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Overview

Experiment: Cooking in Kitchen 3D
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baseline evaluates in isolation the capabilities of our proposed subgoal serialization to decompose
complex task goal into simpler subgoals. Similarly, in 3) RP-only we replace subgoal serialization
(Algorithm 1) with a single network, measuring the capabilities of the backward planning alone.

5.1 Grid World

In this environment we remove the complexity of learning the visual features and focus on comparing
planning capabilities of RPN and the baselines. The environment is the 2D grid world built on [32]
(see Table 1, left). The state space is factored into object-centric features, which consist of object types
(door, key, etc), object state (e.g., door is open), object colors (six unique colors), and their locations
relative to the agent. The goals are provided in a grounded symbolic expression as described in
Sec. 3, e.g., Open(door_red)^Open(door_blue). Both the expert demonstrator and the low-level
controllers are A⇤-based search algorithm. Further details on training and evaluation setup are in the
Appendix. In the grid world we consider two domains:

DoorKey: Six pairs of doors and keys, where a locked door can only be unlocked by the key of the
same color. Doors are randomly initialized to be locked or unlocked. The training tasks consist of
opening D = 2 randomly selected doors (the other doors can be in any state). The evaluation tasks
consist of opening D 2 {4, 6} doors, measuring the generalization capabilities of the methods to
deal with new tasks composed of multiple instances of similar subtasks. The key to solving tasks
involving more than two doors is to model opening each door as an independent subgoal.

RoomGoal: Six rooms connected to a central area by possibly locked and closed doors. The training
data is evenly sampled from two tasks: k-d (key-door) is to open a randomly selected (possibly
locked) door without getting into the room. d-g (door-goal) is to reach a tile by getting through a
closed but unlocked door. In evaluation, the agent is asked to reach a specified tile by getting through
a locked door (k-d-g), measuring the capabilities of the methods to compose plans learned from the
two training tasks to form a longer unseen plan.

Domain DoorKey RoomGoal
Train Eval Train Eval

Task D=2 D=4 D=6 k-d d-g k-d-g
E2E [34] 81.2 1.2 0.0 100.0 100.0 3.2
RP-only 92.2 18.2 0.0 100.0 100.0 100.0
SS-only 99.7 46.0 21.1 99.9 100.0 7.8

RPN 99.1 91.9 64.3 98.7 99.9 98.8

Table 1: (Left) Sample initial states of DoorKey and RoomGoal domains; (Right) Results of DoorKey
and RoomGoal reported in average success rate (percentage).

Results: The results of both domains are shown in Table 1, right. In DoorKey, all methods except
E2E almost perfectly learn to reproduce the training tasks. The performance drops significantly for
the three baselines when increasing the number of doors, D. RP-only degrades significantly for the
inability to decompose the goal into independent parts, while the performance of SS-only degrades
because, in addition to interpreting the goal, it also needs to determine if a key is needed and the color
of the key to pick. However, it still achieves 21% success rate at D = 6. RPN maintains 64% success
rate even for D = 6, although it has been trained with very few samples where all six doors are
initialized as closed or locked. Most of the failures (21% of the episodes) are due to RPN not being
able to predict any precondition while no subgoals are reachable (full error breakdown in Appendix).

In RoomGoal all methods almost perfectly learn the two training tasks. In particular, E2E achieves
perfect performance, but it only achieves 3.2% success rate in the k-d-g long evaluation task. In
contrast, both RP-only and RPN achieve optimal performance also on the k-d-g evaluation task,
showing that our regression planning mechanism is enough to solve new tasks by composing learned
plans, even when the planning steps connecting plans have never been observed during training.

5.2 Kitchen 3D

This environment features complex visual scenes and very long-horizon tasks composed of tabletop
cooking and sorting subtasks. We test in this environment the full capabilities of each component in
RPN, and whether the complete regression planning mechanism can solve previously unseen task
instances without dropping performance while coping directly with high-dimensional visual inputs.
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Results on Minigrid 2D

Background: Symbolic Regression Planning

Goal:

Challenges:

Key ideas:

Video Demonstrations

RPN

Learning Planning

RPN
Current 

observation

Symbolic Task Goal

Next Intermediate Goal
Backward Planning

Cooked(cabbage)

Sat: False Rec: False

In(cabbage, pot)

Sat: False Rec: False

On(cabbage, plate)

Sat: False Rec: False

On(pot, stove)

Sat: False Rec: True
Active(stove)

Sat: False Rec: True

PickPlace(pot, stove)

: depends on : precondition of

DoorKey
Training: Open D=2 doors with same-colored key.
Evaluation:  Open D=[3 … 6] doors.
RoomGoal
Training: key-door (k-d) is fetch key and open the locked door to a room.  
Training: door-goal (d-g) is to open an unlocked door and go to a goal tile.
Evaluation: key-door-goal (k-d-g) is to fetch key, open locked door, and get to a goal tile.

problem conditioning on all entity features. Given a goal g and its subgoals {g1, ..., gK}, the models
can be expressed as:

fsatisfied(e
gi
t , gi) = �↵([e

gi
t , gi]) = sat(gi) freachable(et, g) = ��([et, g]) = rec(g), (3)

where sat(gi) 2 [0, 1] indicates if a subgoal gi 2 g is satisfied, and rec(g) 2 [0, 1] indicates if the
goal g is reachable by a low-level controller given the current observation.

4.4 Regression Planning with RPN

Algorithm 1 SUBGOALSERIALIZATION

Inputs: Current entity features et, goal g
v  ;, w  ;
for all gi 2 g do

sat(gi) fsatisfied(e
gi
t , gi)

if sat(gi) < 0.5 then
v  v [ {gi}, w  w [ {egit }

end if
end for
depGraph DiGraph(fdependency(w, v))
blockGraph Bron-Kerbosch(depGraph)
blockDAG DAG(blockGraph)
sortedBlocks TopoSort(blockDAG)
return g[sortedBlocks[�1]]

Having described the essential components of
RPN, we introduce an algorithm that invokes
the network at inference time to generate a plan.
Given the entity features et and the final goal
g, the first step is to serialize the subgoals. We
start by finding all subgoals are unsatisfied with
fsatisfied(·) and construct the input nodes for
fdependency(·), which in turn predicts a directed
graph structure. Then we use the Bron-Kerbosch
algorithm [31] to find all complete subgraphs and
construct a DAG among all subgraphs. Finally, we
use topological sorting to find the subgoal block
that has the highest priority to be completed. The
subgoal serialization subroutine is summarized
in Algorithm 1. Given a subgoal, we first check
if it is reachable by a low-level controller with
freachable(·), and invoke the controller with the subgoal if it is deemed reachable. Otherwise
fprecondition(·) is used to find the preconditions of the subgoal and set it as the new goal. The overall
process is illustrated in Fig. 2 and is in addition summarized with an algorithm in Appendix.

4.5 Supervision and Training

Supervision from demonstrations: We parse the training labels from task demonstrations gener-
ated by a hard-coded expert. A task demonstration consists of a sequence of intermediate goals
{g(0), ...g(T )

} and the corresponding environment observations {o(0), ..., o(T )
}. In addition, we also

assume the dependencies among the subgoals {g0, ..gN} of a goal are given in the form of a directed
graph. A detailed discussion on training supervision is included in Appendix.

Training: We train all sub-networks with full supervision. Due to the recursive nature of our
architecture, a long planning sequence can be optimized in parallel by considering the intermediate
goals and their preconditions independent of the planning history. More details is included in the
Appendix.

5 Experiments

Our experiments aim to (1) illustrate the essential features of RPN, especially the effect if regression
planning and subgoal serialization, (2) test whether RPN can achieve zero-shot generalization to
new task instances, and (3) test whether RPN can directly learn from visual observation inputs. We
evaluate our method on two environments: an illustrative Grid World environment [32] that dissects
different aspects of the generalization challenges (Sec. 5.1), and a simulated Kitchen 3D domain
(Sec. 5.2) that features complex visual scenes and long-horizon tasks in BulletPhysics [33].

We evaluate RPN including all components introduced in Sec. 4 to perform regression planning
with the algorithm of Sec. 4.4 and compare the following baselines and ablation versions: 1) E2E, a
reactive planner adopted from Pathak et al. [34] that learns to plan by imitating the expert trajectory.
Because we do not assume a high-level action space, we train the planner to directly predict the next
intermediate goal conditioning on the final goal and the current observation. The comparison to E2E
is important to understand the effect of the inductive biases embedded in RPN. 2) SS-only shares
the same network architecture as RPN, but instead of performing regression planning, it directly
plans the next intermediate goal based on the highest-priority subgoal produced by Algorithm 1. This
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figure. Satisfied and Reachable labels can be directly parsed while stepping through the intermediate
goal list in execution.

Goal: [on(plate/0, serving2), on(cabbage, plate/0), cooked(cabbage), on(banana, plate/0), 
cooked(banana)]

Intermediate goals:
[on(cabbage, sink)]
[cleaned(cabbage), activated(sink)]
[on(pot, stove)]
[on(cabbage, pot)]
[cleaned(cabbage), cooked(cabbage), activated(stove)]
[on(plate/0, serving2)]
[on(cabbage, plate/0)]
[cleaned(banana), on(banana, sink)]
[on(pan, stove)]
[cleaned(banana), cooked(banana), on(banana, pan)]
[on(banana, plate/0)]

Dependencies:
cleaned(cabbage) <-> activated(sink)
cooked(cabbage) <-> activated(stove)
activated(stove) -> cooked(cabbage)
cooked(cabbage) -> cleaned(cabbage)
on(cabbage, plate/0) -> cooked(cabbage)
on(cabbage, plate/0) -> on(plate/0, serving2)
cleaned(banana) <-> on(banana, sink)
cooked(banana) <-> on(banana, pan)
cooked(banana) -> cleaned(banana)
on(banana, plate/0) -> cooked(banana)
on(banana, plate/0) -> on(plate/0, serving2)

Figure 5: A sample intermediate goal trajectory used to generated training data for the Kitchen 3D
environment (I = 2, D = 1). Each row in the intermediate goals is a step to be completed by a
low-level policy. Dependencies are global information and are used when applicable. Such type of
annotation is commonly provided as labels in instructional video datasets, where video segments are
annotated with step-by-step sub-task information.

8.5 Additional Results

8.5.1 DoorKey: Error Breakdown

Here we show a detailed error breakdown of the D = 6 evaluation tasks in the DoorKey environment.

Table 3: Error breakdown of D = 6 task in the Doorkey environment reported in percentage.

Network Environment
Error Type Success All Sat No Prec Max Iter Controller Bad Goal Max Step

E2E 0.0 / / / 0.3 92.6 7.1
RP-only 0.0 0.0 91.8 0.0 0.2 8.0 0.0
SS-only 21.1 0.0 / / 0.0 78.9 0.0

Ours 64.3 0.9 21.3 8.7 0.1 1.4 3.3

We analyze two categories of errors: Environment and Network. Environment errors are errors
occurred when the agent is interacting with the environment: Controller means that the low-level
controller cannot find a valid path to reach a particular goal, e.g., all paths to reach a key is blocked.
Bad Goal means that the goals predicted by the network are invalid, e.g., picking up a key that’s
already been used. Max Step is that the maximum of steps that the environment allows is reached.

Network errors are internal errors from components of our RPN network: All Sat means that the
network incorrectly predicts that all subgoals are satisfied and exits prematurely. No Prec means
that the network cannot predict any preconditions while none of the subgoals is reachable. Max
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In-depth error breakdown of D = 6 task in the DoorKey environment. 

• Regression planning [1] is a type of classic symbolic planning algorithm.
• Starting from the goal, iteratively expand search space by enumerating all valid 

action operators that leads to a goal. The action operators are pre-defined in a 
planning domain. Planners also require hand-defined state estimators.

• Our method learns regression planner from video demonstrations without a 
planning domain or explicit state estimators.

• By conditioning on the current observation, we can train a regression planner to 
directly predict a single path in the search space that connects the final goal to 
the current observation.
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Regression Planning Networks

Iter means that the regression planning process has reached the maximum number of steps (M in
Algorithm 2).

We see that the major source of error for E2E and SS-only is Bad Goal, i.e., the predicted goal is
invalid to execute. We are able to catch these types of errors due to the simplicity of the grid world
environment. However, this type of error may cause a low-level controller to behave unexpectedly in
real-world tasks, causing security concerns. In contrast, RP-only and RPN both have very few such
errors thanks to the robustness of our precondition networks. However, due to the inability to break a
task goal into simpler parts, RP-only can easily make mistakes in the regression planning process,
causing No Prec error. Finally, RPN is able to achieve 64% success rate while minimizing the errors
occurred while interacting with the environment, highlighting a potential benefit of our system when
deployed to real-world agents.

8.5.2 Kitchen 3D: Average Subgoal Completion Rate

In the main paper, we report results on the Kitchen 3D tasks in task success rate. However, this metric
is not informative in the case where an agent can complete most part of a task but not the entire task,
e.g., an agent can prepare 5 out of 6 ingredients in a I = 6 task. Here we include results in a different
metric: average fraction of subgoals completed. In the case of an episode where 5 out of 6 ingredients
is successfully prepared for a I = 6 task, the metric value would be 5

6 . We include results using both
metrics in Table 4 for reference.

Table 4: Evaluation results on Kitchen 3D reported in: average task success rate / average subgoal
completion rate. All standard errors for average subgoal completion rate is less or equal to 0.1 and is
thus omitted.

Train Evaluation
Task I=3, D=2 I=2, D=1 I=4, D=1 I=4, D=3 I=6, D=1 I=6, D=3
E2E 5.0 / 8.3 16.4 / 21.2 2.3 / 3.7 0.7 / 3.0 0.0 / <0.1 0.0 / <0.1

RP-only 70.3 / 83.4 67.1 / 77.4 47.0 / 71.7 27.9 / 64.1 <0.1 / 23.9 0.0 / 22.9
SS-only 49.1 / 59.7 59.3 / 61.9 56.6 / 66.2 43.4 / 60.0 42.8 / 69.3 32.7 / 59.7

RPN 98.5 / 98.8 98.6 / 98.7 98.2 / 99.2 98.4 / 99.2 95.3 / 98.9 97.2 / 99.4

We observe that for I = 6 tasks, although RP-only has close to 0% task success rate, it on average
can complete 23% of the subgoals. On the other hand, the performance degradation of SS-only is
less pronounced in the new metric: it is able to maintain 60% average subgoal completion rate for all
evaluation tasks, showing the power of goal decomposition.
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:action pick
:parameters (?a ?o ?p ?g ?t)
:precondition (and (Kin ?a ?o ?p ?g ?q ?t)

(AtPose ?o ?p) (HandEmpty ?a)
:effect (and (AtGrasp ?a ?o ?g) (CanMove)

(not (AtPose ?o ?p)) (not (HandEmpty ?a))

A sample pick action operator defined in a PDDL planning domain used by 
classic symbolic planners. RPN learns to plan without a  planning domain.

• Subgoal serialization [3]: Break a planning goal into sub-goals. We 
explicitly model their dependencies with a Dependency Network.

• Pre-condition prediction: Predict the predecessors of a goal that need to 
be satisfied as pre-conditions with a Precondition Network. 

• Prepare a meal with a variable number of dishes, each involving different ingredients and cookwares. 
• Each task takes up to ~30 steps. Planner takes Image as input. 

Results on Kitchen 3D. Results are reported in average task success rate / average subgoal
completion rate. Tasks are categorized by the number of dishes and number of ingredients used. 
I=3, D=2 means cooking two dishes with three ingredients.

Doorkey RoomGoal

k-d d-g
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Plan for long-horizon robotics tasks with high-dimensional 
observations.

• Long-term predictions in high-dimensional space (images).
• Learning to plan towards unseen goals.

• Learn to plan in a low-dimensional symbolic space 
conditioning on high-dimensional observations.

• Learn to break a complex task goal to sub-goals and plan 
backwards (regression planning) starting from the goal.

• Learn to model regression planning steps with a recursive 
neural network.

Regression Planning Networks Experiment: Navigation in Minigrid 2D 

• Recursive Architecture: We model regression planning steps with a recursive and 
modular network architecture.

• Object-centric representation: A goal is specified as the desired state of an 
object or a relationship in a feature scene graph [2].

Regression Planning Networks: Appendix

1 Appendix

1.1 Architecture

Below we provide the details of our model size and architecture in the Kitchen 3D environment. The
image encoder architecture is shared across all models. For Grid World, we use the same architecture
but reduce all layer sizes by a factor of two. We use ReLU for activation. We train all models in
all experiments with batch size of 128 and ADAM optimizer [1] with learning rate = 1e� 3 on a
single GTX 1080 Ti GPU. We use a hold-out set for validation that runs every epoch. The models are
implemented with PyTorch [2].

fprecondition fdependency freachable fsatisfied
RPN MLP(128, 128, 128) MLP(128, 128, 128) MLP(128, 64, 64) MLP(128, 128, 128)

RP-only Same as RPN N/A Same as RPN N/A
SS-only N/A Same as RPN N/A Same as RPN

E2E MLP(256, 256, 256)

Image encoder
[Conv2D(k=3, c=64), MaxPool(2, 2),
Conv2D(k=3, c=128), MaxPool(2, 2),
Conv2D(k=3, c=32), MaxPool(2, 2)]

1.2 Regression Planning Algorithm

Here we summarize the full regression planning algorithm (the subroutine SUBGOALSERIALIZATION
is included in the main text). We set the maximum regression depth M = 10 for all experiments.

1.3 Experiments Details

1.3.1 Grid World

Algorithm 1 REGRESSIONPLANNING

Inputs: Current entity features et, final goal g,
maximum regression depth M
Outputs: Intermediate goal to be executed by a
low-level controller.
i 0
while i < M do

g0  SUBGOALSERIALIZATION(et, g)
rec(g0) freachable(et, g0)
if rec(g0) > 0.5 then

return g0

end if

g  fprecondition(et, g0)
end while

Environment: The environment is built on [3],
where an agent moves around a 2D grid to inter-
act with objects. There are three types of objects
in our setup: door, key, and tile indicating a goal
location, and six unique colors for each object
type. Doors can be in one of three states: (1)
open, (2) close, (3) close and locked. A door can
be only unlocked by the key of the same color,
and a key can be used only once. Both the ex-
pert demonstrator and the low-level controllers
are A⇤-based search algorithm. A low-level con-
troller can be invoked to execute subgoals, e.g.,
Holding(key_red).

Planning space: We express task goals as con-
junctive expressions such as Open(door_red)
^ Open(door_blue). The symbolic planning
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Starting from the final symbolic goal 𝑔, RPN iteratively predicts a sequence of 
intermediate goals conditioning on the current observation 𝑜# until it reaches a goal 
𝑔(%&) that is reachable from the current state using a low-level controller.

github.com/danfeiX/RPN

http://github.com/danfeiX/RPN

