# ANOVA: Analysis of Variance

### An example ANOVA problem

25 individuals split into three between-subject conditions: A, B and C

- A: 5,6,6,7,7,8,9,10 [8 participants, mean: 7.25]
- B: 7,7,8,9,9,10,10,11 [8 participants, mean: 8.875]
- P: 7,9,9,10,10,10,11,12,13 [9 participants, mean: 10.11]

Are the differences between the conditions significant?

### What does ANOVA do?

ANOVA tests the following hypotheses:

- $H_0$  (null hypothesis): The means of all the groups are equal.
- $H_a$ : Not all the means are equal
  - doesn't say how or which ones differ.
  - Can follow up with "multiple comparisons"

#### Notation for ANOVA

- *n* = number of individuals all together
- *i* = number of groups
- $\bar{x}$  = mean for entire data set is

Group *i* has

- $n_i$  = # of individuals in group *i*
- $x_{ij}$  = value for individual *j* in group *i*
- $\overline{x_i}$  = mean for group *i*
- $s_i$  = standard deviation for group *i*

### How ANOVA works

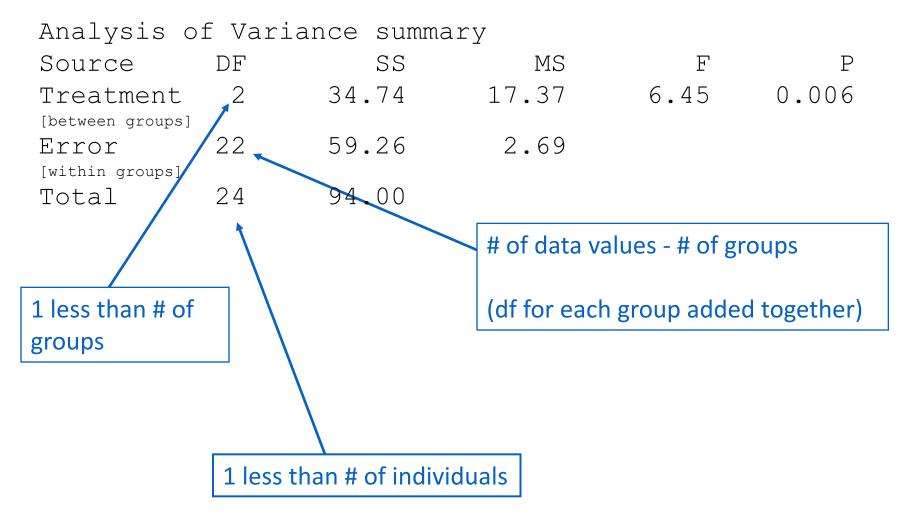
ANOVA measures two sources of variation in the data and compares their relative sizes

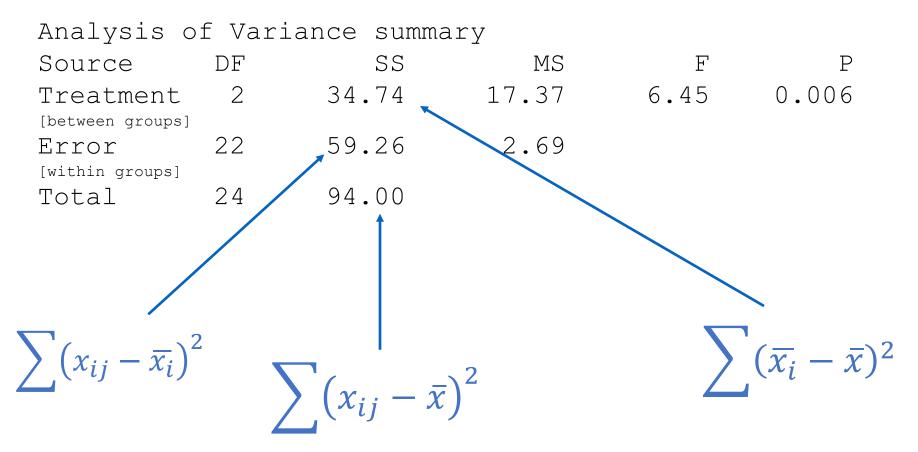
- variation BETWEEN groups
  - for each data value look at the difference between its group mean and the overall mean

$$(\overline{x_i} - \overline{x})^2$$

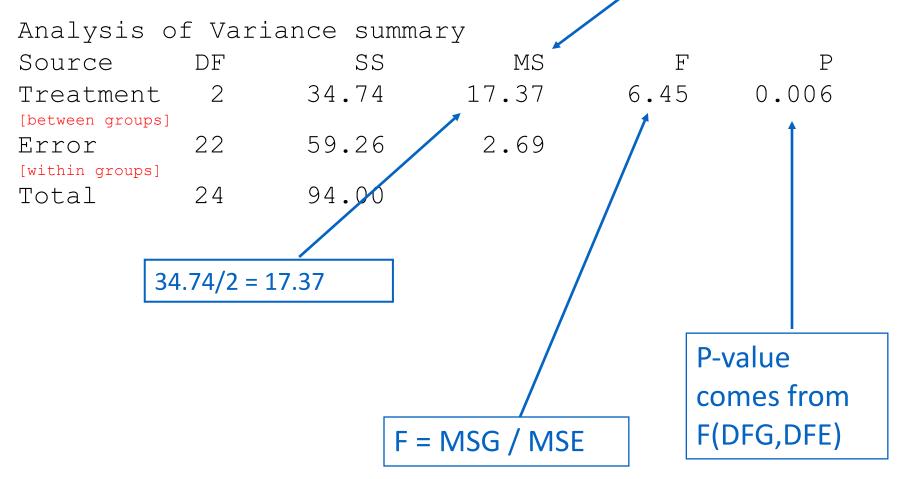
- variation WITHIN groups
  - for each data value we look at the difference between that value and the mean of its group

$$\left(x_{ij}-\overline{x_i}\right)^2$$


#### F-score


• The ANOVA F-statistic is a ratio of the Between Group Variaton divided by the Within Group Variation:

$$F = \frac{Between}{Within}$$


• A large F is evidence *against*  $H_0$ , since it indicates that there is more difference between groups than within groups.

| Analysis o       | f Var | ciance s | ummary |     |      |       |
|------------------|-------|----------|--------|-----|------|-------|
| Source           | DF    | S        | S      | MS  | F    | P     |
| Treatment        | 2     | 34.7     | 4 17.  | .37 | 6.45 | 0.006 |
| [between groups] |       |          |        |     |      |       |
| Error            | 22    | 59.2     | 6 2.   | .69 |      |       |
| [within groups]  |       |          |        |     |      |       |
| Total            | 24    | 94.0     | 0      |     |      |       |





MSG = SSG / DFG MSE = SSE / DFE



### Post-hoc analysis

- ANOVA indicates that the groups do not all appear to have the same means... what next? How do we know what the differences really are?
- If we only had two groups, then we're done, we know the difference between them is significant.
- If we have three or more groups, then a post hoc test is needed to determine which groups are significantly different from each other

A: 5,6,6,7,7,8,9,10 B: 7,7,8,9,9,10,10,11 P: 7,9,9,10,10,11,12,13 [8 participants, mean: 7.25][8 participants, mean: 8.875][9 participants, mean: 10.11]

#### Post-hoc analysis

- Multiple post hoc analysis methods exist
- We most commonly see the Tukey test
- Results for our example dataset:

HSD[.05]=2.02; HSD[.01]=2.61
M1 vs M2 nonsignificant
M1 vs M3 P<.01
M2 vs M3 nonsignificant</pre>

HSD = the absolute (unsigned) difference between any two sample means required for significance at the designated level.

### Assumptions of ANOVA

- The distribution of data in each group is approximately normal
  - check this by looking at histograms and/or normal quantile plots
  - can handle some non-normality, but not severe outliers
- Standard deviations of each group are approximately equal
  - rule of thumb: ratio of largest to smallest sample st. dev. must be less than 2:1

#### Our case study...

• Our case study has many similarities to the above example, but in that case it's a two-way ANOVA. I leave it to you to decide whether that is the appropriate test and what conclusions can be drawn from it based on the way it was conducted.

| ANOVA Summary                                                                                                    |                   |    |                |         |          |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|-------------------|----|----------------|---------|----------|--|--|--|--|
| A = row variable (Mobile Robot / No Mobile Robot)<br>B = column variable (No Social / Social)<br>Subj = subjects |                   |    |                |         |          |  |  |  |  |
| Source                                                                                                           | Sum of<br>Squares | df | Mean<br>Square | F       | р        |  |  |  |  |
| Subjects                                                                                                         | 134.4             | 9  |                |         |          |  |  |  |  |
| Within Subjects                                                                                                  |                   |    |                |         |          |  |  |  |  |
| A                                                                                                                | 592.9             | 1  | 592.9          | 70.5833 | <.0001   |  |  |  |  |
| Subj x A                                                                                                         | 75.6              | 9  | 8.4            |         |          |  |  |  |  |
| В                                                                                                                | 115.6             | 1  | 115.6          | 13.7076 | 0.004902 |  |  |  |  |
| Subj x B                                                                                                         | 75.9              | 9  | 8.4333         |         |          |  |  |  |  |
| AxB                                                                                                              | 160               | 1  | 160            | 17.6686 | 0.002295 |  |  |  |  |
| Subj x A x B                                                                                                     | 81.5              | 9  | 9.0556         |         |          |  |  |  |  |
| TOTAL                                                                                                            | 1235.9            | 39 |                |         |          |  |  |  |  |