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Abstract

Recent learning-to-plan methods have shown promising results on planning directly
from observation space. Yet, their ability to plan for long-horizon tasks is limited
by the accuracy of the prediction model. On the other hand, classical symbolic
planners show remarkable capabilities in solving long-horizon tasks, but they
require predefined symbolic rules and symbolic states, restricting their real-world
applicability. In this work, we combine the benefits of these two paradigms
and propose a learning-to-plan method that can directly generate a long-term
symbolic plan conditioned on high-dimensional observations. We borrow the idea
of regression (backward) planning from classical planning literature and introduce
Regression Planning Networks (RPN), a neural network architecture that plans
backward starting at a task goal and generates a sequence of intermediate goals that
reaches the current observation. We show that our model not only inherits many
favorable traits from symbolic planning, e.g., the ability to solve previously unseen
tasks, but also can learn from visual inputs in an end-to-end manner. We evaluate
the capabilities of RPN in a grid world environment and a simulated 3D kitchen
environment featuring complex visual scene and long task horizon, and show that
it achieves near-optimal performance in completely new task instances.

1 Introduction

Performing real-world tasks such as cooking meals or assembling furniture requires an agent to
determine long-term strategies. This is often formulated as a planning problem. In traditional
AI literature, symbolic planners have shown remarkable capability in solving high-level reasoning
problems by planning in human-interpretable symbolic spaces [1, 2]. However, classical symbolic
planning methods typically abstract away perception with ground-truth symbols and rely on pre-
defined planning domains to specify the causal effects of actions. These assumptions significantly
restrict the applicability of these methods in real environments, where states are high-dimensional
(e.g., color images) and it’s tedious, if not impossible, to specify a detailed planning domain.

A solution to plan without relying on predefined action models and symbols is to learn to plan from
observations. Recent works have shown that deep networks can capture the environment dynamics
directly in the observation space [3–5] or a learned latent space [6–8]. With a learned dynamics model,
these methods can plan a sequence of actions towards a desired goal through forward prediction.
However, these learned models are far from accurate in long-term predictions due to the compounding
errors over multiple steps. Moreover, due to the action-conditioned nature of these models, they
are bound to use myopic sampling-based action selection for planning [4, 5]. Such strategy may be
sufficient for simple short-horizon tasks, e.g., pushing an object to a location, but they fall short in
tasks that involve high-level decision making over longer timescale, e.g., making a meal.
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Figure 1: Regression (backward)
planning with Regression Planning
Networks (RPN): Starting from the
final symbolic goal g, our learning-
based planner iteratively predicts a se-
quence of intermediate goals condi-
tioning on the current observation ot
until it reaches a goal g(−T ) that is
reachable from the current state using
a low-level controller.
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In this work, we aim to combine the merits of planning from observation and the high-level reasoning
ability and interpretability of classical planners. We propose a learning-to-plan method that can
generate a long-term plan towards a symbolic task goal from high-dimensional observation inputs.
As discussed above, the key challenge is that planning with either symbolic or observation space
requires accurate forward models that are hard to obtain, namely symbolic planning domains and
observation-space dynamics models. Instead, we propose to plan backward in a symbolic space
conditioning on the current observation. Similar to forward planning, backward planning in symbolic
space (formally known as regression planning [9, 10] or pre-image backchaining [11–13]) also relies
on a planning domain to expand the search space starting from the final goal until the current state is
reached. Our key insight is that by conditioning on the current observation, we can train a planner to
directly predict a single path in the search space that connects the final goal to the current observation.
The resulting plan is a sequence of intermediate goals that can be used to guide a low-level controller
to interact with the environment and achieve the final task goal.

We present Regression Planning Networks (RPN), a neural network architecture that learns to perform
regression planning (backward planning) in a symbolic planning space conditioned on environment
observations. Central to the architecture is a precondition network that takes as input the current
observation and a symbolic goal and iteratively predicts a sequence of intermediate goals in reverse
order. In addition, the architecture exploits the compositional structure of the symbolic space by
modeling the dependencies among symbolic subgoals with a dependency network. Such dependency
information can be used to decompose a complex task goal into simpler subgoals, an essential
mechanism to learn complex plans and generalize to new task goals. Finally, we present an algorithm
that combines these networks to perform regression planning and invoke low-level controllers for
executing the plan in the environment. An overview of our method is illustrated in Fig. 1.

We train RPN with supervisions from task demonstration data. Each demonstration consists of a
sequence of intermediate symbolic goals, their corresponding environment observations, and a final
symbolic task goal. An advantage of our approach is that the trained RPN models can compose seen
plans to solve novel tasks that are outside of the training dataset. As we show in the experiments,
when trained to cook two dishes with less than three ingredients, RPN can plan for a three-course meal
with more ingredients with near-optimal performance. In contrast, we observe that the performance of
methods that lack the essential components of our RPN degrades significantly when facing new tasks.
We demonstrate the capabilities of RPN in solving tasks in two domains: a grid world environment
that illustrates the essential features of RPN, and a 3D kitchen environment where we tackle the
challenges of longer-horizon tasks and increased complexity of visual observations.

2 Related Work

Although recent, there is a large body of prior works in learning to plan from observation. Methods in
model-based RL [3–5, 7] have focused on building action-conditioned forward models and perform
sampling-based planning. However, learning to make accurate predictions with high-dimensional
observation is still challenging [3, 4, 6, 7], especially for long-horizon tasks. Recent works have
proposed to learn structured latent representations for planning [8, 14, 15]. For example, Causal
InfoGAN [8] learns a latent binary representation that can be used jointly with graph-planning
algorithm. However, similar to model-based RL, learning such representations relies on reconstructing
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the full input space, which can be difficult to scale to challenging visual domains. Instead, our method
directly plans in a symbolic space, which allows more effective long-term planning and interpretability,
while still taking high-dimensional observation as input.

Our work is also closely related to Universal Planning Networks [16], which propose to learn planning
computation from expert demonstrations. However, their planning by gradient descent scheme is not
ideal for non-differentiable symbolic action space, and they require detailed action trajectories as
training labels, which is agent-specific and can be hard to obtain in the case of human demonstrations.
Our method does not require an explicit action space and learns directly from high-level symbolic
goal information, which makes it agent-agnostic and adaptive to different low-level controllers.

Our method is inspired by classical symbolic planning, especially a) goal-regression planning [9]
(also known as pre-image backchaining [11–13]), where the planning process regresses from instead
progressing towards a goal, and b) the idea of partial-order planning [10, 17], where the ordering
of the subgoals within a goal is exploited to reduce search complexity. However, these methods
require (1) complete specification of a symbolic planning domain [1] and (2) the initial symbolic state
either given or obtained from a highly accurate symbolic state estimator [18, 19]; both can be hard to
obtain for real-world task domains. In contrast, our method does not perform explicit symbolic state
estimation and can generate a plan directly from a high-dimensional observation and a task goal.

Our network architecture design is inspired by recursive networks for natural language syntax
modeling [20, 21] and program induction [22, 23]. Given a goal and an environment observation, our
RPN predicts a set of predecessor goals that need to be completed before achieving the goal. The
regression planning process is then to apply RPN recursively by feeding the predicted goals back to
the network until a predicted goal is reachable from the current observation.

3 Problem Definition and Preliminaries

3.1 Zero-shot Task Generalization with a Hierarchical Policy

The goal of zero-shot task generalization is to achieve task goals that are not seen during training [24–
26]. Each task goal g belongs to a set of valid goals G. We consider an environment with transition
probability O ×A×O → R, where O is a set of environment observations and A a set of primitive
actions. Given a symbolic task goal g, the objective of an agent is to arrive at o ∈ Og , whereOg ⊂ O
is the set of observations where g is satisfied. We adopt a hierarchical policy setup where given
a final goal g and the current observation ot, a high-level policy µ : O × G → G generates an
intermediate goal g′ ∈ G, and a low-level policy π : O × G → A acts in the environment to achieve
the intermediate goal. We assume a low-level policy can only perform short-horizon tasks. In this
work, we focus on learning an effective high-level policy µ and assume the low-level policy can be
either a pre-trained agent or a motion planner. For evaluation we consider a zero-shot generalization
setup [25, 26] where only a subset of the task goals, Gtrain ⊂ G, is available during training, and the
agent has to achieve a disjoint set of test task goals Gtest ⊂ G, where Gtrain ∩ Gtest = ∅.

3.2 Regression Planning

In this work, we formulate the high-level policy µ as a learning-based regression planner. Goal-
regression planning [9–13] is a class of symbolic planning algorithms, where the planning process
runs backward from the goal instead of forward towards the goal. Given an initial symbolic state, a
symbolic goal, and a planning domain that defines actions as their pre-conditions and post-effects (i.e.,
action operators), a regression planner starts by considering all action operators that might lead to
the goal and in turn expand the search space by enumerating all preconditions of the action operators.
The process repeats until the current symbolic state satisfies the preconditions of an operator. A plan
is then a sequence of action operators that leads to the state from the goal.

An important distinction in our setup is that, because we do not assume access to these high-level
action operators (from a symbolic planning domain) and the current symbolic state, we cannot perform
explicitly such an exhaustive search process. Instead, our model learns to predict the preconditions
that need to be satisfied in order to achieve a goal, conditioned on the current environment observation.
Such ability enables our method to perform regression planning without explicit action operators,
planning domain definition, or symbolic states.
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We now define the essential concepts of regression planning adopted by our method. Following [12],
we define goal g ∈ G as the conjunction of a set of logical atoms, each consists of a predicate and a
list of object arguments, e.g., On(pot, stove)∧¬Clean(cabbage). We denote each atom in g a
subgoal gi. A subgoal can also be viewed as a goal with a single atom. We define preconditions of a
goal g or a subgoal gi as another intermediate goal g′ ∈ G that needs to be satisfied before attempting
g or gi conditioning on the environment observation. An intuitive example is that In(cabbage,
sink) is a precondition of Clean(cabbage) if the cabbage is, e.g., on the table.

4 Method

Our primary contribution is to introduce a learning formulation of regression planning and propose
Regression Planning Networks (RPN) as a solution. Here, we summarize the essential regression
planning steps to be posed as learning problems, introduce the state representation used by our model,
and explain our learning approach to solving regression planning.

Subgoal Serialization: The idea of subgoal serialization stems from partial order planning [10, 17],
where a planning goal is broken into sub-goals, and the plans for each subgoal can be combined to
reduce the search complexity. The challenge is to execute the subgoal plans in an order such that
a plan does not undo an already achieved subgoal. The process of finding such orderings is called
subgoal serialization [10]. Our method explicitly models the dependencies among subgoals and
formulates subgoal serialization as a directed graph prediction problem (Sec. 4.1). This is an essential
component for our method to learn to achieve complex goals and generalize to new goals.

Precondition Prediction: Finding the predecessor goals (preconditions) that need to be satisfied
before attempting to achieve another goal is an essential step in planning backward. As discussed
in Sec. 3.2, symbolic regression planners rely on a set of high-level action operators defined in a
planning domain to enumerate valid preconditions. The challenge here is to directly predict the
preconditions of a goal given an environment observation without assuming a planning domain. We
formulate the problem of predicting preconditions as a graph node classification problem in Sec. 4.2.

The overall regression planning process is then as follows: Given a task goal, we (1) decompose
the final task goal into subgoals and find the optimal ordering of completing the subgoals (subgoal
serialization), (2) predict the preconditions of each subgoal, and (3) set the preconditions as the final
goal and repeat (1) and (2) recursively. We implement the process with a recursive neural network
architecture and an algorithm that invokes the networks to perform regression planning (Sec. 4.4).

Object-Centric Representation: To bridge between the symbolic representation of the goals and the
raw observations, we adopt an object-centric state representation [27–29]. The general form is that
each object is represented as a continuous-valued feature vector extracted from the observation. We
extend such representation to n-ary relationships among the objects, where each relationship has its
corresponding feature, akin to a scene-graph feature representation [30]. We refer to objects and their
n-ary relationship as entities and their features as entity features, e. Such factorization reflects that
each goal atom gi indicates the desired symbolic state of an entity in the scene. For example, the goal
On(A, B) indicates that the desired states of the binary entity (A, B) is A on top of B. We assume
that either the environment observation is already in such entity-centric representations, or there exists
a perception function F that maps an observation o to a set of entity features eit ∈ RD, i ∈ {1...N},
where N is the number of entities in an environment and D is the feature dimension. As an example,
F can be a 2D object detector, and the features are simply the resulting image patches.

4.1 Learning Subgoal Serialization

We pose subgoal serialization as a learning problem. We say that a subgoal gi depends on subgoal
gj if gj needs to be completed before attempting gi. For example, Clean(cabbage) depends
on In(cabbage, sink). The process of subgoal serialization [10] is to find the optimal order
to complete all subgoals by considering all dependencies among them. Following the taxonomy
introduced by Korf et al. [10], we consider four cases: we say that a set of subgoals is independent if
the subgoals can be completed in any order and serializable if they can be completed in a fixed order.
Often a subset of the subgoals needs to be completed together, e.g., Heated(pan) and On(stove),
in which case these subgoals are called a subgoal block and g is block-serializable. Non-serializable
is a special case of block-serializable where the entire g is a subgoal block.
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Figure 2: Given a task goal, g, and the current observation, ot, RPN performs subgoal serialization
(Algorithm 1) to find the highest priority subgoal and estimates whether the subgoal is reachable by
one of the low-level controllers. If not, RPN predicts the preconditions of the subgoal and recursively
uses them as new goal for the regression planning

To see how to pose subgoal serialization as a learning problem, we note that the dependencies among
a set of subgoals can be viewed as a directed graph, where the nodes are individual subgoals and the
directed edges are dependencies. Dependence and independence between a pair of subgoals can be
expressed as a directed edge and its absence. We express subgoal block as a complete subgraph and
likewise a non-serializable goal as a complete graph. The dependence between a subgoal block and
a subgoal or another subgoal block can then be an edge between any node in the subgraph and an
outside node or any node in another subgraph. For simplicity, we refer to both subgoals and subgoal
blocks interchangeably from now on.

Now, we can formulate the subgoal serialization problem as a graph prediction problem. Concretely,
given a goal g = {g1, g2, ..., gK} and the corresponding entity features egt = {eg1t , e

g2
t , ...e

gK
t }, our

subgoal dependency network is then:

fdependency(egt , g) = φθ({[egit , e
gj
t , gi, gj ]}Ki,j=1) = {dep(gi, gj)}Ki,j=1, (1)

where dep(gi, gj) ∈ [0, 1] is a score indicating if gi depends on gj . φθ is a learnable network and
[·, ·] is concatenation. We describe a subgoal serialization algorithm in Sec. 4.4.

4.2 Learning Precondition Prediction

We have discussed how to find the optimal order of completing a set of subgoals. The next step
is to find the precondition of a subgoal or subgoal block, an essential step in planning backward.
The preconditions of a subgoal is another goal that needs to be completed before attempting the
subgoal at hand. To formulate it as a learning problem, we note that the subgoal and its preconditions
may not share the same set of entities. For example, the precondition of Clean(cabbage) may be
In(cabbage, sink). Hence a subgoal may map to any subgoals grounded on any entities in the
scene. To realize such intuition, we formulate the precondition problem as a node classification
problem [31], where each node corresponds to a pair of goal predicate and entity in the scene. We
consider three target classes, True and False corresponds to the logical state of the goal predicate,
and a third Null class to indicate that the predicate is not part of the precondition. Concretely, given
a goal or subgoal set g = {g1, ..., gK} and all entity features et, the precondition network is then:

fprecondition(et, g) = φψ(∆(et, g)) = g(−1), (2)

where g(−1) is the predicted precondition of g, and φψ is a learnable network. Note that g may only
map to a subset of et. ∆ fills the missing predicates with Null class before concatenating et and g.

4.3 Learning Subgoal Satisfaction and Reachability

Subgoal serialization determines the order of completing subgoals, but some of the subgoals might
have already been completed. Here we use a learnable module to determine if a subgoal is already
satisfied. We formulate the subgoal satisfaction problem as a single entity classification problem
because whether a subgoal is satisfied does not depend on any other entity features. Similarly, we
use another module to determine if a subgoal is reachable by a low-level controller from the current
observation. We note that the reachability of a subgoal by a low-level controller may depend on the
state of other entities. For example, whether we can launch a grasping planner to fetch an apple from
the fridge depends on if the fridge door is open. Hence we formulate it as a binary classification
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problem conditioning on all entity features. Given a goal g and its subgoals {g1, ..., gK}, the models
can be expressed as:

fsatisfied(e
gi
t , gi) = φα([egit , gi]) = sat(gi) freachable(et, g) = φβ([et, g]) = rec(g), (3)

where sat(gi) ∈ [0, 1] indicates if a subgoal gi ∈ g is satisfied, and rec(g) ∈ [0, 1] indicates if the
goal g is reachable by a low-level controller given the current observation.

4.4 Regression Planning with RPN

Algorithm 1 SUBGOALSERIALIZATION

Inputs: Current entity features et, goal g
v ← ∅, w ← ∅
for all gi ∈ g do

sat(gi)← fsatisfied(e
gi
t , gi)

if sat(gi) < 0.5 then
v ← v ∪ {gi}, w ← w ∪ {egit }

end if
end for
depGraph← DiGraph(fdependency(w, v))
blockGraph← Bron-Kerbosch(depGraph)
blockDAG← DAG(blockGraph)
sortedBlocks← TopoSort(blockDAG)
return g[sortedBlocks[−1]]

Having described the essential components of
RPN, we introduce an algorithm that invokes
the network at inference time to generate a plan.
Given the entity features et and the final goal
g, the first step is to serialize the subgoals. We
start by finding all subgoals are unsatisfied with
fsatisfied(·) and construct the input nodes for
fdependency(·), which in turn predicts a directed
graph structure. Then we use the Bron-Kerbosch
algorithm [32] to find all complete subgraphs and
construct a DAG among all subgraphs. Finally, we
use topological sorting to find the subgoal block
that has the highest priority to be completed. The
subgoal serialization subroutine is summarized
in Algorithm 1. Given a subgoal, we first check
if it is reachable by a low-level controller with
freachable(·), and invoke the controller with the subgoal if it is deemed reachable. Otherwise
fprecondition(·) is used to find the preconditions of the subgoal and set it as the new goal. The overall
process is illustrated in Fig. 2 and is in addition summarized with an algorithm in Appendix.

4.5 Supervision and Training

Supervision from demonstrations: We parse the training labels from task demonstrations gener-
ated by a hard-coded expert. A task demonstration consists of a sequence of intermediate goals
{g(0), ...g(T )} and the corresponding environment observations {o(0), ..., o(T )}. In addition, we also
assume the dependencies among the subgoals {g0, ..gN} of a goal are given in the form of a directed
graph. A detailed discussion on training supervision is included in Appendix.

Training: We train all sub-networks with full supervision. Due to the recursive nature of our
architecture, a long planning sequence can be optimized in parallel by considering the intermediate
goals and their preconditions independent of the planning history. More details is included in the
Appendix.

5 Experiments

Our experiments aim to (1) illustrate the essential features of RPN, especially the effect of regression
planning and subgoal serialization, (2) test whether RPN can achieve zero-shot generalization to
new task instances, and (3) test whether RPN can directly learn from visual observation inputs. We
evaluate our method on two environments: an illustrative Grid World environment [33] that dissects
different aspects of the generalization challenges (Sec. 5.1), and a simulated Kitchen 3D domain
(Sec. 5.2) that features complex visual scenes and long-horizon tasks in BulletPhysics [34].

We evaluate RPN including all components introduced in Sec. 4 to perform regression planning
with the algorithm of Sec. 4.4 and compare the following baselines and ablation versions: 1) E2E, a
reactive planner adopted from Pathak et al. [35] that learns to plan by imitating the expert trajectory.
Because we do not assume a high-level action space, we train the planner to directly predict the next
intermediate goal conditioning on the final goal and the current observation. The comparison to E2E
is important to understand the effect of the inductive biases embedded in RPN. 2) SS-only shares
the same network architecture as RPN, but instead of performing regression planning, it directly
plans the next intermediate goal based on the highest-priority subgoal produced by Algorithm 1. This
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baseline evaluates in isolation the capabilities of our proposed subgoal serialization to decompose
complex task goal into simpler subgoals. Similarly, in 3) RP-only we replace subgoal serialization
(Algorithm 1) with a single network, measuring the capabilities of the backward planning alone.

5.1 Grid World

In this environment we remove the complexity of learning the visual features and focus on comparing
planning capabilities of RPN and the baselines. The environment is the 2D grid world built on [33]
(see Table 1, left). The state space is factored into object-centric features, which consist of object types
(door, key, etc), object state (e.g., door is open), object colors (six unique colors), and their locations
relative to the agent. The goals are provided in a grounded symbolic expression as described in
Sec. 3, e.g., Open(door_red)∧Open(door_blue). Both the expert demonstrator and the low-level
controllers are A∗-based search algorithm. Further details on training and evaluation setup are in the
Appendix. In the grid world we consider two domains:

DoorKey: Six pairs of doors and keys, where a locked door can only be unlocked by the key of the
same color. Doors are randomly initialized to be locked or unlocked. The training tasks consist of
opening D = 2 randomly selected doors (the other doors can be in any state). The evaluation tasks
consist of opening D ∈ {4, 6} doors, measuring the generalization capabilities of the methods to
deal with new tasks composed of multiple instances of similar subtasks. The key to solving tasks
involving more than two doors is to model opening each door as an independent subgoal.

RoomGoal: Six rooms connected to a central area by possibly locked and closed doors. The training
data is evenly sampled from two tasks: k-d (key-door) is to open a randomly selected (possibly
locked) door without getting into the room. d-g (door-goal) is to reach a tile by getting through a
closed but unlocked door. In evaluation, the agent is asked to reach a specified tile by getting through
a locked door (k-d-g), measuring the capabilities of the methods to compose plans learned from the
two training tasks to form a longer unseen plan.

Domain DoorKey RoomGoal
Train Eval Train Eval

Task D=2 D=4 D=6 k-d d-g k-d-g
E2E [35] 81.2 1.2 0.0 100.0 100.0 3.2
RP-only 92.2 18.2 0.0 100.0 100.0 100.0
SS-only 99.7 46.0 21.1 99.9 100.0 7.8

RPN 99.1 91.9 64.3 98.7 99.9 98.8

Table 1: (Left) Sample initial states of DoorKey and RoomGoal domains; (Right) Results of DoorKey
and RoomGoal reported in average success rate (percentage).

Results: The results of both domains are shown in Table 1, right. In DoorKey, all methods except
E2E almost perfectly learn to reproduce the training tasks. The performance drops significantly for
the three baselines when increasing the number of doors, D. RP-only degrades significantly for the
inability to decompose the goal into independent parts, while the performance of SS-only degrades
because, in addition to interpreting the goal, it also needs to determine if a key is needed and the color
of the key to pick. However, it still achieves 21% success rate at D = 6. RPN maintains 64% success
rate even for D = 6, although it has been trained with very few samples where all six doors are
initialized as closed or locked. Most of the failures (21% of the episodes) are due to RPN not being
able to predict any precondition while no subgoals are reachable (full error breakdown in Appendix).

In RoomGoal all methods almost perfectly learn the two training tasks. In particular, E2E achieves
perfect performance, but it only achieves 3.2% success rate in the k-d-g long evaluation task. In
contrast, both RP-only and RPN achieve optimal performance also on the k-d-g evaluation task,
showing that our regression planning mechanism is enough to solve new tasks by composing learned
plans, even when the planning steps connecting plans have never been observed during training.

5.2 Kitchen 3D

This environment features complex visual scenes and very long-horizon tasks composed of tabletop
cooking and sorting subtasks. We test in this environment the full capabilities of each component in
RPN, and whether the complete regression planning mechanism can solve previously unseen task
instances without dropping performance while coping directly with high-dimensional visual inputs.
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Figure 4: Visualization of RPN solving a sample cooking task with one dish and two ingredients
(I = 2, D = 1): (Top) Visualization of the environment after a goal is achieved (zoom in to see
details), and (Bottom) the regression planning trace generated by RPN. Additional video illustration
is in the supplementary material.

Figure 3: The Kitchen 3D
environment. An agent (not
shown) is tasked to prepare
a meal with variable number
of dishes and ingredients

Cooking: The task is for a robotic agent to prepare a meal consisting
of a variable number of dishes, each involving a variety of ingredients
and different cookwares. As shown in Fig. 3, the initial layout consists
of a set of ingredients and plates randomly located at the center of the
workspace surrounded by (1) a stove, (2) a sink, (3) two cookwares,
and (4) three serving areas. There are two types of ingredients: fruits
and vegetables, and six ingredients in total. An ingredient needs to be
cleaned at the sink before cooking. An ingredient can be cooked by
setting up the correct cookware at the stove, activating the stove, and
placing the ingredient on the cookware. Fruits can only be cooked in
the small pan and vegetables in the big pot.

The environment is simulated with [34]. A set of low-level controllers
interact with objects to complete a subgoal, e.g., On(tomato, sink)
invokes an RRT-based motion planner [36] to pick up the tomato and
place it in the sink. For the object-centric representation, we assume
access to object bounding boxes of the input image ot and use a CNN-
based encoder to encode individual image patches to et. The encoder
is trained end-to-end with the rest of the model. More details on network architectures and evaluation
setup are available in the Appendix.

We focus on evaluating the ability to generalize to tasks that involve a different number of dishes (D)
and ingredients (I). The training tasks are to cook randomly chosen I = 3 ingredients into D = 2
dishes. The evaluation tasks are to cook meals with I ∈ {2, ..., 6} ingredients and D ∈ {1, .., 3}
dishes. In addition, cooking steps may vary depending on the order of cooking each ingredient, e.g.,
the agent has to set up the correct cookware before cooking an ingredient or turn on the stove/sink if
these steps are not done from cooking the previous ingredient. In addition to the average task success
rate, we also report the average sub-goal completion rate. For example, for an episode where 5 out of
6 ingredients is successfully prepared for a I = 6 task, the metric value would be 5

6 .

Table 2: Results of Kitchen 3D in average task success rate / average subgoal completion rate over
1000 evaluation episodes. All standard errors are less or equal to 0.5 and are thus omitted.

Train Evaluation
Task I=3, D=2 I=2, D=1 I=4, D=1 I=4, D=3 I=6, D=1 I=6, D=3

E2E [35] 5.0 / 8.3 16.4 / 21.2 2.3 / 3.7 0.7 / 3.0 0.0 / <0.1 0.0 / <0.1
RP-only 70.3 / 83.4 67.1 / 77.4 47.0 / 71.7 27.9 / 64.1 <0.1 / 23.9 0.0 / 22.9
SS-only 49.1 / 59.7 59.3 / 61.9 56.6 / 66.2 43.4 / 60.0 42.8 / 69.3 32.7 / 59.7

RPN 98.5 / 98.8 98.6 / 98.7 98.2 / 99.2 98.4 / 99.2 95.3 / 98.9 97.2 / 99.4

Results: As shown in Table 2, RPN is able to achieve near-optimal performance on all tasks, showing
that our method achieves strong zero-shot generalization even with visual inputs. In comparison,
E2E performs poorly on both training and evaluation tasks and RP-only achieves high accuracy on
training tasks, but the performance degrades significantly as the generalization difficulty increases.
This shows that the regression planning is effective in modeling long-term plans but generalize poorly
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to new task goals. SS-only performs worse than RP-only in training tasks, but it is able to maintain
reasonable performance across evaluation tasks by decomposing task goals to subgoals.

In Fig. 3, we visualize a sample planning trajectory generated by RPN on a two-ingredients one-dish
task (I = 2, D = 1). RPN is able to resolve the optimal order of completing each subgoal. In this
case, RPN chooses to cook cabbage first and then banana. Note that the steps for cooking a banana is
different than that of cooking cabbage: the agent does not have to activate the stove and the sink, but
it has to set a pan on the stove in addition to the pot because fruits can only be cooked with pan. RPN
is able to correctly generate different plans for the two ingredients and complete the task.

Table 3: Results of RPN trained on I = 3, D = 2 tasks with different number of task instances T
and demonstrations per task N and evaluated on I = 6, D = 3 tasks.

Train Set T=50
N=10

T=100
N=10

T=500
N=10

T=1080
N=1

T=1080
N=5

T=1080
N=10

RPN 80.0 / 89.8 93.7 / 97.7 94.6 / 99.0 87.7 / 94.1 97.8 / 99.4 97.2 / 99.4

Ablation study: generalization under limited data. Here we evaluate RPN under limited training
data. Specifically, we construct training datasets with reduced number of unique task instances T
(combinations of ingredients in a meal) and number of demonstrations per task instance N , and we
evaluate the resulting RPN models on the most challenging I = 6, D = 3 tasks. As shown in Table 3,
RPN generalizes well with both reduced T and N . Notably, RPN is able to maintain a ∼ 95% task
success rate with 1/10 of all unique training task instances (T = 100, N = 10), showing that RPN
can generalize to unseen goals and plans in a complex task domain.

6 Limitations and Future Works

Partially-observable environments. Because the current RPN framework assumes that the symbolic
goals are grounded on the current observation, more architecture changes are required to accommodate
goal specifications under POMDP. In addition, more principled approaches [19] may require extending
RPN to explicitly reason about uncertainty of the state. We consider extending RPN to POMDP as an
important future direction.

Generalize to new objects and/or predicates. We have shown preliminary results in Sec. 5 that
RPN is able to generalize to new visual configurations of known predicates: An RPN model trained
on tasks I=3, D=2 has never seen a dish with more than two cooked ingredients, but it is able to
generalize to tasks with four-ingredients dishes(I=6, D=3). Nonetheless, generalizing to arbitrary
new objects and predicates remains a major challenge. For example, to plan for a goal Cooked(X)
regardless of X requires understanding the invariant feature of Cooked. While possible in the current
Kitchen3D environment, where predicates are rendered as simple change of texture hues, generalizing
to more realistic scenarios would either require more diverse training data or explicitly learning
disentangled representations [37] for the predicates.

Learning new rules from a few demonstrations. We have demonstrated that RPN can learn the
implicit rules of a domain from thousands of video demonstrations. However, in a more realistic
setting, we would like to have an agent that can learn new planning rules by only observing a few
demonstrations, similar to [38]. A possible approach is to combine RPN with a meta-learning
framework such as [39] to quickly adapt to a new domains.

Generalized planning space. In future works, we plan to extend the regression planning mechanism
to more complex but structured planning spaces such as geometric planning [19] (e.g., including
the object pose as part of a goal), enabling more fine-grained interface with the low-level controller.
Another direction is to plan in a learned latent space instead of an explicit symbolic space. For
example, we can learn compact representations of the entity features with existing representation
learning methods [37] and train RPN to perform regression planning in the latent space.
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8 Appendix

8.1 Architecture

Below we provide the details of our model size and architecture in the Kitchen 3D environment. The
image encoder architecture is shared across all models. For Grid World, we use the same architecture
but reduce all layer sizes by a factor of two. We use ReLU for activation. We train all models in
all experiments with batch size of 128 and ADAM optimizer [40] with learning rate = 1e− 3 on a
single GTX 1080 Ti GPU. We use a hold-out set for validation that runs every epoch. The models are
implemented with PyTorch [41].

fprecondition fdependency freachable fsatisfied
RPN MLP(128, 128, 128) MLP(128, 128, 128) MLP(128, 64, 64) MLP(128, 128, 128)

RP-only Same as RPN N/A Same as RPN N/A
SS-only N/A Same as RPN N/A Same as RPN

E2E MLP(256, 256, 256)

Image encoder
[Conv2D(k=3, c=64), MaxPool(2, 2),
Conv2D(k=3, c=128), MaxPool(2, 2),
Conv2D(k=3, c=32), MaxPool(2, 2)]

8.2 Regression Planning Algorithm

Here we summarize the full regression planning algorithm (the subroutine SUBGOALSERIALIZATION
is included in the main text). We set the maximum regression depth M = 10 for all experiments.

8.3 Experiments Details

8.3.1 Grid World

Algorithm 2 REGRESSIONPLANNING

Inputs: Current entity features et, final goal g,
maximum regression depth M
Outputs: Intermediate goal to be executed by a
low-level controller.
i← 0
while i < M do

g′ ← SUBGOALSERIALIZATION(et, g)
rec(g′)← freachable(et, g

′)
if rec(g′) > 0.5 then

return g′
end if
g ← fprecondition(et, g

′)
end while

Environment: The environment is built on [33],
where an agent moves around a 2D grid to inter-
act with objects. There are three types of objects
in our setup: door, key, and tile indicating a goal
location, and six unique colors for each object
type. Doors can be in one of three states: (1)
open, (2) close, (3) close and locked. A door can
be only unlocked by the key of the same color,
and a key can be used only once. Both the ex-
pert demonstrator and the low-level controllers
are A∗-based search algorithm. A low-level con-
troller can be invoked to execute subgoals, e.g.,
Holding(key_red).

Planning space: We express task goals as con-
junctive expressions such as Open(door_red)
∧ Open(door_blue). The symbolic planning
space includes four unitary predicates: {Open, Locked, Holding, On}, where Open and Locked are
for door-related goals. Holding is for picking up keys. On is for indicating a goal tile that the agent
should reach in RoomGoal.

State representation: We factor the grid state information to object-centric features. Each feature is
the concatenation of a set of one-hot vectors in the order of (1) object types (door, key, tile), (2) colors
(6 in total), (3) object state (open, close, locked, holding), and (4) object location relative to the agent.

Evaluation: In the DoorKey domain, the task is to open D out of 6 doors. We generate 5000 D = 2
training task demonstration trajectories by randomly sampling the state of the doors and the locations
of keys and the agent. The evaluation tasks are opening D ∈ {4, 6} doors. For RoomGoal, the
training tasks are evenly sampled from (1) opening a possibly locked door without getting into the
room (k-d) and (2) opening an unlocked door and reach a goal tile (d-g). We generate 2500 task
demonstrations for each training tasks and evenly sample from these trajectories during training. All
evaluation results are reported by running 1000 trials for each task instance.
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8.3.2 Kitchen 3D

Environment: The 3D environment is built using Bullet Physics [34]. We use a disemboddied
gripper for both gathering training data and evaluation. To minimize the effect of low-level controller
and focus on evaluating the high-level planners, we assume the controllers are macros equipped with
RRT motion planners, and the picking and placing movements are coded as setting and removing
motion constraints between an object and the gripper. The placing poses are sampled randomly on the
target placing surface with a collision checking algorithm provided by Bullet Physics. The controller
in addition have an atomic action to activate the stove and the sink.

Planning space: The symbolic planning space includes four predicates: {On, Cooked, Cleaned,
Activated}, where On indicates desired binary relationship between pairs of objects, and the others
are unary predicates for specifying desired object states. A typical cooking goal specifies ingredients,
mapping from ingredients to plates, and which serving area should a plate be placed.

Rendering: Because we directly take in image observation as input, the state changes of the objects
(e.g., an ingredient is cooked, the stove is activated) should be reflected visually. All such visual state
changes are implemented with swapping the mesh textures and / or setting the transparency of the
texture. For example, cooking an ingredient darkens its texture, and cleaning an object makes the
texture semi-transparent. We plan to extend such visual changes to be more realistic and include
gradual changes of the state instead of instant changes in the future. We set the gripper to be invisible
when rendering to minimize the effect of occlusion.

State representation: We render the scene into 320 × 240 RGB images with PyBullet’s built-in
renderer. For object-centric representation, we crop the images into image patches for individual
object with object bounding boxes. We reshape the object bounding boxes to be the minimum
enclosing square that can cover the full object and expand the box sizes by a factor of 1.1 to emulate
an object detector. We resize all image crops to 24× 24 and scale the pixels by 1

255 before feeding to
the image encoder (Sec. 8.1) and the rest of the network. The unary entity features are encodings of
the individual image crops, and the binary entity features are the concatenation of encoding pairs.

Scene setup: For the scene setup, stove, sink, and the tray that initially holds cookwares have fixed
locations. All ingredients and plates are initialized with random locations on the table. We have six
ingredients in total, each fall into one of two types: fruits and vegetables. Fruits can only be cooked
with the small pan, and vegetable can only be cooked with the big pot.

Evaluation: For training, we generate a total of 10800 trajectories for the task of cooking one dish
with two randomly selected ingredients (I = 2, D = 1). Both the choice of plates and the serving
areas are random. All evaluation results are reported with 1000 trials for each evaluation task. The
standard error is reported on running 5 evaluation trials with different random seeds.

8.4 Obtaining Training Supervision

We use expert demonstration trajectories annotated with intermediate goal information as training
data. We envision a few sources of such demonstrations. First, one can provide intermediate goal
trajectories and use hard-coded policies to follow the intermediate goals as instructions to generate
the corresponding environment observations. We use such setup in this work and generate training
data on simple tasks, from which we train our RPN to generalize to more complex tasks. Second, we
also intend to extend our work to use human demonstrations annotated with sub-task information
(e.g., the data of the instructional video dataset [42]) as training data.

We include in Fig. 5 a sample intermediate goal trajectory and the subgoal-dependency information
used to generated training data for the Kitchen3D environment (I = 2, D = 1). The precondition
training label is parsed by tracing in the list of intermediate goals the subgoals that are part of the final
goal recursively. Labels to learn subgoals dependency are provided as direct graphs as shown in the
figure. Satisfied and Reachable labels can be directly parsed while stepping through the intermediate
goal list in execution.
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Goal: [on(plate/0, serving2), on(cabbage, plate/0), cooked(cabbage), on(banana, plate/0), 
cooked(banana)]

Intermediate goals:
[on(cabbage, sink)]
[cleaned(cabbage), activated(sink)]
[on(pot, stove)]
[on(cabbage, pot)]
[cleaned(cabbage), cooked(cabbage), activated(stove)]
[on(plate/0, serving2)]
[on(cabbage, plate/0)]
[cleaned(banana), on(banana, sink)]
[on(pan, stove)]
[cleaned(banana), cooked(banana), on(banana, pan)]
[on(banana, plate/0)]

Dependencies:
cleaned(cabbage) <-> activated(sink)
cooked(cabbage) <-> activated(stove)
cooked(cabbage) -> cleaned(cabbage)
on(cabbage, plate/0) -> cooked(cabbage)
on(cabbage, plate/0) -> on(plate/0, serving2)
cleaned(banana) <-> on(banana, sink)
cooked(banana) <-> on(banana, pan)
cooked(banana) -> cleaned(banana)
on(banana, plate/0) -> cooked(banana)
on(banana, plate/0) -> on(plate/0, serving2)

Figure 5: A sample intermediate goal trajectory used to generated training data for the Kitchen 3D
environment (I = 2, D = 1). Each row in the intermediate goals is a step to be completed by a
low-level policy. Dependencies are global information and are used when applicable. Such type of
annotation is commonly provided as labels in instructional video datasets, where video segments are
annotated with step-by-step sub-task information.

8.5 Additional Results

8.5.1 DoorKey: Error Breakdown

Here we show a detailed error breakdown of the D = 6 evaluation tasks in the DoorKey environment.

Table 4: Error breakdown of D = 6 task in the Doorkey environment reported in percentage.

Network Environment
Error Type Success All Sat No Prec Max Iter Controller Bad Goal Max Step

E2E 0.0 / / / 0.3 92.6 7.1
RP-only 0.0 0.0 91.8 0.0 0.2 8.0 0.0
SS-only 21.1 0.0 / / 0.0 78.9 0.0

Ours 64.3 0.9 21.3 8.7 0.1 1.4 3.3

We analyze two categories of errors: Environment and Network. Environment errors are errors
occurred when the agent is interacting with the environment: Controller means that the low-level
controller cannot find a valid path to reach a particular goal, e.g., all paths to reach a key is blocked.
Bad Goal means that the goals predicted by the network are invalid, e.g., picking up a key that’s
already been used. Max Step is that the maximum of steps that the environment allows is reached.

Network errors are internal errors from components of our RPN network: All Sat means that the
network incorrectly predicts that all subgoals are satisfied and exits prematurely. No Prec means
that the network cannot predict any preconditions while none of the subgoals is reachable. Max
Iter means that the regression planning process has reached the maximum number of steps (M in
Algorithm 2).

We see that the major source of error for E2E and SS-only is Bad Goal, i.e., the predicted goal is
invalid to execute. We are able to catch these types of errors due to the simplicity of the grid world
environment. However, this type of error may cause a low-level controller to behave unexpectedly in
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real-world tasks, causing security concerns. In contrast, RP-only and RPN both have very few such
errors thanks to the robustness of our precondition networks. However, due to the inability to break a
task goal into simpler parts, RP-only can easily make mistakes in the regression planning process,
causing No Prec error. Finally, RPN is able to achieve 64% success rate while minimizing the errors
occurred while interacting with the environment, highlighting a potential benefit of our system when
deployed to real-world agents.
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