasure in which you ask the participant to report their subjective
experience of the interaction. A common way to collect such data is in the form of a survey, where
participants answer questions about the interaction. Answers are usually in the form of a rating
scale (also called a Likert-scale [160]), or a forced choice between options. e most common
form of a Likert questionnaire item is a 5-point rating scale, where respondents indicate their
level of agreement or disagreement on a symmetric scale for a series of statements. For example,
the wording of a typical five-level Likert item could be:

1 - Strongly disagree
2 - Disagree
3 - Neither agree nor disagree
4 - Agree
5 - Strongly agree

Subjective measures in general are prone to various types of distortion. Some respondents
may avoid using the extreme response categories (known as a central tendency bias). Another type
of bias is the social desirability bias, where respondents may tend to try and portray themselves
or their organization in a favorable light. As an example in our HRI LfD setting, people may be
reluctant to make very negative comments about either ATL or the Baseline algorithm, making
it hard to draw strong conclusions about the comparison.
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Because of these issues with bias in subjective data, the precise wording of a survey question
is very important. Designing a good questionnaire that captures the desired dependent measures
is a research question in and of itself. us, in choosing subjective measures, whenever possible
one should try to reuse a questionnaire from related work that has been shown to be a reliable
measurement tool. Some examples include the following.

• Anxiety: e Negative Attitudes toward Robots Scale (NARS) has been put forward as a
tool for measuring people’s anxiety toward robots [195]. e test has been used several times
in HRI studies since its introduction in 2003 (e.g.,[22, 258]), and requires participants to
respond to statements such as “I would feel uneasy if I was given a job where I had to use
robots.”

• Task workload: NASA-TLX is a subjective workload assessment tool that allows developers
to perform subjective workload assessments on operator(s) working with various human-
machine systems [108]. NASA-TLX is a multi-dimensional rating procedure that derives
an overall workload score based on a weighted average of ratings on six subscales, which
include Mental Demands, Physical Demands, Temporal Demands, Own Performance, Ef-
fort, and Frustration. e test has been used in a wide range of robotic studies [86, 93, 238],
and includes questions such as “How hard did you have to work to accomplish your level of
performance?”

• Trust: e Working Alliance Inventory [112] is a questionnaire commonly used in ther-
apy and other helping relationships that tracks trust and belief in a common goal that the
therapist and patient have for one another. e form solicits responses to statements such
as “We are working towards mutually agreed upon goals.” e questionnaire has been used
to evaluate trust between the user and the robot in a variety of robotic and software agent
applications [28, 132]. A broader survey of techniques developed by varying disciplines for
measuring trust can be found in [266].

7.3.2 OBJECTIVEMEASURES
In an HRI setting we have the benefit that the robot is in a perfect position to log any number of
metrics about the interaction that can serve as dependent variables in the experiment. For exam-
ple: number of demonstrations provided, length of demonstrations, number of commands given,
number of queries generated by the robot, etc. Objective measures about the learning perfor-
mance are likely metrics to use, such as sample complexity and precision/accuracy of the learned
model over time if learning is occurring incrementally during the interaction. e great benefit of
these types of dependent variables is that they are easy to collect and non-intrusive, since it is just
part of the interaction itself. ese reflect the actual experience people had during the interaction,
not their self-reflection or interpretation of what happened, thus their behavior speaks for itself.
For example, on a survey people may be positive toward both ATL and the Baseline algorithm,
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but we may be able to show that ATL is better when you look at learning performance, sample
complexity, number of errors, etc.

If some behavioral measure of interest cannot be logged automatically during the interac-
tion, then another option is to record the interaction on video and have a third party observer
log the behavioral metric of interest by annotating the video (also called video coding). To do this
we first define the measured variable of interest and exactly how a person annotates it, this is the
coding protocol. For example, a person (coder) watches video of human and robot interacting and
marks the every time there is eye contact, or every time that the human talks to the robot, or
every time the human laughs. is is a common type of dependent measure in psychology and
linguistics research, hence various tools have been developed for aiding in the process of annotat-
ing video/audio, one example is ELAN.¹ Ideally, when using this type annotation as a dependent
variable, multiple coders would annotate the data. In this case it is important to confirm the reli-
ability of the coding process with the Cohen’s kappa coefficient, which measures the amount of
agreement between the coders in their annotation. In practice, having multiple people code the
entire dataset is quite costly. An alternative is to have a single coder for the entire dataset, but
confirm reliability by having multiple additional people code different small portions of the data
to assess agreement (via the Cohen’s kappa metric) and thus reliability. It is also typical to have
multiple people code different portions of the dataset that overlap slightly, and then the reliability
measure is calculated on these overlapping portions to confirm the reliability of the annotations.
For a detailed example of annotating behavior in video and performing statistical analysis see [78].

7.4 EXPERIMENTALCONTROLS
e researcher’s goal in designing a study is to be able to make conclusive statements about the
relationship between the studied variables. In particular, the experimental design sets up a very
specific claim to be made about how the independent variable(s) effect the dependent variables.
is kind of claim can only be made if a convincing argument can be made that the only thing
that distinguishes the different groups in the experiment is the manipulation of the independent
variable. Ideally, all other factors in an experiment will be controlled (accounted for by the control
measurements) and none will be uncontrolled, and the extent to which this is true strengthens
the claim that the independent variable is what causes some difference in a dependent measure.

e first set of controls to think about are the experiment task itself. Participants in each
group should be asked to do exactly the same thing in the same environment, with the only dif-
ference being the manipulation of the independent variable. For example, in our LfD experiment
the set of tasks that people teach the robot should be the same across experimental groups. e
experiment should take place in the same environment, with the same workspace setup.

One factor of the experimental task that is important to control, is the experimenter herself.
e experimenter will probably be required to give instructions to the participant about what to

¹http://tla.mpi.nl/tools/tla-tools/elan/ “ELAN is a professional tool for the creation of complex annotations on
video and audio resources”

http://tla.mpi.nl/tools/tla-tools/elan/
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do, or perhaps intervene at particular times in the experiment for one reason or another. It is
a good idea to write down a protocol for the experimenter to follow in each of these expected
interactions with the participant. is will help to ensure that every participant received the same
amount and type of instruction on the task, and that participants in one group were not biased in
some way by the experimenter.

Novelty effects can be particularly important for LfD and HRI. In many cases participants
may have never seen or interacted with a robot before. We don’t want the effects of this first inter-
action (so-called novelty effects) to completely overpower the manipulation of the independent
variable in our study. One common way to try and control for novelty effects or reduce their im-
pact on the experiment is to have a practice interaction with the robot. For example, in our ATL
experiment, we may have people teach the robot a simple practice task in order to familiarize
themselves with the robot, the workspace, and the general experimental protocol. e data from
this practice task would not be recorded or used in our analysis.

Controlling for practice and familiarity is essential in a within-subjects experimental design.
Remember that this means that a single participant will perform multiple experimental condi-
tions. In our two-group example, a within-subjects design means that each participant teaches
the robot with the ATL algorithm and also the Baseline algorithm. In this case our data would be
biased if the ATL or Baseline were always the first algorithm they interact with, since we would
expect their performance as a teacher to get better with each interaction/demonstration. is is
addressed by “counter balancing” the conditions in a within-subjects design, ensuring that each
ordering of conditions in the experiment is seen uniformly in the data. In our case, we would have
half of our participants teach with ATL first and Baseline second, and the other half would start
with Baseline first. If the effect of doing one condition before another will be too significant, this
is often a reason for deciding to use a between-subjects design. us, the between-subjects design
is controlling for the effect of familiarity with the experiment or the task.

Typically, the decision of between- or within-subjects is not clear cut, there is a choice to
make. Within-subjects design is preferred when possible, since it requires fewer participants to
collect the same amount of data. It also has the advantage that the variance due to individual
differences or natural dispositions is controlled across the groups, since each person (with their
individual differences) is contributing data to all of the experimental conditions. However, it is
not always possible to use a within-subjects design. One reason might be the familiarity effects
mentioned above. Another could be simply that asking each subject to complete all of the experi-
mental conditions may be too demanding. In this case, the effect of task fatigue that a participant
may have by the end of the study might impact the quality of the data. In a between-subjects
design, variations that cannot be controlled should be evenly distributed across the experimental
groups (e.g., controlling the distribution of factors like age, gender, etc.). With a large number of
participants, randomly assigning participants to experimental groups is the typical way to guar-
antee this distribution. With smaller numbers, then explicitly balancing the groups by gender, or
age group is appropriate.
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7.5 EXPERIMENTALPROTOCOL
Now that we have a nicely designed experiment, it’s time to run it! e first step is to apply for
ethical approval with our institution. For example, in the U.S. this is Institutional Review Board
(IRB) approval, and in the E.U. these are called Ethics Committees. is is required for any
experiments that involve human subjects. Apprehension about this institutional approval process
is probably the number one reason that we do not see more experiments with naïve subjects in
the LfD research community. So our goal is to dispel the myth that getting approval is hard. In
the appendix, we have included an example IRB protocol and consent form for a generic LfD
study. Of course the exact process depends on the particular institute, but given our collective
experience with IRB at three different U.S. academic institutions, we believe that a typical LfD
study is quite straightforward from an ethics approval perspective. ese experiments often fall
under the category of “minimal risk,” allowing the application to go through an expedited review
process instead of a detailed one.

Once approval is granted by the ethics committee, it is time to collect data. How to solicit
participation in the study will depend on the research community. In a university setting, it is
typical to advertise via posters, email and word of mouth to recruit students as participants. In a
corporate setting, there can be resources for recruiting focus groups from the local community.
However, people are recruited to participate in the experiment, it is important to keep in mind
the generality goal that we started with. If a study is conducted exclusively with robotics PhD
students, then this is the extent to which we can claim our approach generalizes. e fields of
both engineering and social science tend to suffer from this kind of convenience sampling (i.e.,
studying participants that are easy to recruit). Whereas if we explicitly recruit participants with
little to no experience programming robots or with little to no Machine Learning background,
then the claims about how our LfD system generalizes can be stronger. In general, if we recruit
a diverse group of participants from the target population, the claims of our HRI study can be
more broad.

e following are the detailed steps of running our experiment for a single participant.

1. Setup: Before the participant arrives, we set up the environment, workspace, and robot,
paying close attention to our controls and the experimental condition for this participant.

2. Introduction: We have written down the instructions we will read aloud to participants,
to help make sure to say the exact same thing to everyone. One could also decide to write
down instructions and just have people read them, but in our experience this tends not to
be as effective as talking through the instructions. After the explanation, we ask if they
have any questions and make sure that they are clear about the instructions before moving
on. If someone goes into the experiment with a misunderstanding, this would negatively
impact the validity of our experiment. So it is important to take the time to make sure they
understand.
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3. Informed consent: After we have given them all the necessary information to make the
informed decision to participate, we have the subject sign the consent form.

4. Collect pre-experiment measures: Any dependent measures that require pre- and post-
experiment measurement should be collected immediately prior to the interaction. For ex-
ample, with the subjective measures collected by questionnaire the hypotheses may require
administering the survey before and after the interaction, in order to compare differences.

5. Robot interaction: Next, the participant interacts with the robot according to our designed
experiment. Unless it is part of the study plan, we try to intervene as little as possible during
this data collection phase, so as not to introduce any bias. However, even if the experimenter
is diligent about not initiating any interaction with the participant, often the participantmay
turn to the experimenter to ask what they should do at some point. It is good to expect this
and plan for it. We try to either give everyone the same specific advice to particular questions
that come up often, or a generic response like “just do what you think is best, pretend I’m
not here and you’re teaching this robot on your own.”

6. Collect post-experiment measures: Immediately following the interaction, we administer
any post-experiment subjective measures.

7. Exit interview: After having run the planned experiment and collected all of the data, it is a
good idea to have an informal exit interview to debrief the participant. At the very least this
is the time to explain a little more about the hypothesis, and explain which experimental
condition they were in (if they only saw one). Additionally, this is a great opportunity to get
informal feedback about what they thought of the interaction with the robot, or how they
approached the task of demonstrating. Sometimes this informal feedback can have a huge
influence on directions for future work, even if it is not explicitly part of the results reported
for this experiment.

7.6 DATAANALYSIS
e final topic to address is techniques for drawing conclusions about the hypotheses given the
data now collected. e goal is to determine whether or not the dependent variables change
because of the independent variable(s).

7.6.1 CHOOSINGTHERIGHTSTATISTICALTOOL
ere are two general categories of techniques to use to look at the data: descriptive and inferential
techniques. e goal of descriptive techniques is essentially to provide a summary of the data. It can
be informative to look at the means and standard deviations of each continuous valued dependent
variable. Note that the mean is not what we want to consider for questionnaire data with a Likert
scale. In this case, the data are ordinal with an inherent ordering, but the difference between
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Table 7.1: Summary of the appropriate statistical inferential tools to use depending on experimental
design and the nature of the dependent measure

Parametric methods Non-parametric methods
2 groups Student’s t-test Mann-Whitney test (between-subjects)

Wilcoxon signed rank test (within-subjects)
3+ groups ANOVA test Kruskal-Wallis test

strongly disagree and disagree is not the same as the difference between neutral and agree, thus
an average is not meaningful in this context. A more meaningful descriptive statistic for this type
of data is the median value or the mode. It is a good practice to begin data analysis by looking at
descriptive statistics of the data before using any inferential techniques.

e goal of inferential techniques is to investigate the differences between the conditions
of the experiment. After plotting the means and standard deviations of the dependent measures
across the groups, hopefully we are able to see that the data seems to change depending on the
group. Inferential statistics are about determining whether or not this difference is significant
such that a concrete conclusion can be drawn.

While the particular statistical test to perform depends on the nature of the data and the
groups, the test for statistical significance is always set up in the same way. To show that there
is a significant difference between our experimental groups we prove that it is unlikely that the
data were all drawn from the same distribution. is allows us to conclude that in fact the groups
represent different distributions. us, the null hypothesis for an inferential test is: “all of my data
were drawn from a single source,” and if we can show that this is statistically unlikely, then we
can conclude that the data does indicate that our experimental groups are different. It is a proof
by contradiction. In the remainder of this section we will cover how to decide which method
is appropriate for particular data. We will not cover the details of particular methods here, but
instead refer to additional resources at the end of this chapter.

For dependent measures for which the underlying data is real-valued, we make use of para-
metric methods. ese methods look to model the distribution of the data (e.g., as a Gaussian
with parameters � and � ) and infer whether or not there are significant differences between the
distributions of data from the different conditions. e method to use depends on the number of
groups (see Table 7.1). It also depends on whether or not the samples were taken within group
or between group. When participants in the experiment contributed data for more than one ex-
perimental group, then data is said to have paired samples, i.e., there is a sample in group 1 and a
sample in group 2 that are related in that they were both collected from the same subject. In this
case, the paired samples version of the Student’s t-test and ANOVA test are appropriate.

When the underlying distribution of data for a dependent measure is not Gaussian (e.g.,
a measure that is ordinal/nominal, or when a discrete or continuous data violates assumptions of
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normality), then a nonparametric statistical method should be used. A common type of dependent
measure that requires this sort of analysis is the data from a Likert survey. As discussed previously,
the mean and standard deviation are not very meaningful for ordinal data. Instead we want to
investigate the differences between the medians of these data across the groups. e method is
different depending on the number of groups, and whether or not there are paired samples (see
Table 7.1).

7.6.2 DRAWINGCONCLUSIONS
e result of the inferential method will be a statistical value (e.g., the t in a t-test, or F in an
ANOVA) and the p-value. e value p is the significance level. It tells us whether or not we can
infer that there is a significant difference between our groups with respect to the dependent measure
in question. If so, it is valid to reject the null hypothesis, concluding that it is false. Actually a
low p-value means either that the null hypothesis is false, or that the null hypothesis is true and
a highly improbable event has occurred. e rule of thumb is that with a value of p < :05, it
is appropriate to conclude that the null hypothesis is false, that there is a significant difference
between your experimental groups. In system-evaluation studies, like the LfD HRI studies we are
describing here, “marginal effects” are also usually interesting and commonly reported as trends
for slightly larger p-values (p < :1).

is insight into what the test says about the null hypothesis is important, because it helps
us avoid a common mistake. It can be tempting to conclude that the null hypothesis is true when
p > :05. But this only makes sense in a world where there are only two alternatives, i.e, A W my
change to the independent variable caused a change in the dependent variable, B W my change
to the independent variable did not cause a change in the dependent variable. In reality, there
are several alternative hypotheses, therefore :A is not equivalent to B . Hence, if a test results in
p > :05 then the test is inconclusive about the null hypothesis. It does not allow one to conclude
there is a significant difference, but also does not allow a conclusion that the groups are similar.
A regression analysis, showing how factors across the groups are correlated, is one way to draw
conclusions about the similarities between experimental groups, details of regression analysis are
beyond the scope of this chapter but can be found in [16].

If a statistical test finds a significant difference across the experimental groups for a depen-
dent measure, this is called an “effect” of the independent variable. For example, in our two-group
study of the ATL vs. Baseline algorithm, say we find a significant difference between the groups
in the accuracy measure of the algorithm performance. en we can conclude that “the algorithm
version had an effect on learning performance, ATL was found to be significantly more accurate
than the Baseline.”

In a factorial design, with multiple independent variables, there are two different kinds of
effects to look for: main effects and interaction effects. Each of the independent variables has its
own main effect on the deponent measure in question, and then there can also be an interaction
effect between each of the independent variables. ese effects are best seen with an example.
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(a) (b)

Figure 7.2: Two different visualizations of example data from the four groups of the factorial design
in Figure 7.1: novice-ATL, novice-Baseline, expert-ATL, expert-Baseline. Plotted is the average for
each group for the dependent measure “accuracy of the learned model.” is data shows a main effect
for each independent variable as well as a crossover interaction effect between the two.

Consider our factorial design from Figure 7.1 with the two independent variables of algorithm
version (ATL, Baseline) and expertise (novice, expert). Assume that the recorded data, seen in
Figure 7.2, shows two different visualizations of the data from the four groups for the dependent
measure of the accuracy of the learned model. Looking at the bar graph in Figure 7.2(a), the main
effect of algorithm is shown by the fact that the two bars under ATL are higher on average than
the two bars for Baseline. Similarly, it looks like there is also a main effect for expertise, since the
average of the two expert bars is higher than the average of the novice. Interactions are effects
between the independent variables of a factorial experiment. If one independent variable depends
on the other there is an interaction effect, if one variable is the same regardless of the other then
there is no interaction. A particularly interesting interaction is the crossover interaction, where the
effect of one independent variable is reversed depending on the condition of the other independent
variable. As seen in Figure 7.2(b) this is what we have in our example data. e ATL algorithm
improves accuracy of the learned model over the Baseline for novice users, but not for experts.
ese three different effects for a 2x2 factorial design are three separate analyses and claims to be
made. A particular 2x2 experiment can result in any combination of these effects being significant
or not.

7.7 ADDITIONALRESOURCES
In this chapter, we have provided an overview of the most common methodologies for experi-
mental design and evaluation as related to LfD studies. is area is supported by a large body
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of literature that provides further details on related topics. Here we list several resources that are
particularly relevant to LfD study design.

• “An Introduction to Human Factors Engineering” by Wickens et al. [269] provides a
broader coverage of the experimental design considerations introduced in this chapter.

• Hornbaek [111] provides a similar introductory tutorial in the context of Human-
Computer Interaction experiments.

• For an in-depth explanation and derivation of the statistical analysis tools and techniques
suggested in this chapter, [16] is a good introductory text.

• Steinfeld et al. [239] survey common task-based metrics (dependent measures) seen in var-
ious HRI settings and tasks, from navigation to manipulation to social interaction.

• Olsen and Goodrich [197] provide a similar survey for the specific context of shared au-
tonomy, which is particularly relevant to a Learning from Demonstration scenario where
teleoperation and shared autonomy are a popular input device.

• Bethel et al. [27] provides a concise introduction to the use of physiological measures in
HRI studies with the goal of measuring a person’s response to the robot with which they
are working.
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C H A P T E R 8

Future Challenges and
Opportunities

With the aim of being forward looking, this book both reviews existing work in Learning from
Demonstration (LfD) and highlights future challenges. Each of the chapters of this book has
offered some suggestions for future research in the respective topics; in this chapter we discuss
three closely inter-related research directions that we consider major challenges for the field. We
also provide the interested reader with a list of additional reading resources related to LfD.

8.1 REALUSERS, REALTASKS

e first challenge area for the field of Learning from Demonstration is to incorporate more
development and evaluation with real users performing real-world tasks. Just as in many other
areas of robotics, LfD experiments are typically performed in constrained lab environments, often
with the algorithm’s developers standing in for the target population of end users. While this type
of testing is an important preliminary step, evaluation must also be carried out with external users,
preferably in environments that resemble the target use case.

Research has shown that LfD algorithms evaluated only with input from their developers,
without iterative testing with users, can fail to perform as expected in user trials [242]. Instead,
policies that might take under a minute to learn with a graduate student programmer for a teacher
become impossibly complicated due to the numerous errors made by a novice teacher, due to
misconceptions about the algorithm. Understanding the behavior of teachers and the types of
inputs they provide is critical to successful deployment of LfD techniques. is is exemplified
in a series of papers by omaz and Breazeal, in which the authors first conducted a study to
understand human behavior during teaching and then developed a learning algorithm that would
leverage the teachers’ natural behavior in the most effective way [252, 253]. More algorithms
aimed at real users is a challenge for the field.

Along these same lines, is the challenge of real tasks. A highlight in this area is the joint
work of Ratliff et al. [217] and Silver et al. [232], which demonstrated the use of LfD in con-
trolling an unmanned ground vehicle for navigation across highly complex off-road terrain. One
of the greatest barriers to working with complex domains and real users are the associated time
and effort demands on the developer. Emerging interactive technologies, such as remote robot
laboratories [199] and web-based frameworks for conducting HRI studies over the web [255],
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have the potential to lower these barriers by lowering the cost of conducting complex user studies
in the future.

8.2 HRI CONSIDERATIONS
Closely related to the above challenge is the issue of greater consideration of human-robot inter-
action factors within Learning from Demonstration. e vast majority of the research in LfD has
emerged from traditional Machine Learning approaches, focusing primarily on algorithmic per-
formance evaluated based on learning time, number of demonstrations and task accuracy. While
algorithmic performance is critical for the success of LfD, we argue that greater consideration
must be given to the usability of the developed techniques as the field matures. We hope that
HRI evaluation methods will see increased adoption within this research community in the com-
ing years, in addition to continued focus on learning performance measures and task outcomes.

8.3 ADVANCINGLEARNINGTHROUGHBENCHMARKING
AND INTEGRATION

Closely tied to the above evaluation methods is the issue of benchmarking and algorithm compar-
ison. Unlike many other areas of robotics and machine learning, Learning from Demonstration
as a field lacks standard data sets or domains that can be used to systematically evaluate the devel-
oped techniques. One of the reasons for this is the breadth of problems being considered under
the LfD umbrella, and the wide range of differing assumptions that algorithms operate under.
However, even if a common set of benchmark tasks could be defined, the more significant ob-
stacle is the reliance on diverse forms of human input, the need for which has precluded the
development of a standard testing procedure or domain. As a result, the vast majority of existing
techniques have been applied to only a single, often unique, domain. e open challenge that
remains for the field is how to effectively advance the state of the art to tackle more complex,
real world tasks. is includes challenges such as scaling to larger state spaces, integrating mul-
tiple skills learned from LfD into more complex behaviors and combining the individual pieces
currently being studied within the field, such as feature selection, active learning, goal learning
and various forms of user input. is topic continues to spark debate at symposia and workshop
gatherings, but no established solution currently exists of which we are aware.

8.4 OPPORTUNITIES
It is a very exciting time to be working in the field of Learning from Demonstration. ere is
currently a surge of interest in adaptive robots in real human environments, like the manufac-
turing setting (e.g., with robotics like Baxter from Rethink Robotics). Learning from end-users
is envisioned as the key to success in these domains. Similarly, the DARPA Robotics Challenge
exhibits the feasibility of really getting humanoid robots to operate in dynamic human environ-
ments someday soon, where there is an opportunity for LfD to have a great impact on the utility
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of these robots. And more generally, there is a recent run toward low-cost mobile manipulation
platforms that could very soon make working with real robots not be something that is reserved
for well-funded labs at research institutes and universities. Getting more robots in the hands of
more researchers will be an opportunity for many more people to get involved in the field of LfD
than ever before.

8.5 ADDITIONALRESOURCES
ere are a number of additional resources that readers may find useful and complementary to
the content of this book. e survey article by Argall et al. [12] presents a more concise review of
the field, includes a categorization that highlights differences between approaches, and seeks to
identify research areas within LfD that have not yet been explored. Billing and Hellström [32]
present a formalism for Learning from Demonstration focused on techniques in which the robot
is directly controlled during demonstration (e.g., teleoperation, kinesthetic teaching). e au-
thors present formalisms for concepts such as goal, generalization, and repetition, survey the use
of these concepts in the literature and describe them in the light of related concepts in machine
learning, planning theory, and psychology. e book Imitation in Animals and Artifacts [77] pro-
vides an interdisciplinary overview of research in imitation learning, covering leading work from
neuroscience, psychology, and linguistics as well as computer science. A narrower focus is pre-
sented in the chapter “Robot Programming by Demonstration” [31] within the bookHandbook of
Robotics. is work particularly highlights techniques which may augment or combine with tra-
ditional learning methods, such as giving the teacher an active role during learning. Additionally,
the first chapter of the book FromMotor Learning to Interaction Learning in Robots [231] presents
a detailed overview of imitation learning from two perspectives, the first coming from research in
biology and neurophysiology focused on the cognitive processes required for imitation, and the
second reviewing imitation in artificial systems and techniques for learning from demonstrations.
Finally, the book Robot Programming by Demonstration: A Probabilistic Approach [49] presents a
detailed overview of techniques for learning low-level motion trajectories from demonstration.





83

Bibliography

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning
to aerobatic helicopter flight. In Neural Information Proccessing (NIPS’07), 2007. 18, 19,
44

[2] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous Helicopter Aerobatics through Ap-
prenticeship Learning. e International Journal of Robotics Research, 29(13):1608–1639,
June 2010. DOI: 10.1177/0278364910371999. 26, 44

[3] P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the 21st International Conference on Machine Learning, 2004. DOI:
10.1145/1015330.1015430. 19, 44

[4] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine
learning, 6(1):37–66, 1991. DOI: 10.1023/A:1022689900470. 39

[5] B. Akgun, M. Cakmak, J. Yoo, and A. L. omaz. Trajectories and Keyframes for Kines-
thetic Teaching: A Human-Robot Interaction Perspective. In Proceedings of theInterna-
tional Conference on Human-Robot Interaction, 2012. DOI: 10.1145/2157689.2157815. 34

[6] E. E. Aksoy, a. Abramov, J. Dorr, K. Ning, B. Dellen, and F. Worgotter. Learning the
semantics of object-action relations by observation. e International Journal of Robotics
Research, 30(10):1229–1249, August 2011. DOI: 10.1177/0278364911410459. 48

[7] R. Aler, O. Garcia, and J. M. Valls. Correcting and improving imitation models of humans
for Robosoccer agents. Evolutionary Computation, 3(2-5):2402–2409, September 2005.
DOI: 10.1109/CEC.2005.1554994. 19

[8] Javier Almingol, Luis Montesano, and Manuel Lopes. Learning multiple behaviors from
unlabeled demonstrations in a latent controller space. In International Conference on Ma-
chine Learning, 2013. 29

[9] Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 2004. 38

[10] R Amit and Maja Mataric. Learning movement sequences from demonstration. In
ICDL ’02: Proceedings of the 2nd International Conference on Development and Learning,
page 203, Washington, DC, USA, 2002. IEEE Computer Society. DOI: 10.1109/DE-
VLRN.2002.1011867. 22

http://dx.doi.org/10.1177/0278364910371999
http://dx.doi.org/10.1145/1015330.1015430
http://dx.doi.org/10.1145/1015330.1015430
http://dx.doi.org/10.1023/A:1022689900470
http://dx.doi.org/10.1145/2157689.2157815
http://dx.doi.org/10.1177/0278364911410459
http://dx.doi.org/10.1109/CEC.2005.1554994
http://dx.doi.org/10.1109/DEVLRN.2002.1011867
http://dx.doi.org/10.1109/DEVLRN.2002.1011867


84 BIBLIOGRAPHY

[11] B. Argall, B. Browning, and M. Veloso. Learning from Demonstration with the Critique
of aHumanTeacher. In Second Annual Conference onHuman-Robot Interactions, Arlington,
Virginia, March 2007. DOI: 10.1145/1228716.1228725. 19

[12] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learn-
ing from demonstration. Robotics and Autonomous Systems, 57(5):469–483, 2009. DOI:
10.1016/j.robot.2008.10.024. 81

[13] B. D. Argall, E. L. Sauser, and A. G. Billard. Tactile Guidance for Policy Adapatation.
pages 79–133, 2010. 10, 19

[14] Brenna Argall and Aude Billard. Learning from Demonstration and Correction via Multi-
ple Modalities for a Humanoid Robot. In e International Conference SKILLS, volume 1,
2011. DOI: 10.1051/bioconf/20110100003. 10, 34, 54

[15] Brenna D. Argall. Learning Mobile Robot Motion Control from Demonstration and Correc-
tive Feedback. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, 2009. 59

[16] A. Aron, E. N. Aron, and E. J. Coups. Statistics for Psychology, 5th Ed. Pearson Prentice
Hall, New Jersey, 2009. 76, 78

[17] H. Asada. Teaching and learning of compliance using neural nets: representation
and generation of nonlinear compliance. In Robotics and Automation, 1990. Pro-
ceedings., 1990 IEEE International Conference on, pages 1237–1244 vol.2, 1990. DOI:
10.1109/ROBOT.1990.126167. 25, 26

[18] Tamim Asfour, Pedram Azad, Florian Gyarfas, and Rüdiger Dillmann. Imitation learning
of dual-arm manipulation tasks in humanoid robots. International Journal of Humanoid
Robotics, 5(02):183–202, 2008. DOI: 10.1142/S0219843608001431. 32

[19] C. G. Atkeson and S. Schaal. Learning Tasks From A Single Demonstration. In
IEEE International Conference on Robotics and Automation, number April, 1997. DOI:
10.1109/ROBOT.1997.614389. 43

[20] Christopher G Atkeson and Stefan Schaal. Robot learning from demonstration. In Dou-
glas H. Fisher, Jr., editor, Proc. 14th International Conference on Machine Learning, pages
12–20. Morgan Kaufmann, 1997. 28

[21] Monica Babes, Vukosi Marivate, Kaushik Subramanian, and Michael L Littman. Ap-
prenticeship learning about multiple intentions. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 897–904, 2011. 44

http://dx.doi.org/10.1145/1228716.1228725
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1051/bioconf/20110100003
http://dx.doi.org/10.1109/ROBOT.1990.126167
http://dx.doi.org/10.1109/ROBOT.1990.126167
http://dx.doi.org/10.1142/S0219843608001431
http://dx.doi.org/10.1109/ROBOT.1997.614389
http://dx.doi.org/10.1109/ROBOT.1997.614389


BIBLIOGRAPHY 85

[22] C. Bartneck, T. Suzuki, T. Kanda, and T. Nomura. e influence of people’s culture and
prior experiences with aibo on their attitude towards robots. AI and Society, 21(1):217–230,
2007. DOI: 10.1007/s00146-006-0052-7. 70

[23] R. Bellamy. Designing Educational Technology: Computer-Mediated Change. In
B Nardi, editor, Context and Consciousness: Activity eory and Human-Computer Inter-
action. MIT Press, Cambridge, MA, 1996. 11

[24] M. Bennewitz. Learning Motion Patterns of People for Compliant Robot Mo-
tion. e International Journal of Robotics Research, 24(1):31–48, January 2005. DOI:
10.1177/0278364904048962. 10

[25] D. C. Bentivegna, A. Ude, C. G. Atkeson, and G. Cheng. Humanoid Robot Learning and
Game Playing Using PC-Based Vision. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, Swiss Federal Institute of Technology Lausanne,
Switzerland, October 2002. DOI: 10.1109/IRDS.2002.1041635. 21, 22

[26] M. Berlin, C. Breazeal, and C. Chao. Spatial scaffolding cues for interactive robot
learning. In Proceedings of the23st Conference on Artificial Intelligence, 2008. DOI:
10.1109/IROS.2008.4651180. 10

[27] C.L. Bethel, J.L. Burke, R.R.Murphy, and K. Salomon. Psychophysiological experimental
design for use in human-robot interaction studies. In Proceedings of the International Sym-
posium onCollaborative Technologies and Systems, 2007. DOI: 10.1109/CTS.2007.4621744.
78

[28] T. W. Bickmore and R. W. Picard. Towards caring machines. In CHI’04 Extended
Abstracts on Human Factors in Computing Systems, pages 1489–1492. ACM, 2004. DOI:
10.1145/985921.986097. 70

[29] A. Billard, Y. Epars, G. Cheng, and S. Schaal. Discovering Imitation Strategies through
Categorization of Multi-Dimensional Data. In Proceedings of the 2003 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, Las Vegas, Nevada, October 2003.
DOI: 10.1109/IROS.2003.1249229. 22

[30] A. Billard andM.Mataric. LearningHumanArmMovements by Imitation: Evaluation of
Biologically Inspired Connectionist Architecture. Robotics and Autonomous Systems, 37(2-
3):145–160, November 2001. DOI: 10.1016/S0921-8890(01)00155-5. 22

[31] Aude Billard, Sylvain Callinon, Rudiger Dillmann, and Stefan Schaal. Robot program-
ming by demonstration. In B Siciliano and O Khatib, editors, Handbook of Robotics, chap-
ter 59. Springer, New York, NY, USA, 2008. DOI: 10.1007/978-3-540-30301-5. 81

http://dx.doi.org/10.1007/s00146-006-0052-7
http://dx.doi.org/10.1177/0278364904048962
http://dx.doi.org/10.1177/0278364904048962
http://dx.doi.org/10.1109/IRDS.2002.1041635
http://dx.doi.org/10.1109/IROS.2008.4651180
http://dx.doi.org/10.1109/IROS.2008.4651180
http://dx.doi.org/10.1109/CTS.2007.4621744
http://dx.doi.org/10.1145/985921.986097
http://dx.doi.org/10.1145/985921.986097
http://dx.doi.org/10.1109/IROS.2003.1249229
http://dx.doi.org/10.1016/S0921-8890(01)00155-5
http://dx.doi.org/10.1007/978-3-540-30301-5


86 BIBLIOGRAPHY

[32] Erik A Billing and omas Hellström. A formalism for learning from demonstration.
Paladyn. Journal of Behavioral Robotics, 1(1):1–13, 2010. DOI: 10.2478/s13230-010-0001-
5. 81

[33] B. Blumberg, M. Downie, Y. Ivanov, M. Berlin, M. P. Johnson, and B. Tomlinson. Inte-
grated learning for interactive synthetic characters. In Proceedings of theACM SIGGRAPH,
2002. DOI: 10.1145/566654.566597. 23, 55

[34] M. Bratman. Shared cooperative activity. ePhilosophical Review, 101(2):327–341, 1992.
DOI: 10.2307/2185537. 12

[35] C Breazeal. Designing Sociable Robots. MIT Press, Cambridge, MA, May 2002. 9

[36] C. Breazeal, A. Brooks, J. Gray, G. Hoffman, J. Lieberman, H. Lee, A. omaz, and
D. Mulanda. Tutelage and Collaboration for Humanoid Robots. International Journal of
Humanoid Robotics, 1(2), 2004. DOI: 10.1142/S0219843604000150. 20, 43, 59

[37] C. Breazeal, D. Buchsbaum, J. Grey, and B. Blumberg. Learning from and about others:
Toward using imitation to bootstrap the social competence of robots. Artificial Life, 11,
2005. DOI: 10.1162/1064546053278955. 22

[38] C. Breazeal, N. DePalma, J. Orkin, S. Chernova, and M. Jung. Crowdsourcing human-
robot interaction: New methods and system evaluation in a public environment. Journal of
Human-Robot Interaction, 2(1):82–111, 2013. DOI: 10.5898/JHRI.2.1.Breazeal. 39, 50

[39] C. Breazeal, J. Gray, and M. Berlin. An embodied cognition approach to mindread-
ing skills for socially intelligent robots. e International Journal of Robotics Research,
28(5):656–680, May 2009. DOI: 10.1177/0278364909102796. 43

[40] B. Browning, L. Xu, and M. Veloso. Skill acquisition and use for a dynamically-balancing
soccer robot. In Proceedings of NineteenthNational Conference on Artificial Intelligence, 2004.
19

[41] B. G. Buchanan and T. M. Mitchell. Model-directed learning of production rules. In
D. Watermah and F. Hayes-Roth, editors, Pattern-directed inference systems. Academic
Press, New York, 1978. 43

[42] R. R. Burton, J. S. Brown, and G. Fischer. Skiing as a model of instruction. In B Rogoff
and J Lave, editors, Everyday cognition: its development in social context. Harvard University
Press, Cambridge, MA, 1984. 10

[43] Jesse Butterfield, Sarah Osentoski, Graylin Jay, and Odest Chadwicke Jenkins. Learn-
ing from demonstration using a multi-valued function regressor for time-series data. In
Humanoid Robots (Humanoids), 2010 10th IEEE-RAS International Conference on, pages
328–333. IEEE, 2010. DOI: 10.1109/ICHR.2010.5686284. 50

http://dx.doi.org/10.2478/s13230-010-0001-5
http://dx.doi.org/10.2478/s13230-010-0001-5
http://dx.doi.org/10.1145/566654.566597
http://dx.doi.org/10.2307/2185537
http://dx.doi.org/10.1142/S0219843604000150
http://dx.doi.org/10.1162/1064546053278955
http://dx.doi.org/10.5898/JHRI.2.1.Breazeal
http://dx.doi.org/10.1177/0278364909102796
http://dx.doi.org/10.1109/ICHR.2010.5686284


BIBLIOGRAPHY 87

[44] M. Cakmak. Guided teaching interactions with robots: embodied queries and teaching
heuristics. Ph.D. thesis, Georgia Institute of Technology, 2012. 61, 63

[45] M. Cakmak, C. Chao, and A. L. omaz. Designing interactions for robot active learn-
ers. IEEE Transactions on Autonomous Mental Development, 2(2):108–118, 2010. DOI:
10.1109/TAMD.2010.2051030. 54, 60

[46] M. Cakmak, N. DePalma, R. Arriaga, and A. L. omaz. Social learning mechanisms for
robots. Autonomous Robots, 2010. DOI: 10.1007/s10514-010-9197-9. 8

[47] M. Cakmak and A. L. omaz. Learning about objects with human teachers.
In Proceedings of theInternational Conference on Human-Robot Interaction, 2009. DOI:
10.1145/1514095.1514101. 48

[48] M. Cakmak and A. L. omaz. Designing robot learners that ask good questions.
In Proceedings of theInternational Conference on Human-Robot Interaction, 2012. DOI:
10.1145/2157689.2157693. 61, 63

[49] S. Calinon. Robot Programming by Demonstration: A Probabilistic Approach. EPFL/CRC
Press, 2009. EPFLPress ISBN978-2-940222-31-5, CRCPress ISBN978-1-4398-0867-
2. 18, 81

[50] S. Calinon and A. Billard. Incremental learning of gestures by imitation in a humanoid
robot. In In Proc. of the ACM/IEEE International Conference on Human-Robot Interaction,
pages 255–262, 2007. DOI: 10.1145/1228716.1228751. 22

[51] S Calinon and A Billard. What is the teacher’s role in robot programming by demon-
stration? - Toward benchmarks for improved learning. Interaction Studies. Special Issue on
Psychological Benchmarks in Human-Robot Interaction, 8(3), 2007. 18, 20, 34

[52] S. Calinon and A. Billard. A probabilistic programming by demonstration framework
handling skill constraints in joint space and task space. In Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2008. DOI: 10.1109/IROS.2008.4650593. 34

[53] S. Calinon and A. Billard. Statistical learning by imitation of competing constraints
in joint space and task space. Advanced Robotics, 23(15):2059–2076, 2009. DOI:
10.1163/016918609X12529294461843. 26, 62

[54] S. Calinon, F. D’halluin, E.L. Sauser, D.G. Caldwell, and A.G. Billard. Learning and
reproduction of gestures by imitation. Robotics AutomationMagazine, IEEE, 17(2):44–54,
2010. DOI: 10.1109/MRA.2010.936947. 34

[55] S. Calinon, F. Guenter, and A. Billard. On learning, representing and generalizing a task
in a humanoid robot. IEEE Transactions on Systems, Man and Cybernetics, Part B. Special

http://dx.doi.org/10.1109/TAMD.2010.2051030
http://dx.doi.org/10.1109/TAMD.2010.2051030
http://dx.doi.org/10.1007/s10514-010-9197-9
http://dx.doi.org/10.1145/1514095.1514101
http://dx.doi.org/10.1145/1514095.1514101
http://dx.doi.org/10.1145/2157689.2157693
http://dx.doi.org/10.1145/2157689.2157693
http://dx.doi.org/10.1145/1228716.1228751
http://dx.doi.org/10.1109/IROS.2008.4650593
http://dx.doi.org/10.1163/016918609X12529294461843
http://dx.doi.org/10.1163/016918609X12529294461843
http://dx.doi.org/10.1109/MRA.2010.936947


88 BIBLIOGRAPHY

issue on robot learning by observation, demonstration and imitation, 37(2):286–298, 2007.
DOI: 10.1109/TSMCB.2006.886952. 33, 34

[56] J. Call and M. Carpenter. ree sources of information in social learning. In K. Daut-
enhahn and C.L. Nehaniv, editors, Imitation in animals and artifacts. MIT Press, 2002.
8

[57] C. Cazden. Performance before competence: Assistance to child in the ZPD. In M Cole,
Y Engeström, and O Vasquez, editors, Mind, Culture, and Activity: Seminal Papers from
the Laboratory of Comparative Human Cognition. Cambridge University Press, Cambridge,
1997. 11

[58] T. Cederborg, M. Li, A. Baranes, and P.-Y. Oudeyer. Incremental local online gaus-
sian mixture regression for imitation learning of multiple tasks. In Intelligent Robots and
Systems , 2010 IEEE/RSJ International Conference on, pages 267–274. IEEE, 2010. DOI:
10.1109/IROS.2010.5652040. 46

[59] H. S. Chang. Reinforcement learning with supervision by combining multiple learn-
ings and expert advices. In Proc. of the American Control Conference, 2006. DOI:
10.1109/ACC.2006.1657371. 55

[60] C. Chao, M. Cakmak, and A. L. omaz. Transparent active learning for robots.
In Autonomous Mental Development, special issue on Active Learning, 2010. DOI:
10.1145/1734454.1734562. 60

[61] C. Chao, M. Cakmak, and A. L. omaz. Towards grounding concepts for transfer in goal
learning from demonstration. In International Conference on Development and Learning,
2011. DOI: 10.1109/DEVLRN.2011.6037321. 43

[62] C. Chao and A. L. omaz. Timing in multimodal turn-taking interactions: Control and
analysis using timed Petri nets. International Journal of Human-Robot Interaction, 1(1):4–
25, 2012. DOI: 10.5898/JHRI.1.1.Chao. 7

[63] C. Chao and A. L. omaz. Controlling social dynamics with a parameterized model of
floor regulation. Journal of HumanRobot Interaction, 2013. DOI: 10.5898/JHRI.2.1.Chao.
7

[64] Jason Chen and Alex Zelinsky. Programing by demonstration: Coping with suboptimal
teaching actions. e International Journal of Robotics Research, 22(5):299–319, May 2003.
DOI: 10.1177/0278364903022005002. 19, 34

[65] N. Chentanez, A. G. Barto, and S. P. Singh. Intrinsically motivated reinforcement learn-
ing. In Advances in Neural Information Processing Systems, pages 1281–1288, 2004. DOI:
10.1007/978-3-642-32375-1_2. 8

http://dx.doi.org/10.1109/TSMCB.2006.886952
http://dx.doi.org/10.1109/IROS.2010.5652040
http://dx.doi.org/10.1109/IROS.2010.5652040
http://dx.doi.org/10.1109/ACC.2006.1657371
http://dx.doi.org/10.1109/ACC.2006.1657371
http://dx.doi.org/10.1145/1734454.1734562
http://dx.doi.org/10.1145/1734454.1734562
http://dx.doi.org/10.1109/DEVLRN.2011.6037321
http://dx.doi.org/10.5898/JHRI.1.1.Chao
http://dx.doi.org/10.5898/JHRI.2.1.Chao
http://dx.doi.org/10.1177/0278364903022005002
http://dx.doi.org/10.1007/978-3-642-32375-1_2
http://dx.doi.org/10.1007/978-3-642-32375-1_2


BIBLIOGRAPHY 89

[66] S. Chernova and M. Veloso. Interactive Policy Learning through Confidence-Based Au-
tonomy. Journal of Artificial Intelligence Research, 34, 2009. DOI: 10.1613/jair.2584. 19,
39, 54, 59, 60, 61

[67] Sonia Chernova and Manuela Veloso. Learning equivalent action choices from demon-
stration. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on, pages 1216–1221. IEEE, 2008. DOI: 10.1109/IROS.2008.4650995. 50

[68] Silvia Chiappa and Jan Peters. Movement extraction by detecting dynamics switches and
repetitions. Advances in Neural Information Processing Systems, 23:388–396, 2010. 29

[69] J. Clouse and P. Utgoff. A teaching method for reinforcement learning. In Proc. of the
Nineth International Conference on Machine Learning, pages 92–101, 1992. 23, 58

[70] J. A. Clouse. On integrating apprentice learning and reinforcement learning. Ph.D. thesis,
University of Massachisetts, Department of Computer Science, 1996. 19

[71] Luis C Cobo, Peng Zang, Charles L Isbell Jr, Andrea L omaz, and Charles L Isbell
Jr. Automatic state abstraction from demonstration. In Twenty-Second International Joint
Conference on Artificial Intelligence, pages 1243–1248. AAAI Press, 2009. 45

[72] P. R. Cohen, H. J. Levesque, J. H. T. Nunes, and S. L. Oviatt. Task-oriented dialogue as
a consequence of joint activity. In Proceedings of thePacific Rim International Conference on
Artificial Intelligence, Nagoya, Japan, November 1990. 11

[73] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research, 4:129–145, 1996. 60

[74] K. Conn and R. A. Peters. Reinforcement learning with a supervisor for a mobile
robot in a real-world environment. In Computational Intelligence in Robotics and Au-
tomation, 2007. CIRA 2007. International Symposium on, pages 73–78. IEEE, 2007. DOI:
10.1109/CIRA.2007.382878. 58

[75] C Crick, S Osentoski, G Jay, and O Jenkins. Human and robot perception in large-scale
learning from demonstration. In ACM/IEEE International Conference on Human-Robot
Interaction (HRI 2011), 2011. DOI: 10.1145/1957656.1957788. 38

[76] G. Csibra. Teleological and referential understanding of action in infancy. Phil. Trans. e
Royal Society of London, 358:447–458, 2003. DOI: 10.1098/rstb.2002.1235. 10

[77] K. Dautenhahn and C. L. Nehaniv, editors. Imitation in animals and artifacts. MIT Press,
Cambridge, MA, USA, 2002. 81

[78] K. Dautenhahn and I. Werry. A quantitative technique for analysing robot-human in-
teractions. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on,
volume 2, pages 1132–1138 vol.2, 2002. DOI: 10.1109/IRDS.2002.1043883. 71

http://dx.doi.org/10.1613/jair.2584
http://dx.doi.org/10.1109/IROS.2008.4650995
http://dx.doi.org/10.1109/CIRA.2007.382878
http://dx.doi.org/10.1109/CIRA.2007.382878
http://dx.doi.org/10.1145/1957656.1957788
http://dx.doi.org/10.1098/rstb.2002.1235
http://dx.doi.org/10.1109/IRDS.2002.1043883


90 BIBLIOGRAPHY

[79] M. P. Deisenroth, C. E. Rasmussen, and D. Fox. Learning to control a low-cost manip-
ulator using data-efficient reinforcement learning. In Robotics: Science & Systems, 2011.
22

[80] J. Demiris and G. Hayes. Imitation as a dual-route process featuring predictive and learn-
ing components: a biologically plausible computational model. In K Dautenhahn and C L
Nehaniv, editors, Imitation in Animals and Artifacts. MIT Press, Cambridge, 2002. 22

[81] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
pages 1–38, 1977. DOI: 10.2307/2984875. 31

[82] R Dillmann. Teaching and learning of robot tasks via observation of hu-
man performance. Robotics and Autonomous Systems, 47(2-3):109–116, 2004. DOI:
10.1016/j.robot.2004.03.005. 41

[83] K. R. Dixon. Predictive robot programming: eoretical and experimental analysis.
e International Journal of Robotics Research, 23(9):955–973, September 2004. DOI:
10.1177/0278364904044401. 34

[84] ShuonanDong and BrianWilliams. Motion learning in variable environments using prob-
abilistic flow tubes. In Robotics and Automation , 2011 IEEE International Conference on,
pages 1976–1981. IEEE, 2011. DOI: 10.1109/ICRA.2011.5980530. 46

[85] Shuonan Dong and Brian Williams. Learning and recognition of hybrid manipulation
motions in variable environments using probabilistic flow tubes. International Journal of
Social Robotics, 4(4):357–368, 2012. DOI: 10.1007/s12369-012-0155-x. 46, 47

[86] John V Draper and Linda M Blair. Workload, flow, and telepresence during teleopera-
tion. In Robotics and Automation, 1996. Proceedings. 1996 IEEE International Conference
on, volume 2, pages 1030–1035. IEEE, 1996. DOI: 10.1109/ROBOT.1996.506844. 70

[87] G. Druck, B. Settles, and A. McCallum. Active learning by labeling features. In In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages
81–90, 2009. 62

[88] B. Dufay and J.-C. Latombe. An approach to automatic robot programming based on
inductive learning. e International Journal of Robotics Research, 3(4):3–20, 1984. DOI:
10.1177/027836498400300401. 26

[89] Bruno Dufay and Jean-Claude Latombe. An approach to automatic robot programming
based on inductive learning. e International Journal of Robotics Research, 3(4):3–20, 1984.
DOI: 10.1177/027836498400300401. 25

http://dx.doi.org/10.2307/2984875
http://dx.doi.org/10.1016/j.robot.2004.03.005
http://dx.doi.org/10.1016/j.robot.2004.03.005
http://dx.doi.org/10.1177/0278364904044401
http://dx.doi.org/10.1177/0278364904044401
http://dx.doi.org/10.1109/ICRA.2011.5980530
http://dx.doi.org/10.1007/s12369-012-0155-x
http://dx.doi.org/10.1109/ROBOT.1996.506844
http://dx.doi.org/10.1177/027836498400300401
http://dx.doi.org/10.1177/027836498400300401
http://dx.doi.org/10.1177/027836498400300401


BIBLIOGRAPHY 91

[90] M Ehrenmann, R Zollner, O Rogalla, and R Dillmann. Programming service tasks in
household environments by human demonstration. In Robot and Human Interactive Com-
munication, 2002. Proceedings 11th IEEE International Workshop on, pages 460–467.
IEEE, 2002. DOI: 10.1109/ROMAN.2002.1045665. 41

[91] R. Evans. Varieties of Learning. In S Rabin, editor, AI Game ProgrammingWisdom, pages
567–578. Charles River Media, Hingham, MA, 2002. 23

[92] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning about objects
through action-initial steps towards artificial cognition. In Robotics and Automation, 2003.
Proceedings. ICRA’03. IEEE International Conference on, volume 3, pages 3140–3145.
IEEE, 2003. DOI: 10.1109/ROBOT.2003.1242073. 47

[93] Terrence Fong, Illah Nourbakhsh, Robert Ambrose, Reid Simmons, Alan Schultz, and
Jean Scholtz. e peer-to-peer human-robot interaction project. In AIAA Space, volume
2005, 2005. 70

[94] H. Friedrich, S.Münch, R.Dillmann, S. Bocionek, andM. Sassin. Robot programming by
demonstration (rpd): Supporting the induction by human interaction. Machine Learning,
23(2-3):163–189, 1996. DOI: 10.1007/BF00117443. 43

[95] A. Garland and N. Lesh. Learning hierarchical task models by demonstration. Technical
Report TR2003-01, Mitsubishi Electric Research Laboratories, 2003. 40

[96] J. J. Gibson. e Ecological Approach to Visual Perception. Routledge, 1986. 47

[97] A. Gopnik, D. Sobel, L. Schulz, and C. Glymour. Causal learning mechanisms in
very young children: Two, three, and four-year-olds infer causal relations from pat-
terns of variation and covariation. Developmental Psychology, 37(5):620–629, 2001. DOI:
10.1037/0012-1649.37.5.620. 12

[98] A. C. Graesser and N. K. Person. Question asking during tutoring. American Educational
Research Journal, 31(1):104–137, 1994. DOI: 10.3102/00028312031001104. 12

[99] P. M. Greenfield. eory of the teacher in learning activities of everyday life. In B Rogoff
and J Lave, editors, Everyday cognition: its development in social context. Harvard University
Press, Cambridge, MA, 1984. 7, 9

[100] EGribovskaya, FlorentD’Halluin, andAude Billard. An active learning interface for boot-
strapping robot’s generalization abilities in learning from demonstration. In RSSWorkshop
Towards Closing the Loop: Active Learning for Robotics, 2010. 62

[101] D. H. Grollman and A. G. Billard. Learning from failure. In Proceedings of the 6th Inter-
national Conference on Human-Robot Interaction, pages 145–146. ACM, 2011. 62

http://dx.doi.org/10.1109/ROMAN.2002.1045665
http://dx.doi.org/10.1109/ROBOT.2003.1242073
http://dx.doi.org/10.1007/BF00117443
http://dx.doi.org/10.1037/0012-1649.37.5.620
http://dx.doi.org/10.1037/0012-1649.37.5.620
http://dx.doi.org/10.3102/00028312031001104


92 BIBLIOGRAPHY

[102] D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In Proceedings of the
IEEE International Conference on Robotics and Automation, Roma, Italy, April 2007. DOI:
10.1109/ROBOT.2007.363692. 19, 24, 39, 54, 60

[103] Daniel H. Grollman and Aude G. Billard. Robot learning from failed demonstrations.
International Journal of Social Robotics, 4(4):331–342, June 2012. DOI: 10.1007/s12369-
012-0161-z. 35

[104] G. Z. Grudic and P. D. Lawrence. Human-to-robot skill transfer using the SPORE
approximation. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, Minneapolis, Minnnesota, April 1996. DOI: 10.1109/ROBOT.1996.509162.
24

[105] F. Guenter and A. G. Billard. Using reinforcement learning to adapt an imitation
task. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. DOI:
10.1109/IROS.2007.4399449. 44

[106] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. e
Journal of Machine Learning Research, 3:1157–1182, 2003. 45

[107] P. Hakkarainen. Play and motivation. In Y. Engeström, R. Miettinen, and R-L.
Punamäki, editors, Perspectives on Activity eory. Cambridge University Press, Cam-
bridge, MA, 1996. 7

[108] SandraGHart and Lowell E Staveland. Development of nasa-tlx (task load index): Results
of empirical and theoretical research. HumanMental Workload, 1(3):139–183, 1988. DOI:
10.1016/S0166-4115(08)62386-9. 70

[109] G. Hayes and J. Demiris. A Robot Controller Using Learning by Imitation. In Proceedings
of the 2nd International Symposium on Intelligent Robotic Systems, Grenoble, France, July
1994. 20

[110] A. Holroyd, C. Rich, C. Sidner, and B. Ponsler. Generating connection events for
human-robot collaboration. In Proceedings of the IEEE International Symposium on
Robot and Human Interactive Communication, pages 241–246, 2011. DOI: 10.1109/RO-
MAN.2011.6005245. 7

[111] K. Hornbaek. Some whys and hows of experiments in human-computer interac-
tion. Foundations and Trends in Human-Computer Interaction, 5(4):299–373, 2011. DOI:
10.1561/1100000043. 78

[112] A. O. Horvath and L. S. Greenberg. Development and validation of the working al-
liance inventory. Journal of Counseling Psychology, 36(2):223, 1989. DOI: 10.1037/0022-
0167.36.2.223. 70

http://dx.doi.org/10.1109/ROBOT.2007.363692
http://dx.doi.org/10.1109/ROBOT.2007.363692
http://dx.doi.org/10.1007/s12369-012-0161-z
http://dx.doi.org/10.1007/s12369-012-0161-z
http://dx.doi.org/10.1109/ROBOT.1996.509162
http://dx.doi.org/10.1109/IROS.2007.4399449
http://dx.doi.org/10.1109/IROS.2007.4399449
http://dx.doi.org/10.1016/S0166-4115(08)62386-9
http://dx.doi.org/10.1016/S0166-4115(08)62386-9
http://dx.doi.org/10.1109/ROMAN.2011.6005245
http://dx.doi.org/10.1109/ROMAN.2011.6005245
http://dx.doi.org/10.1561/1100000043
http://dx.doi.org/10.1561/1100000043
http://dx.doi.org/10.1037/0022-0167.36.2.223
http://dx.doi.org/10.1037/0022-0167.36.2.223


BIBLIOGRAPHY 93

[113] G. Hovland, P. Sikka, and B. McCarragher. Skill acquisition from human demonstration
using a hidden markov model. In IEEE International Conference on Robotics and Automa-
tion, 1996. DOI: 10.1109/ROBOT.1996.506571. 26

[114] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmicmovements by demonstration
using nonlinear oscillators. In Proceedings of the IEEE/RSJ Int. Conference on Intelligent
Robots and Systems, 2002. DOI: 10.1109/IRDS.2002.1041514. 21, 27

[115] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In Proceedings of the IEEE International Conference onRobotics
and Automation, 2002. DOI: 10.1109/ROBOT.2002.1014739. 21

[116] Katsushi Ikeuchi. Assembly plan from observation. In Electronic Manufacturing Technol-
ogy Symposium, 1995, Proceedings of 1995 Japan International, 18th IEEE/CPMT Interna-
tional, pages 9–12. IEEE, 1995. 40

[117] M. Imai, T. Kanda, T. Ono, H. Ishiguro, and K. Mase. Robot mediated round table:
Analysis of the effect of robot’s gaze. In Proceedings. 11th IEEE International Workshop on
Robot and Human Interactive Communication, pages 411–416, 2002. DOI: 10.1109/RO-
MAN.2002.1045657. 10

[118] T. Inamura, M. Inaba, and H. Inoue. Acquisition of probabilistic behavior decision model
based on the interactive teaching method. In Proceedings of the Ninth International Con-
ference on Advanced Robotics, pages 523–528, 1999. 19, 39, 59

[119] C. Isbell, C. Shelton, M. Kearns, S. Singh, and P. Stone. Cobot: A social reinforcement
learning agent. 5th International Conference on Autonomous Agents, 2001. 23

[120] C. L. Isbell, C. Shelton,M.Kearns, S. Singh, and P. Stone. A social reinforcement learning
agent. In Proc. of the 19th AAAI Conference on Artificial Intelligence, pages 377–384, 2001.
55

[121] D. Blank J. B. Marshall and L. Meeden. An emergent framework for self-motivation in
developmental robotics. In International Conference on Development and Learning, pages
104–111, 2004. 8

[122] O. C. Jenkins and M. Matarić. Deriving action and behavior primitives from human
motion data. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2551–2556, 2002. DOI: 10.1109/IRDS.2002.1041654. 22, 26

[123] Odest Chadwicke Jenkins and Maja J Matarić. Performance-derived behavior vocabu-
laries: Data-driven acquisition of skills from motion. International Journal of Humanoid
Robotics, 2004. DOI: 10.1142/S0219843604000186. 22

http://dx.doi.org/10.1109/ROBOT.1996.506571
http://dx.doi.org/10.1109/IRDS.2002.1041514
http://dx.doi.org/10.1109/ROBOT.2002.1014739
http://dx.doi.org/10.1109/ROMAN.2002.1045657
http://dx.doi.org/10.1109/ROMAN.2002.1045657
http://dx.doi.org/10.1109/IRDS.2002.1041654
http://dx.doi.org/10.1142/S0219843604000186


94 BIBLIOGRAPHY

[124] Nikolay Jetchev and Marc Toussaint. Task space retrieval using inverse feedback control.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
449–456, 2011. 63

[125] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learn-
ing: A survey. arXiv preprint cs/9605103, 1996. 55

[126] M. Kaiser, H. Friedrich, and R. Dillmann. Obtaining good performance from a bad
teacher. In Programming by Demonstration vs. Learning from Examples Workshop atML’95,
1995. 34

[127] T. Kanda, H. Ishiguro, M. Imai, and T. Ono. Body movement analysis of human-robot
interaction. pages 177–182, August 2003. 10

[128] T. Kanda, H. Ishiguro, M. Imai, and T. Ono. Development and evaluation of interactive
humanoid robots. In Proceedings of the IEEE, volume 92, pages 1839–1850, 2004. DOI:
10.1109/JPROC.2004.835359. 7

[129] F. Kaplan, P.-Y. Oudeyer, E. Kubinyi, and A. Miklosi. Robotic clicker training. Robotics
and Autonomous Systems, 38(3-4):197–206, 2002. DOI: 10.1016/S0921-8890(02)00168-
9. 10, 23, 55

[130] K. Kaye. Infant’s effects upon their mothers’ teaching strategies. In J Glidewell, editor,
e Social Context of Learning and Development. Gardner Press, New York, 1977. 7

[131] S. M. Khansari-Zadeh and A. Billard. Learning stable non-linear dynamical sys-
tems with Gaussian mixture models. IEEE Transaction on Robotics, 2011. DOI:
10.1109/TRO.2011.2159412. 34

[132] C. D. Kidd and C. Breazeal. Robots at home: Understanding long-term human-robot
interaction. In Intelligent Robots and Systems, pages 3230–3235. IEEE, 2008. DOI:
10.1109/IROS.2008.4651113. 70

[133] Hedvig Kjellström, Javier Romero, and Danica Kragić. Visual object-action recognition:
Inferring object affordances from human demonstration. Computer Vision and Image Un-
derstanding, 115(1):81–90, 2011. DOI: 10.1016/j.cviu.2010.08.002. 48, 49

[134] W. B. Knox and P. Stone. Tamer: Training an agent manually via evaluative reinforcement.
In Proc. of the 7th IEEE International Conference on Development and Learning, pages 292–
297, 2008. 55, 56

[135] W. B. Knox and P. Stone. Interactively shaping agents via human reinforcement:e tamer
framework. In e Fifth International Conference on Knowledge Capture, September 2009.
DOI: 10.1145/1597735.1597738. 23, 56

http://dx.doi.org/10.1109/JPROC.2004.835359
http://dx.doi.org/10.1109/JPROC.2004.835359
http://dx.doi.org/10.1016/S0921-8890(02)00168-9
http://dx.doi.org/10.1016/S0921-8890(02)00168-9
http://dx.doi.org/10.1109/TRO.2011.2159412
http://dx.doi.org/10.1109/TRO.2011.2159412
http://dx.doi.org/10.1109/IROS.2008.4651113
http://dx.doi.org/10.1109/IROS.2008.4651113
http://dx.doi.org/10.1016/j.cviu.2010.08.002
http://dx.doi.org/10.1145/1597735.1597738


BIBLIOGRAPHY 95

[136] W. B. Knox and P. Stone. Combining manual feedback with subsequent mdp reward sig-
nals for reinforcement learning. In Proc. of the 9th International Conference on Autonomous
Agents and Multiagent Systems, pages 5–12, 2010. DOI: 10.1145/1838206.1838208. 58

[137] W. B. Knox and P. Stone. Reinforcement learning from simultaneous human and mdp
reward. In Proc. of the 11th International Conference on Autonomous Agents and Multiagent
Systems, pages 475–482, 2012. 58

[138] W. B. Knox, P. Stone, and C. Breazeal. Training a robot via human feedback: A case
study. In International Conference on Social Robotics, pages 460–470. Springer, 2013. DOI:
10.1007/978-3-319-02675-6_46. 23, 56

[139] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A sur-
vey. e International Journal of Robotics Research, 32(11):1238–1274, 2013. DOI:
10.1177/0278364913495721. 59

[140] J. Kober and J. Peters. Reinforcement learning in robotics: A survey. In Reinforcement
Learning, pages 579–610. Springer, 2012. DOI: 10.1007/978-3-642-27645-3_18. 53, 55,
59

[141] J. Koenemann, F. Burget, and M. Bennewitz. Real-time imitation of human whole-body
motions by humanoids. In Proc. of the IEEE International Conference on Robotics & Au-
tomation (ICRA), 2014. 19, 20

[142] Jens Kohlmorgen and Steven Lemm. An on-line method for segmentation and identi-
fication of non-stationary time series. In Neural Networks for Signal Processing XI, 2001.
Proceedings of the 2001 IEEE Signal Processing Society Workshop, pages 113–122. IEEE,
2001. DOI: 10.1109/NNSP.2001.943116. 31

[143] J Zico Kolter, Pieter Abbeel, and Andrew Y Ng. Hierarchical apprenticeship learning with
application to quadruped locomotion. Advances in Neural Information Processing Systems,
20:769–776, 2008. 21, 44

[144] George Konidaris, Scott Kuindersma, Roderic Grupen, and Andrew Barto. Robot learn-
ing from demonstration by constructing skill trees. e International Journal of Robotics
Research, 31(3):360–375, December 2011. DOI: 10.1177/0278364911428653. 44

[145] P Kormushev, S Calinon, and D G Caldwell. Robot Motor Skill Coordination with EM-
based Reinforcement Learning. In Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010. DOI: 10.1109/IROS.2010.5649089. 26

[146] Sotiris B Kotsiantis, ID Zaharakis, and PE Pintelas. Supervised machine learning: A review
of classification techniques. 2007. 38

http://dx.doi.org/10.1145/1838206.1838208
http://dx.doi.org/10.1007/978-3-319-02675-6_46
http://dx.doi.org/10.1007/978-3-319-02675-6_46
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1007/978-3-642-27645-3_18
http://dx.doi.org/10.1109/NNSP.2001.943116
http://dx.doi.org/10.1177/0278364911428653
http://dx.doi.org/10.1109/IROS.2010.5649089


96 BIBLIOGRAPHY

[147] V. Kruger, D. Herzog, S. Baby, A. Ude, and D. Kragic. Learning actions from
observations. Robotics & Automation Magazine, IEEE, 17(2):30–43, 2010. DOI:
10.1109/MRA.2010.936961. 32

[148] G. Kuhlmann, P. Stone, R. J. Mooney, and J. W. Shavlik. Guiding a reinforcement learner
with natural language advice: Initial results in roboCup soccer. In Proceedings of theAAAI-
2004Workshop on Supervisory Control of Learning and Adaptive Systems, San Jose, CA, July
2004. 23, 58

[149] D. Kulic, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura. Incremental learning of
full body motion primitives and their sequencing through human motion observation.
e International Journal of Robotics Research, 31(3):330–345, November 2011. DOI:
10.1109/ICHR.2008.4756000. 31, 32

[150] D. Kulic, W. Takano, and Y. Nakamura. Incremental learning, clustering and
hierarchy formation of whole body motion patterns using adaptive hidden markov
chains. International Journal of Robotics Research, 27(7):761–784, July 2008. DOI:
10.1177/0278364908091153. 31, 32

[151] Dana Kulic, Wataru Takano, and Yoshihiko Nakamura. Online segmentation and cluster-
ing from continuous observation of whole body motions. IEEE Transactions on Robotics,
25(5):641–647, 2009. DOI: 10.1109/TRO.2009.2026508. 31, 32

[152] Yasuo Kuniyoshi, Masayuki Inaba, and Hirochika Inoue. Learning by watching: Ex-
tracting reusable task knowledge from visual observation of human performance. In
IEEE Transactions on Robotics and Automation, volume 10, pages 799–822, 1994. DOI:
10.1109/70.338535. 22, 40

[153] Yoshinori Kuno, Kazuhisa Sadazuka, Michie Kawashima, Keiichi Yamazaki, Akiko Ya-
mazaki, and Hideaki Kuzuoka. Museum guide robot based on sociological interaction
analysis. In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems - CHI ’07, page 1191, New York, New York, USA, April 2007. ACM Press. DOI:
10.1145/1240624.1240804. 10

[154] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. 2001. 49

[155] J. Lave and E. Wenger. Situated Learning: Legitimate Peripheral Participation. Cambridge
University Press, Cambridge, 1991. DOI: 10.1017/CBO9780511815355. 8

[156] D. Lee and Y. Nakamura. Mimesis model from partial observations for a humanoid
robot. e International Journal of Robotics Research, 29(1):60–80, August 2009. DOI:
10.1177/0278364909342282. 32

http://dx.doi.org/10.1109/MRA.2010.936961
http://dx.doi.org/10.1109/MRA.2010.936961
http://dx.doi.org/10.1109/ICHR.2008.4756000
http://dx.doi.org/10.1109/ICHR.2008.4756000
http://dx.doi.org/10.1177/0278364908091153
http://dx.doi.org/10.1177/0278364908091153
http://dx.doi.org/10.1109/TRO.2009.2026508
http://dx.doi.org/10.1109/70.338535
http://dx.doi.org/10.1109/70.338535
http://dx.doi.org/10.1145/1240624.1240804
http://dx.doi.org/10.1145/1240624.1240804
http://dx.doi.org/10.1017/CBO9780511815355
http://dx.doi.org/10.1177/0278364909342282
http://dx.doi.org/10.1177/0278364909342282


BIBLIOGRAPHY 97

[157] D. Lee, C. Ott, and Y. Nakamura. Mimetic communication model with compliant physi-
cal contact in human–humanoid interaction. e International Journal of Robotics Research,
29(13):1684–1704, May 2010. DOI: 10.1177/0278364910364164. 32

[158] S. Levine, Z. Popovic, and V. Koltun. Feature construction for inverse reinforcement
learning. In Advances in Neural Information Processing Systems, pages 1342–1350, 2010. 45

[159] J. Lieberman andC. Breazeal. Improvements on action parsing and action interpolation for
learning through demonstration. In 4th IEEE/RAS International Conference on Humanoid
Robots, volume 1, pages 342–365, 2004. DOI: 10.1109/ICHR.2004.1442131. 19

[160] R. Likert. A technique for the measurement of attitudes. Archives of Psychology, 140:1–55,
1932. 69

[161] M. Likhachev and R. C. Arkin. Spatio-temporal case-based reasoning for be-
havioral selection. In Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEE International Conference on, volume 2, pages 1627–1634. IEEE, 2001. DOI:
10.1109/ROBOT.2001.932844. 39

[162] Y. Lin, S. Ren, M. Clevenger, and Y. Sun. Learning grasping force from demonstration.
In Robotics and Automation , 2012 IEEE International Conference on, pages 1526–1531,
2012. DOI: 10.1109/ICRA.2012.6225222. 26

[163] B. Litowitz. Just say no: Responsibility and resistance. In M Cole, Y Engeström, and
OVasquez, editors,Mind, Culture, and Activity: Seminal Papers from the Laboratory of Com-
parative Human Cognition. Cambridge University Press, Cambridge, 1997. 8

[164] Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery and Data Min-
ing. Springer, 1998. DOI: 10.1007/978-1-4615-5689-3. 45

[165] A. Lockerd and C. Breazeal. Tutelage and socially guided robot learning. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004. DOI:
10.1109/IROS.2004.1389954. 39, 59

[166] R. Lomasky, C. Brodley, M. Aernecke, D. Walt, and M. Friedl. Active class selection. In
Machine Learning: ECML 2007, volume 4701 of Lecture Notes in Computer Science, pages
640–647. Springer-Verlag, 2007. DOI: 10.1007/978-3-540-74958-5_63. 62

[167] M. Lopes, F. Melo, and L. Montesano. Active learning for reward estimation in inverse
reinforcement learning. In Machine Learning and Knowledge Discovery in Databases, pages
31–46. Springer Berlin/Heidelberg, 2009. DOI: 10.1007/978-3-642-04174-7_3. 44, 61

[168] Manuel Lopes, Francisco Melo, Luis Montesano, and Jose Santon-Victor. Abstraction
levels for robotic imitation: Overview and computational approaches. In From Motor

http://dx.doi.org/10.1177/0278364910364164
http://dx.doi.org/10.1109/ICHR.2004.1442131
http://dx.doi.org/10.1109/ROBOT.2001.932844
http://dx.doi.org/10.1109/ROBOT.2001.932844
http://dx.doi.org/10.1109/ICRA.2012.6225222
http://dx.doi.org/10.1007/978-1-4615-5689-3
http://dx.doi.org/10.1109/IROS.2004.1389954
http://dx.doi.org/10.1109/IROS.2004.1389954
http://dx.doi.org/10.1007/978-3-540-74958-5_63
http://dx.doi.org/10.1007/978-3-642-04174-7_3


98 BIBLIOGRAPHY

Learning to Interaction Learning in Robots, pages 313–355. 2010. DOI: 10.1007/978-3-
642-05181-4_14. 48

[169] Manuel Lopes, Francisco S. Melo, and Luis Montesano. Affordance-based imitation
learning in robots. 2007 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 1015–1021, October 2007. DOI: 10.1109/IROS.2007.4399517. 48

[170] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild. Giving advice about preferred
actions to reinforcement learners via knowledge-based kernel regression. In Proceedings of
thee Twentieth National Conference on Artificial Intelligence, Pittsburgh, PA, July 2005.
23, 58

[171] Y. Matsusaka, S. Fujie, and T. Kobayashi. Modeling of conversational strategy for the
robot participating in the group conversation. In INTERSPEECH’01, pages 2173–2176,
2001. 10

[172] B. J. McCarragher and H. Asada. e discrete event modeling and trajectory planning of
robotic assembly tasks. Journal of Dynamic Systems, Measurement, and Control, 117:394–
394, 1995. DOI: 10.1115/1.2799130. 25

[173] Wim Meeussen, Johan Rutgeerts, Klaas Gadeyne, Herman Bruyninckx, and Joris De
Schutter. Contact-state segmentation using particle filters for programming by human
demonstration in compliant-motion tasks. IEEE Transactions on Robotics, 23(2):218–231,
April 2007. DOI: 10.1109/TRO.2007.892227. 26

[174] A. N. Meltzoff. e Human infant as imitative generalist: A 20-year progress report on
infant imitation with implications for comparative psychology. In BGGalef, C.M.Heyes,
editor, Social Learning in Animals: e Roots of Culture. Academic Press, San Diego, CA,
1996. 7

[175] ÇetinMeriçli, StevenDKlee, Jack Paparian, andManuela Veloso. An interactive approach
for situated task teaching through verbal instructions. 2013. 20, 59

[176] Çetin Meriçli, Manuela Veloso, and H Levent Akın. Multi-resolution corrective demon-
stration for efficient task execution and refinement. International Journal of Social Robotics,
4(4):423–435, 2012. DOI: 10.1007/s12369-012-0159-6. 45

[177] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learning object affor-
dances: From sensory-motor coordination to imitation. IEEE Transactions on Robotics,
24:15–26, 2008. DOI: 10.1109/TRO.2007.914848. 48

[178] J. R. Movellan. An infomax controller for real time detection of social contingency. In Pro-
ceedings of the 4th International Conference on Development and Learning, volume 1, pages
19–24, 2005. DOI: 10.1109/DEVLRN.2005.1490937. 12

http://dx.doi.org/10.1007/978-3-642-05181-4_14
http://dx.doi.org/10.1007/978-3-642-05181-4_14
http://dx.doi.org/10.1109/IROS.2007.4399517
http://dx.doi.org/10.1115/1.2799130
http://dx.doi.org/10.1109/TRO.2007.892227
http://dx.doi.org/10.1007/s12369-012-0159-6
http://dx.doi.org/10.1109/TRO.2007.914848
http://dx.doi.org/10.1109/DEVLRN.2005.1490937


BIBLIOGRAPHY 99

[179] M Muhlig, Michael Gienger, Jochen J Steil, and Christian Goerick. Automatic se-
lection of task spaces for imitation learning. In Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on, pages 4996–5002. IEEE, 2009. DOI:
10.1109/IROS.2009.5353894. 34, 63

[180] K. Mulling, J. Kober, O. Kroemer, and J. Peters. Learning to select and generalize striking
movements in robot table tennis. e International Journal of Robotics Research, 32(3):263–
279, January 2013. DOI: 10.1177/0278364912472380. 26, 29

[181] B. Mutlu, J. Forlizzi, and J. Hodgins. A storytelling robot: Modeling and evaluation of
human-like gaze behavior. In 2006 6th IEEE-RAS International Conference on Humanoid
Robots, pages 518–523. IEEE, December 2006. DOI: 10.1109/ICHR.2006.321322. 10

[182] B. Mutlu, T. Shiwa, T. Kanda, H. Ishiguro, and N. Hagita. Footing in human-
robot conversations: how robots might shape participant roles using gaze cues. In
Proceedings of the 2009 ACM Conference on Human-Robot Interaction, 2009. DOI:
10.1145/1514095.1514109. 10

[183] Y. Nagai, C. Muhl, and K. J. Rohlfing. Toward designing a robot that learns actions
from parental demonstrations. In Proceedings of the 2008 IEEE International Conference on
Robotics and Automation, pages 3545–3550, 2008. DOI: 10.1109/ROBOT.2008.4543753.
10

[184] Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal, and Mitsuo
Kawato. Learning from demonstration and adaptation of biped locomotion. Robotics and
Autonomous Systems, 47:79–91, 2004. DOI: 10.1016/S0921-8890(04)00039-9. 21

[185] M. Nakano, Y. Hasegawa, K. Funakoshi, J. Takeuchi, T. Torii, K. Nakadai, N. Kanda,
K. Komatani, H. G. Okuno, and H. Tsujino. A multi-expert model for dialogue and
behavior control of conversational robots and agents. Knowledge-Based Systems, 24(2):248–
256, 2011. DOI: 10.1016/j.knosys.2010.08.004. 7

[186] Chrystopher L Nehaniv and Kerstin Dautenhahn. e correspondence problem. Imitation
in Animals and Artifacts, pages 41–61, 2002. 18

[187] U. Nehmzow, O. Akanyeti, C. Weinrich, T. Kyriacou, and S. A. Billings. Robot pro-
gramming by demonstration through system identification. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2007. DOI: 10.1109/IROS.2007.4399087.
20

[188] Gergely Neu and Csaba Szepesvári. Apprenticeship learning using inverse reinforcement
learning and gradient methods. arXiv preprint arXiv:1206.5264, 2012. 44

http://dx.doi.org/10.1109/IROS.2009.5353894
http://dx.doi.org/10.1109/IROS.2009.5353894
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1109/ICHR.2006.321322
http://dx.doi.org/10.1145/1514095.1514109
http://dx.doi.org/10.1145/1514095.1514109
http://dx.doi.org/10.1109/ROBOT.2008.4543753
http://dx.doi.org/10.1016/S0921-8890(04)00039-9
http://dx.doi.org/10.1016/j.knosys.2010.08.004
http://dx.doi.org/10.1109/IROS.2007.4399087


100 BIBLIOGRAPHY

[189] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In Icml, pages
663–670, 2000. 44

[190] M. N. Nicolescu and M. J. Matarić. Experience-based representation construc-
tion: learning from human and robot teachers. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Maui, Hawaii, 2001. DOI:
10.1109/IROS.2001.976257. 20

[191] M. N. Nicolescu and M. J. Matarić. Methods for robot task learning: Demonstrations,
generalization and practice. In Second International Joint Conference on Autonomous Agents
andMulti-Agent Systems,Melbourne, Australia, July 2003.DOI: 10.1145/860575.860614.
40, 59

[192] Scott Niekum, Sachin Chitta, Bhaskara Marthi, Sarah Osentoski, and Andrew G Barto.
Incremental semantically grounded learning from demonstration. In Robotics Science and
Systems, 2013. 41

[193] Scott Niekum, Sarah Osentoski, George Konidaris, and Andrew G Barto. Learning and
generalization of complex tasks from unstructured demonstrations. In Intelligent Robots
and Systems , 2012 IEEE/RSJ International Conference on, pages 5239–5246. IEEE, 2012.
DOI: 10.1109/IROS.2012.6386006. 29, 41, 46

[194] Scott D Niekum. Semantically grounded learning from unstructured demonstrations.
Ph.D. thesis, University of Massachusetts Amherst, 2013. 41, 42

[195] T. Nomura, T. Suzuki, T. Kanda, and K. Kato. Measurement of negative attitudes toward
robots. Interaction Studies, 7(3):437–454, 2006. DOI: 10.1075/is.7.3.14nom. 70

[196] M. Ollis, W. H. Huang, and M. Happold. A Bayesian approach to imitation learning for
robot navigation. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007. DOI: 10.1109/IROS.2007.4399220. 45

[197] D. R. Olsen and M. A. Goodrich. Metrics for evaluating human-robot interactions. In
Proceedings of the Performance Metrics for Intelligent Systems Workshop (PerMIS), 2003. 78

[198] S. Ontañón, K. Mishra, N. Sugandh, and A. Ram. Case-based planning and execution
for real-time strategy games. In Case-Based Reasoning Research and Development, pages
164–178. Springer, 2007. DOI: 10.1007/978-3-540-74141-1_12. 39

[199] C. C. Graylin, J. Dong, S. Grollman, D. Suay, H.B. Osentoski, S. Pitzer, B. Jenkins, O.C.,
Sarah Osentoski, Benjamin Pitzer, Christopher Crick, Graylin Jay, ShuonanDong, Daniel
Grollman, Halit Bener Suay, and Odest Chadwicke Jenkins. Remote robotic laboratories
for learning from demonstration. International Journal of Social Robotics, pages 1–13, 2012.
DOI: 10.1007/s12369-012-0157-8. 79

http://dx.doi.org/10.1109/IROS.2001.976257
http://dx.doi.org/10.1109/IROS.2001.976257
http://dx.doi.org/10.1145/860575.860614
http://dx.doi.org/10.1109/IROS.2012.6386006
http://dx.doi.org/10.1075/is.7.3.14nom
http://dx.doi.org/10.1109/IROS.2007.4399220
http://dx.doi.org/10.1007/978-3-540-74141-1_12
http://dx.doi.org/10.1007/s12369-012-0157-8


BIBLIOGRAPHY 101

[200] Pierre-yves Oudeyer, Adrien Baranes, and Frédéric Kaplan. Intrinsically motivated ex-
ploration for developmental and active sensorimotor learning. In From Motor Learning
to Interaction Learning in Robots, pages 107–146. 2010. DOI: 10.1007/978-3-642-05181-
4_6. 8

[201] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learning and
generalization of motor skills by learning from demonstration. In IEEE Inter-
national Conference on Robotics and Automation, pages 763–768. IEEE, 2009. DOI:
10.1109/ROBOT.2009.5152385. 28

[202] Peter Pastor, Mrinal Kalakrishnan, Sachin Chitta, Evangelos eodorou, and Stefan
Schaal. Skill learning and task outcome prediction for manipulation. IEEE Inter-
national Conference on Robotics and Automation, pages 3828–3834, May 2011. DOI:
10.1109/ICRA.2011.5980200. 26, 28, 29, 53

[203] R. Pea. Practices of distributed intelligence and designs for education. In G Salomon, ed-
itor, Distributed Cognitions: Psychological and Educational Considerations. Cambridge Uni-
versity Press, New York, 1993. 7

[204] N. K. Person, A. C. Graesser, J. P. Magliano, and R. J. Kreuz. Inferring what the student
knows in one-to-one tutoring: the role of student questions and answers. Learning and
Individual Differences, 6(2):205–229, 1994. DOI: 10.1016/1041-6080(94)90010-8. 12

[205] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients.
Neural networks: e Official Journal of the International Neural Network Society, 21(4):682–
697, May 2008. DOI: 10.1016/j.neunet.2008.02.003. 29

[206] air Nu Phyu. Survey of classification techniques in data mining. In Proceedings of the
International MultiConference of Engineers and Computer Scientists, volume 1, pages 18–20,
2009. 38

[207] J. Piaget. e Origins of Intelligence in Children. International Universities Press, 1952.
DOI: 10.1037/11494-000. 12

[208] P. M. Pilarski, M. R. Dawson, T. Degris, F. Fahimi, J. P. Carey, and R. S. Sutton. Online
human training of a myoelectric prosthesis controller via actor-critic reinforcement learn-
ing. In Proc. of the IEEE International Conference on Rehabilitation Robotics, pages 1–7,
2011. 55

[209] N. Pollard and J. K. Hodgins. Generalizing demonstrated manipulation tasks. In Work-
shop on the Algorithmic Foundations of Robotics, December 2002. DOI: 10.1007/978-3-540-
45058-0_31. 22

http://dx.doi.org/10.1007/978-3-642-05181-4_6
http://dx.doi.org/10.1007/978-3-642-05181-4_6
http://dx.doi.org/10.1109/ROBOT.2009.5152385
http://dx.doi.org/10.1109/ROBOT.2009.5152385
http://dx.doi.org/10.1109/ICRA.2011.5980200
http://dx.doi.org/10.1109/ICRA.2011.5980200
http://dx.doi.org/10.1016/1041-6080(94)90010-8
http://dx.doi.org/10.1016/j.neunet.2008.02.003
http://dx.doi.org/10.1037/11494-000
http://dx.doi.org/10.1007/978-3-540-45058-0_31
http://dx.doi.org/10.1007/978-3-540-45058-0_31


102 BIBLIOGRAPHY

[210] John Ross Quinlan. C4. 5: Programs for Machine Learning, volume 1. Morgan Kaufmann,
1993. 38

[211] L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286, 1989. DOI: 10.1109/5.18626. 30

[212] H. Raghavan, O. Madani, and R. Jones. Active learning with feedback on features and
instances. Journal of Machine Learning Research, 7:1655–1686, 2006. 62

[213] D. Ramachandran and E. Amir. Bayesian inverse reinforcement learning. In International
Joint Conference on Artificial Intelligence, pages 2586–2591, 2007. 44

[214] Rajesh P N Rao, Aaron P Shon, and Andrew N Meltzoff. A Bayesian model of imita-
tion in infants and robots. Imitation and Social Learning in Robots, Humans, and Animals:
Behavioural, Social and Communicative Dimensions, 2004. 19, 39

[215] N. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In Proceedings
of the 23rd International Conference onMachine Learning, Pittsburgh, Pennsylvannia, 2006.
DOI: 10.1145/1143844.1143936. 21

[216] N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt. Boosting structured prediction for
imitation learning. Advances in Neural Information Processing Systems 19, 2007. 21

[217] Nathan D Ratliff, David Silver, and J Andrew Bagnell. Learning to search: Functional
gradient techniques for imitation learning. Autonomous Robots, 27(1):25–53, 2009. DOI:
10.1007/s10514-009-9121-3. 44, 79

[218] C. Rich, B. Ponsler, A. Holroyd, and C. L. Sidner. Recognizing engagement in human-
robot interaction. In Proceedings of the 2010 ACMConference on Human-Robot Interaction,
2010. DOI: 10.1109/HRI.2010.5453163. 7

[219] B Rogoff and H Gardner. Adult guidance of cognitive development. In B Rogoff and
J Lave, editors, Everyday Cognition: Its Development in Social Context. Harvard University
Press, Cambridge, MA, 1984. 7, 10, 11

[220] R. Ros, R. L. De Màntaras, J. L. Arcos, and M. Veloso. Team playing behavior in robot
soccer: A case-based reasoning approach. In Case-Based Reasoning Research and Develop-
ment, pages 46–60. Springer, 2007. DOI: 10.1007/978-3-540-74141-1_4. 39

[221] M T Rosenstein and A G Barto. Supervised Actor-Critic Reinforcement Learning. John
Wiley & Sons, Inc., New York, NY, USA, 2004. 19, 58

[222] S Rosenthal, A K Dey, and M Veloso. How robots’ questions affect the accuracy of the
human responses. In Proceedings of the IEEE Symposium on Robot and Human Interactive
Communication, pages 1137–1142, 2009. DOI: 10.1109/ROMAN.2009.5326291. 61

http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1145/1143844.1143936
http://dx.doi.org/10.1007/s10514-009-9121-3
http://dx.doi.org/10.1007/s10514-009-9121-3
http://dx.doi.org/10.1109/HRI.2010.5453163
http://dx.doi.org/10.1007/978-3-540-74141-1_4
http://dx.doi.org/10.1109/ROMAN.2009.5326291


BIBLIOGRAPHY 103

[223] Stephanie Rosenthal and Manuela Veloso. Modeling humans as observation providers
using pomdps. In RO-MAN, 2011 IEEE, pages 53–58. IEEE, 2011. DOI: 10.1109/RO-
MAN.2011.6005272. 61

[224] R. M. Ryan and E. L. Deci. Self-determination theory and the facilitation of intrinsic
motivation, social development, andwell-being. AmericanPsychologist, 55(1):68 – 78, 2000.
DOI: 10.1037/0003-066X.55.1.68. 6

[225] Paul E Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela M Veloso. Interactive robot task
training through dialog and demonstration. In HRI ’07: Proceedings of the ACM/IEEE
international conference on Human-robot interaction, pages 49–56, New York, NY, USA,
2007. ACM. DOI: 10.1145/1228716.1228724. 20, 40

[226] L M Saksida, S M Raymond, and D S Touretzky. Shaping robot behavior using princi-
ples from instrumental conditioning. Robotics and Autonomous Systems, 22(3/4):231, 1998.
DOI: 10.1016/S0921-8890(97)00041-9. 55

[227] J Saunders, C Nehaniv, and K Dautenhahn. Teaching robots by moulding behavior and
scaffolding the environment,. In Proceedings of theACM SIGCHI/SIGART Conference on
Human-Robot Interaction, pages 118–125, 2006. DOI: 10.1145/1121241.1121263. 10, 39

[228] Joe Saunders, Chrystopher L Nehaniv, Kerstin Dautenhahn, and Aris Alissandrakis. Self-
imitation and environmental scaffolding for robot teaching. International Journal of Ad-
vanced Robotics Systems, 4(1):109–124, 2007. DOI: 10.5772/5703. 10

[229] J. Schmidhuber. A possibility for implementing curiosity and boredom in model-building
neural controllers. In International Conference on Simulation of Adaptive Behavior, pages
222–227, 1991. 8

[230] Candace L Sidner, Cory D Kidd, Christopher Lee, and Neal Lesh. Where to look: a
study of human-robot engagement. In Knowledge Creation Diffusion Utilization, IUI ’04,
pages 78–84. Mitsubishi Electric Research Labs and MIT Media Lab, ACM, 2004. DOI:
10.1145/964442.964458. 10

[231] O. Sigaud and J. Peters. FromMotor Learning to Interaction Learning in Robots. Springer,
2010. DOI: 10.1007/978-3-642-05181-4. 81

[232] David Silver, J. Andrew Bagnell, and Anthony Stentz. Learning from demonstration
for autonomous navigation in complex unstructured terrain. e International Journal of
Robotics Research, 29(12):1565–1592, June 2010. DOI: 10.1177/0278364910369715. 34,
44, 79

[233] S Singh, A G Barto, and N Chentanez. Intrinsically motivated reinforcement learning.
In Proceedings ofAdvances in Neural Information Processing Systems 17, 2005. 8

http://dx.doi.org/10.1109/ROMAN.2011.6005272
http://dx.doi.org/10.1109/ROMAN.2011.6005272
http://dx.doi.org/10.1037/0003-066X.55.1.68
http://dx.doi.org/10.1145/1228716.1228724
http://dx.doi.org/10.1016/S0921-8890(97)00041-9
http://dx.doi.org/10.1145/1121241.1121263
http://dx.doi.org/10.5772/5703
http://dx.doi.org/10.1145/964442.964458
http://dx.doi.org/10.1145/964442.964458
http://dx.doi.org/10.1007/978-3-642-05181-4
http://dx.doi.org/10.1177/0278364910369715


104 BIBLIOGRAPHY

[234] B. F. Skinner. Science and Human Behavior. Colliler-Macmillian, 1953. 23

[235] Marjorie Skubic and Richard A Volz. Identifying contact formations from sensory pat-
terns and its applicability to robot programming by demonstration. In Intelligent Robots
and Systems’ 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on,
volume 2, pages 458–464. IEEE, 1996. DOI: 10.1109/IROS.1996.570817. 26

[236] W D Smart and L P Kaelbling. Effective reinforcement learning for mobile robots. In In
Proceedings of the IEEE International Conference on Robotics and Automation, pages 3404–
3410, 2002. DOI: 10.1109/ROBOT.2002.1014237. 58

[237] William D Smart. Making reinforcement learning work on real robots. Ph.D. thesis,
Department of Computer Science, Brown University, Providence, RI, 2002. 18, 19

[238] Dimitrios Stefanidis, Fikre Wang, James R Korndorffer Jr, J Bruce Dunne, and Daniel J
Scott. Robotic assistance improves intracorporeal suturing performance and safety in the
operating room while decreasing operator workload. Surgical Endoscopy, 24(2):377–382,
2010. DOI: 10.1007/s00464-009-0578-0. 70

[239] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, and M. Goodrich.
Common metrics for human-robot interaction. In Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-Robot Interaction, HRI ’06, pages 33–40, New
York, NY, USA, 2006. ACM. DOI: 10.1145/1121241.1121249. 78

[240] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz, Alan Schultz,
and Michael Goodrich. Common metrics for human-robot interaction. In HRI ’06: Pro-
ceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction, pages 33–
40, New York, NY, USA, 2006. ACM. DOI: 10.1145/1121241.1121249. 69

[241] A Stern, A Frank, and B Resner. Virtual petz (video session): a hybrid approach to creating
autonomous, lifelike dogz and catz. In AGENTS ’98: Proceedings of the Second International
Conference on Autonomous Agents, pages 334–335, New York, NY, USA, 1998. ACM Press.
DOI: 10.1145/280765.280852. 23

[242] H. B. Suay, R. Toris, and S. Chernova. A practical comparison of three robot learn-
ing from demonstration algorithms. International Journal of Social Robotics, 2012. DOI:
10.1007/s12369-012-0158-7. 23, 58, 79

[243] Keith Sullivan. Multiagent hierarchical learning from demonstration. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence-Volume Volume ree,
pages 2852–2853. AAAI Press, 2011. DOI: 10.5591/978-1-57735-516-8/IJCAI11-498.
38

http://dx.doi.org/10.1109/IROS.1996.570817
http://dx.doi.org/10.1109/ROBOT.2002.1014237
http://dx.doi.org/10.1007/s00464-009-0578-0
http://dx.doi.org/10.1145/1121241.1121249
http://dx.doi.org/10.1145/1121241.1121249
http://dx.doi.org/10.1145/280765.280852
http://dx.doi.org/10.1007/s12369-012-0158-7
http://dx.doi.org/10.1007/s12369-012-0158-7
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-498


BIBLIOGRAPHY 105

[244] Keith Sullivan, Sean Luke, and Vittoria Amos Ziparo. Hierarchical learning from demon-
stration on humanoid robots. In Proceedings of Humanoid Robots Learning from Human
Interaction Workshop, 2010. 38

[245] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. e
MIT Press, Cambridge, MA, London, England, 1998. 2, 23, 55

[246] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning. Artificial Intelligence,
112(1):181–211, 1999. DOI: 10.1016/S0004-3702(99)00052-1. 44

[247] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using lin-
ear programming. In Proceedings of the 25th International Conference on Machine Learning,
pages 1032–1039. ACM, 2008. DOI: 10.1145/1390156.1390286. 44

[248] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning.
In Advances in Neural Information Processing Systems, pages 1449–1456, 2007. 44

[249] J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi. Recognizing assembly tasks
through human demonstration. e International Journal of Robotics Research, 26(7):641–
659, July 2007. DOI: 10.1177/0278364907080736. 22

[250] A. Tenorio-Gonzalez, E. Morales, and L. Villase nor Pineda. Dynamic reward shaping:
training a robot by voice. In Advances in Artificial Intelligence–IBERAMIA, pages 483–492,
2010. DOI: 10.1007/978-3-642-16952-6_49. 55

[251] Evangelos eodorou, Jonas Buchli, and Stefan Schaal. Reinforcement learning of
motor skills in high dimensions: A path integral approach. In Robotics and Automa-
tion , 2010 IEEE International Conference on, pages 2397–2403. IEEE, 2010. DOI:
10.1109/ROBOT.2010.5509336. 29

[252] A L omaz and C Breazeal. Reinforcement learning with human teachers: Evidence of
feedback and guidance with implications for learning performance. In Proceedings of the
21st National Conference on Artificial Intelligence, 2006. 23, 58, 79

[253] A L omaz and C Breazeal. Teachable robots: Understanding human teaching behavior
to build more effective robot learners. Artificial Intelligence Journal, 172:716–737, 2008.
DOI: 10.1016/j.artint.2007.09.009. 23, 58, 79

[254] M. Tomasello. eCultural Origins of Human Cognition. Harvard University Press, March
2001. 8

[255] R. Toris, D. Kent, and S. Chernova. e robot management system: A framework for
conducting human-robot interaction studies through crowdsourcing. International Journal
of Human-Robot Interaction, 2013. 79

http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1145/1390156.1390286
http://dx.doi.org/10.1177/0278364907080736
http://dx.doi.org/10.1007/978-3-642-16952-6_49
http://dx.doi.org/10.1109/ROBOT.2010.5509336
http://dx.doi.org/10.1109/ROBOT.2010.5509336
http://dx.doi.org/10.1016/j.artint.2007.09.009


106 BIBLIOGRAPHY

[256] J.G. Trafton, M.D. Bugajska, B.R. Fransen, and R.M. Ratwani. Integrating vision and
audition within a cognitive architecture to track conversations. In Proceedings of the 3rd
ACM/IEEE International Conference on Human Robot Interaction, pages 201–208, 2008.
DOI: 10.1145/1349822.1349849. 10

[257] ETronik,HAls, LAdamson, andCTrevarthen. Communication and cooperation in early
infancy: A description of primary intersubjectivity. In M Bullowa, editor, Before Speech:e
Beginning of Interpersonal Communication, pages 389–450. Cambridge University Press,
Cambridge, 1979. 7, 10

[258] K. M. Tsui, M. Desai, H. A. Yanco, H. Cramer, and N. Kemp. Using the “negative
attitudes toward robots scale” with telepresence robots. In Proceedings of the Performance
Metrics for Intelligent Systems Workshop, 2010. DOI: 10.1145/2377576.2377621. 70

[259] Ales Ude, Christopher G Atkeson, and Marcia Riley. Programming full-body movements
for humanoid robots by observation. Robotics and Autonomous Systems, 47:93–108, 2004.
DOI: 10.1016/S0921-8890(04)00040-5. 22

[260] Michael van Lent and John E Laird. Learning procedural knowledge through observation.
In K-CAP ’01: Proceedings of the 1st International Conference on Knowledge Capture, pages
179–186, New York, NY, USA, 2001. ACM Press. DOI: 10.1145/500737.500765. 40,
43

[261] D. Vasquez, T. Fraichard, and C. Laugier. Growing Hidden Markov Models:
An incremental tool for learning and predicting human and vehicle motion. e
International Journal of Robotics Research, 28(11-12):1486–1506, August 2009. DOI:
10.1177/0278364909342118. 31

[262] H Veeraraghavan and Manuela Veloso. Teaching sequential tasks with repetition through
demonstration (short paper). In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, May 2008. 40

[263] Manuela Veloso, Felix Von Hundelshausen, and Paul E Rybski. Learning visual object
definitions by observing human activities. InHumanoidRobots, 2005 5th IEEE-RAS Inter-
national Conference on, pages 148–153. IEEE, 2005. DOI: 10.1109/ICHR.2005.1573560.
49

[264] Sethu Vijayakumar and Stefan Schaal. Locally weighted projection regression: An O(n)
algorithm for incremental real time learning in high dimensional space. In Proceedings of
Seventeenth International Conference on Machine Learning, pages 1079–1086, 2000. 28

[265] L. S. Vygotsky. Mind in society: the development of higher psychological processes. Harvard
University Press, Cambridge, MA, 1978. 9

http://dx.doi.org/10.1145/1349822.1349849
http://dx.doi.org/10.1145/2377576.2377621
http://dx.doi.org/10.1016/S0921-8890(04)00040-5
http://dx.doi.org/10.1145/500737.500765
http://dx.doi.org/10.1177/0278364909342118
http://dx.doi.org/10.1177/0278364909342118
http://dx.doi.org/10.1109/ICHR.2005.1573560


BIBLIOGRAPHY 107

[266] A. R. Wagner. e role of trust and relationships in human-robot social interaction, 2009.
70

[267] Q. Wang, J. De Schutter, W. Witvrouw, and S. Graves. Derivation of compliant motion
programs based on human demonstration. In Robotics and Automation, 1996. Proceedings.,
1996 IEEE International Conference on, volume 3, pages 2616–2621 vol.3, 1996. DOI:
10.1109/ROBOT.1996.506557. 26

[268] J V Wertsch, N Minick, and F J Arns. Creation of context in joint problem solving.
In B Rogoff and J Lave, editors, Everyday Cognition: Its Development in Social Context.
Harvard University Press, Cambridge, MA, 1984. 9

[269] C. Wickens, J. Gordon, and Y. Liu. An Introduction to Human Factors Engineering.
Pearson-Prentice Hall, New Jersey, 2004. 78

[270] Akiko Yamazaki, Keiichi Yamazaki, Yoshinori Kuno, Matthew Burdelski, Michie
Kawashima, and Hideaki Kuzuoka. Precision timing in human-robot interaction:
Coordination of head movement and utterance. Ratio, 08(1):131–139, 2008. DOI:
10.1145/1357054.1357077. 10

[271] P Zang, R Tian, A L omaz, and C Isbell. Batch versus interactive learning by demon-
stration. In Proceedings of the International Conference on Development and Learning, 2010.
54

[272] Brian D Ziebart, Andrew Maas, James (Drew) Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. In Proceeding of AAAI 2008, July 2008. 44

[273] Matthew Zucker and J Andrew Bagnell. Reinforcement planning: Rl for optimal planners.
In Robotics and Automation , 2012 IEEE International Conference on, pages 1850–1855.
IEEE, 2012. DOI: 10.1109/ICRA.2012.6225036. 45

[274] P Zukow-Goldring, M A Arbib, and E Oztop. Language and the mirror system: A per-
ception/action based approach to cognitive development. Cognition, Brain, Behavior, pages
239–272, 2005. 7, 9

http://dx.doi.org/10.1109/ROBOT.1996.506557
http://dx.doi.org/10.1109/ROBOT.1996.506557
http://dx.doi.org/10.1145/1357054.1357077
http://dx.doi.org/10.1145/1357054.1357077
http://dx.doi.org/10.1109/ICRA.2012.6225036




109

Authors’ Biographies

SONIACHERNOVA
Sonia Chernova is an Assistant Professor of Computer Science and Robotics Engineering at
Worcester Polytechnic Institute and the director of the Robot Autonomy and Interactive Learn-
ing (RAIL) lab. She earned B.S. and Ph.D. degrees in Computer Science from Carnegie Mellon
University in 2003 and 2009, and was a Postdoctoral Associate at the MIT Media Lab prior
to joining WPI. Dr. Chernova’s research is focused on interactive machine learning, adjustable
autonomy, crowdsourcing, and human-robot interaction. She has received funding support from
NSF, ONR, and DARPA, including an NSF CAREER award on Learning from Demonstration
in 2012.

ANDREAL. THOMAZ
Andrea L. omaz is an Associate Professor of Interactive Computing at the Georgia Insti-
tute of Technology. She directs the Socially Intelligent Machines lab, which is affiliated with
the Robotics and Intelligent Machines (RIM) Center and with the Graphics Visualization and
Usability (GVU) Center. She earned a B.S. in Electrical and Computer Engineering from the
University of Texas at Austin in 1999, and Sc.M. and Ph.D. degrees from MIT in 2002 and
2006. Dr. omaz has published in the areas of Artificial Intelligence, Robotics, and Human-
Robot Interaction. She has received recognition as a young leader in her field, receiving an ONR
Young Investigator Award in 2008, and an NSF CAREER award in 2010. Her work has been
featured on the front page of e New York Times, on NOVA Science Now, she was named one of
MIT Technology Review’s Top 35 under 35 in 2009, and on Popular Science Magazine’s Brilliant
10 list in 2012.


	Introduction
	Machine Learning for End-Users
	The Learning from Demonstration Pipeline
	A Note on Terminology

	Human Social Learning
	Learning is a Part of All Activity
	Teachers Scaffold the Learning Process
	Attention Direction
	Dynamic Scaffolding
	Externalizing and Modeling Metacognition

	Role of Communication in Social Learning
	Expression Provides Feedback to Guide a Teacher
	Asking Questions

	Implications for the Design of Robot Learners

	Modes of Interaction with a Teacher
	The Correspondence Problem
	Learning by Doing
	Learning from Observation
	Learning from Critique
	Design Implications

	Learning Low-Level Motion Trajectories
	State Spaces for Motion Learning
	Modeling an action with Dynamic Movement Primitives
	Modeling Action with Probabilistic Models
	Techniques for Handling Suboptimal Demonstrations

	Learning High-Level Tasks
	State Spaces for High-Level Learning
	Learning a Mapping Function
	Learning a Task Plan
	Learning Task Objectives
	Learning Task Features
	Learning Frame of Reference
	Learning Object Affordances
	Techniques for Handling Suboptimal Demonstrations
	Discussion and Open Challenges

	Refining a Learned Task
	Batch vs. Incremental Learning
	Reinforcement Learning Based Methods
	Corrective Refinement from the Teacher
	Active Learning
	Label Queries
	Demonstration Queries
	Feature Queries

	Summary

	Designing and Evaluating an LfD Study
	Experimental Design
	Evaluating the Algorithmic Performance
	Evaluating the Interaction
	Subjective Measures
	Objective Measures

	Experimental Controls
	Experimental Protocol
	Data Analysis
	Choosing the Right Statistical Tool
	Drawing Conclusions

	Additional Resources

	Future Challenges and Opportunities
	Real Users, Real Tasks
	HRI Considerations
	Advancing Learning through Benchmarking and Integration
	Opportunities
	Additional Resources

	Bibliography
	Authors' Biographies

