Determinantal Point Processes

Alex Kulesza

with Ben Taskar and Jennifer Gillenwater

Previously...

- M-best MAP
- Diverse M-best MAP
- Sampling

Use single-output model multiple times

Use single-output model multiple times

$$
\mathcal{P}\left(\boldsymbol{y}_{1}\right) \quad \mathcal{P}\left(\boldsymbol{y}_{2}\right) \quad \mathcal{P}\left(\boldsymbol{y}_{3}\right)
$$

A unified approach:

Explicitly model sets of multiple outputs

$$
\mathcal{P}\left(\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}\right\}\right)
$$

Explicitly model sets of multiple outputs

$$
\mathcal{P}\left(\left\{\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{3}\right\}\right)
$$

- Sample entire sets of multiple predictions
- Marginal and conditional probabilities
- How can this be efficient?

10,000

pixels

10,000

pixels
10
labels

$10,000^{10}$

structures

$10,000^{10}$

structures

10

predictions

$\left(10,000^{10}\right)^{10}$

sets of structures

Determinantal Point Processes

- Encode diversity using kernel matrix
- Linear algebra makes inference easy (and fun)
- Probabilistic models of diverse sets of objects
- We will extend to structured objects
- But let's start at the beginning...

Image search: "jaguar"

Relevance only:

Relevance

+ diversity:

Summarization

Importance only:

- NSA collecting customers' phone records
- NSA, Verizon surveillance program revealed
- NSA's phone snooping a different kind of creepy

Summarization

Importance + coverage:

- NSA collecting phone records
- PRISM: How the NSA wiretapped the

Internet

- GCHQ taps fibre-optic cables
- Google, Apple, Facebook deny PRISM involvement

facebook

Graphical models?

0/1
item i

Graphical models?

Loopy, negative interactions are hard

Determinantal point processes (DPPs)

Global, negative interactions are easy

Supporting Materials

- Tech report:
http://arxiv.org/abs/1207.6083
(120 pages, with all the proofs!)
- Matlab Code:
http://www.eecs.umich.edu/ ~kulesza/code/dpp.tgz

Outline

Part I Representation, inference, comparison to other models, learning

Part II Large-scale inference, extensions, sets of structures, applications

Part I

Representation

Inference: Marginals, Conditionals
Inference: Sampling
DPPs vs MRFs
Learning

Discrete point processes

Discrete point processes

- N items (e.g., images or sentences):

$$
\mathcal{Y}=\{1,2, \ldots, N\}
$$

- 2^{N} possible subsets
- Probability measure \mathcal{P} over subsets $Y \subseteq \mathcal{Y}$

Independent point process

- Each element i included with probability p_{i} :

$$
\mathcal{P}(Y)=\prod_{i \in Y} p_{i} \prod_{i \notin Y}\left(1-p_{i}\right)
$$

- For example, uniform:

Point process samples

Independent

DPP

Feature function \boldsymbol{g} on items in \mathcal{Y}

Feature function \mathbf{g} on items in \mathcal{Y}

Feature function \boldsymbol{g} on items in \mathcal{Y}

Feature function \mathbf{g} on items in \mathcal{Y}

Feature function \mathbf{g} on items in \mathcal{Y}

- 首皿
 $$
L_{i j}=\boldsymbol{g}(i)^{\top} \boldsymbol{g}(j)
$$

Determinantal point process

= squared volume spanned by $\boldsymbol{g}(i), i \in Y$
[Macchi, 1975]

Determinantal point process

$$
\begin{aligned}
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right) \\
L=\left(\begin{array}{llll}
L_{11} & L_{12} & L_{13} & L_{14} \\
L_{21} & L_{22} & L_{23} & L_{24} \\
L_{31} & L_{32} & L_{33} & L_{34} \\
L_{41} & L_{42} & L_{43} & L_{44}
\end{array}\right)
\end{aligned}
$$

[Macchi, 1975]

Determinantal point process

$$
\begin{array}{rllll}
\mathcal{P}(Y) & \propto \operatorname{det}\left(L_{Y}\right) & \\
& & & & \\
\mathcal{P}(\{2,4\}) & L_{11} & L_{12} & L_{13} & L_{14} \\
L_{21} & L_{22} & L_{23} & L_{24} \\
& L_{31} & L_{32} & L_{33} & L_{34} \\
& L_{41} & L_{42} & L_{43} & L_{44}
\end{array}
$$

[Macchi, 1975]

Determinantal point process

\[

\]

[Macchi, 1975]

Determinantal point process

$$
\begin{array}{r}
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right) \\
\mathcal{P}(\{2,4\}) \propto\left|\begin{array}{ll}
L_{22} & L_{24} \\
L_{42} & L_{44}
\end{array}\right|
\end{array}
$$

[Macchi, 1975]
4
8
6
3
0
9
2
9 3
[Borodin et al, 2010]

$48-6 \bullet 3 \bullet 0-9 \bullet 2 \circ 9 \bullet 3 \ldots$

[Borodin et al, 2010]
4
8
6
3
0
9
2
9
3

[Borodin et al, 2010]

[Burton and Pemantle, 1993]
(s)
[Burton and Pemantle, 1993]

[Burton and Pemantle, 1993]

$$
\left[\begin{array}{lll}
\hat{A} & \hat{A} & \hat{A} \\
\hat{A} & \hat{A} \\
\hat{A} \hat{A} & \hat{A} & \hat{A}
\end{array}\right]
$$

Eigenspectrum
[Dyson, 1970]

[Dyson, 1970]

Part I

Representation
Inference: Marginals, Conditionals
Inference: Sampling
DPPs vs MRFs
Learning

Inference: normalization

Inference: normalization

$$
\mathcal{P}(Y)=\frac{\operatorname{det}\left(L_{Y}\right)}{\operatorname{det}(L+I)}
$$

Multilinearity of determinants

$$
\begin{aligned}
& \left|\begin{array}{ccc}
- & \alpha R_{1} & - \\
- & R_{2} & - \\
- & R_{3} & - \\
\vdots &
\end{array}\right|=\alpha\left|\begin{array}{ccc}
- & R_{1} & - \\
- & R_{2} & - \\
- & R_{3} & - \\
\vdots &
\end{array}\right| \\
& \left|\begin{array}{ccc}
R_{1}+R_{1}^{\prime} & - \\
- & R_{2} & - \\
R_{3} & - \\
\vdots &
\end{array}\right|=\left|\begin{array}{cc}
-R_{1} & - \\
- & R_{2} \\
- & R_{3} \\
\vdots & \\
\hline
\end{array}\right|+\left|\begin{array}{cc}
R_{1}^{\prime} & - \\
- & R_{2} \\
- & - \\
R_{3} & - \\
\vdots &
\end{array}\right|
\end{aligned}
$$

L+I

$$
\begin{aligned}
& +\left|\begin{array}{cc}
+1 & \\
+1
\end{array}\right| \\
& +1\left|+\left|\begin{array}{cc}
1 & \\
+1
\end{array}\right|\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{cc}
+1 & \\
& +1
\end{array}\right| \\
& \left.\begin{array}{|c|c|cc|}
& \\
+1 & + & 1 & \\
+ & \\
+1
\end{array} \right\rvert\, \\
& \propto \mathcal{P}(\{1,2\}) \quad \mathcal{P}(\{1\}) \quad \mathcal{P}(\{2\}) \quad \mathcal{P}(\varnothing)
\end{aligned}
$$

Inference: marginals

$$
\begin{gathered}
\mathcal{P}(A \subseteq \boldsymbol{Y})=\operatorname{det}\left(K_{A}\right) \\
K=L(L+I)^{-1}
\end{gathered}
$$

$$
\begin{aligned}
\mathcal{P}(A \subseteq \boldsymbol{Y}) & =\operatorname{det}\left(K_{A}\right) \\
\mathcal{P}(i \in \boldsymbol{Y}) & =\operatorname{det}\left(K_{i i}\right)=K_{i i}
\end{aligned}
$$

$$
\mathbb{E}[|\boldsymbol{Y}|]=\sum_{i} \mathcal{P}(i \in \boldsymbol{Y})=\operatorname{trace}(K)
$$

$$
\begin{aligned}
\mathcal{P}(A \subseteq \boldsymbol{Y}) & =\operatorname{det}\left(K_{A}\right) \\
\mathcal{P}(i \in \boldsymbol{Y}) & =\operatorname{det}\left(K_{i i}\right)=K_{i i} \\
\mathcal{P}(i, j \in \boldsymbol{Y}) & =\operatorname{det}\left(\begin{array}{cc}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right) \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \boldsymbol{Y}) \mathcal{P}(j \in \boldsymbol{Y})-K_{i j}^{2}
\end{aligned}
$$

Diversity

Inference: conditioning

$$
\mathcal{P}(B \subseteq \boldsymbol{Y} \mid A \subseteq \boldsymbol{Y})=?
$$

Inference: conditioning

Schur complement:

$$
\operatorname{det}\left(K_{A \cup B}\right)=\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B A} K_{A}^{-1} K_{A B}\right)
$$

Inference: conditioning

$$
\operatorname{det}\left(K_{A \cup B}\right)=\operatorname{det}\left(K_{A}\right) \operatorname{det}\left(K_{B}-K_{B A} K_{A}^{-1} K_{A B}\right)
$$

$$
\begin{aligned}
\mathcal{P}(B \subseteq \boldsymbol{Y} \mid A \subseteq \boldsymbol{Y}) & =\frac{\mathcal{P}(A \cup B \subseteq \boldsymbol{Y})}{\mathcal{P}(A \subseteq \boldsymbol{Y})} \\
& =\frac{\operatorname{det}\left(K_{A \cup B}\right)}{\operatorname{det}\left(K_{A}\right)} \\
& =\operatorname{det}\left(K_{B}-K_{B A} K_{A}^{-1} K_{A B}\right)
\end{aligned}
$$

Inference: conditioning

$$
\begin{aligned}
\mathcal{P}(B \subseteq \boldsymbol{Y} \mid A \subseteq \boldsymbol{Y}) & =\operatorname{det}\left(K_{B}-K_{B A} K_{A}^{-1} K_{A B}\right) \\
& =\operatorname{det}\left(\left[K-K_{* A} K_{A}^{-1} K_{A *}\right]_{B}\right)
\end{aligned}
$$

DPPs closed under conditioning

Part I

Representation
Inference: Marginals, Conditionals

Inference: Sampling

DPPs vs MRFs

Learning

Eigendecomposition

$$
K=\sum_{n=1}^{N} \lambda_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}
$$

$\begin{array}{llllll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4} & \boldsymbol{v}_{5} & \boldsymbol{v}_{6}\end{array}$

Elementary DPP $\mathcal{P}\{2,3,6\}$

- \mathcal{P}^{J} only supported on sets of size $|J|$
- Exact sampling in $O\left(|J|^{2} N\right)$

Elementary DPPs

- The marginal kernel of P^{J} is $K^{J}=\sum_{n \in J} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\top}$
- Expected size $\mathbb{E}[|\boldsymbol{Y}|]=\operatorname{trace}\left(K^{J}\right)=\sum_{n \in J}\left\|\boldsymbol{v}_{j}\right\|^{2}=|J|$
- Since $\operatorname{rank}\left(K^{J}\right)=|J|, \operatorname{Pr}(|\boldsymbol{Y}|>|J|)=0$
- Hence $\operatorname{Pr}(|\boldsymbol{Y}|=|J|)=1$

Key insight

Every DPP is a "factored" mixture of its elementary DPPs:

$$
\mathcal{P} \propto \sum_{J \subseteq\{1, \ldots, N\}} \mathcal{P}^{J} \prod_{\substack{n \in J \\ \text { mixture weight }}} \lambda_{n}
$$

[Hough et al, 2006]

$$
\mathcal{P} \propto \sum_{J \subseteq\{1, \ldots, N\}} \mathcal{P}^{J} \prod_{\substack{n \in J \\ \text { mixture weight }}} \lambda_{n}
$$

$\begin{array}{llllll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4} & \boldsymbol{v}_{5} & \boldsymbol{v}_{6}\end{array}$
$+\lambda_{2} \lambda_{3} \lambda_{6}$.

$+\cdots$

Sampling algorithm

Phase one

Choose elementary DPP \mathcal{P}^{J} by mixture weight:

$$
\operatorname{Pr}(J) \propto \prod_{n \in J} \lambda_{n}
$$

Phase two
Draw sample from \mathcal{P}^{J}

Phase one

Choose elementary DPP \mathcal{P}^{J} by mixture weight:

$$
\operatorname{Pr}(J) \propto \prod_{n \in J} \lambda_{n}
$$

- Let $J=\varnothing$
- For $n=1,2, \ldots, N$
- $J \leftarrow J \cup\{n\}$ with probability $\frac{\lambda_{n}}{\lambda_{n}+1}$

Draw sample from \mathcal{P}^{J}

Phase two

Draw sample from \mathcal{P}^{J}

- Let $Y=\varnothing, K$ is the kernel of \mathcal{P}^{J}
- For 1 to $|J|$
- Choose i with probability $\propto K_{i i}$
- $Y \leftarrow Y \cup\{i\}$
- Update K to condition on event $i \in \boldsymbol{Y}$

Phase two

Draw sample from \mathcal{P}^{J}

- Let $Y=\varnothing, K$ is the kernel of \mathcal{P}^{J}
- For 1 to $|J|$

Could be expensive!

- Choose i with But with lazy eval, $O\left(|J|^{2} N\right)$.
- $Y \leftarrow Y \cup\{i\}$
- Update K to condition on event $i \in \boldsymbol{Y}$

Consequences

- Phase one determines:
- Size of sample $(|J|)$
- Likely content of sample (eigenvectors)
\Rightarrow Size and content are tied
- Size is sum of Bernoulli variables

Part I

Representation
Inference: Marginals, Conditionals Inference: Sampling

DPPs vs MRFs
Learning

DPP

MRF

DPP

MRF

DPP

MRF

DPP

$$
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)
$$

diversity

$$
\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{32} & L_{33}
\end{array}
$$

DPP

$$
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)
$$

$$
\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
& L_{22} & L_{23} \\
& & L_{33}
\end{array}
$$

DPP

$$
\mathcal{P}(Y) \propto \operatorname{det}\left(L_{Y}\right)
$$

diversity

$$
\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
& L_{22} & L_{23} \\
& & L_{33}
\end{array}
$$

DPP

MRF

$\mathcal{P}(Y) \propto$

w_{1}	w_{2}	w_{3}
w_{12}	w_{13}	w_{23}

MRF

$\mathcal{P}(Y) \propto$

$$
\begin{array}{ccc}
w_{1} & w_{2} & w_{3} \\
w_{12} & w_{13} & w_{23}
\end{array}
$$

MRF

DPP

$$
\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
& L_{22} & L_{23} \\
& & L_{33}
\end{array}
$$

MRF

$$
\begin{array}{ccc}
w_{1} & w_{2} & w_{3} \\
w_{12} & w_{13} & w_{23}
\end{array}
$$

$$
\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}
$$

DPP

0	0	0
1	0	0
0	1	0
0	0	1
1	1	0
1	0	1
0	1	1
1	1	1

$$
\begin{array}{lll}
L_{11} & L_{12} & L_{13} \\
& L_{22} & L_{23} \\
& & L_{33}
\end{array}
$$

MRF
$w_{1} \quad w_{2} \quad w_{3}$
$w_{12} \quad w_{13} \quad w_{23}$

$\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}$

DPP

$0 \quad 0 \quad 0$
 $\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}$ Arbitrary
 $0 \quad 0 \quad 1$
 110
 $1 \quad 0 \quad 1$
 011
 111

$\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}$

DPP

$0 \quad 0 \quad 0$
 $\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}$ Arbitrary
 $0 \quad 0 \quad 1$
 110
 $1 \quad 0 \quad 1$
 $0 \quad 1 \quad 1$
 111

MRF
$w_{12} \quad w_{13} \quad w_{23}$

$\begin{array}{lll}y_{1} & y_{2} & y_{3}\end{array}$

DPP

$0 \quad 0 \quad 0$
 $\begin{array}{llll}1 & 0 & 0 & \text { Arbitrary } \\ 0 & 1 & 0 & \end{array}$
 $0 \quad 0 \quad 1$
 110
 $1 \quad 0 \quad 1$
 $0 \quad 1 \quad 1$
 $\begin{array}{lll}1 & 1 & 1\end{array}$ Fix this

MRF

$$
w_{12} \quad w_{13} \quad w_{23}
$$

$$
\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}
$$

DPP
$0 \quad 0 \quad 0$100$0 \quad 1 \quad 0$$0 \quad 0 \quad 1$110Arbitrary$1 \quad 0 \quad 1 \quad$ Plot these$0 \quad 1 \quad 1$$\begin{array}{lll}1 & 1 & 1\end{array}$ Fix this

MRF

$$
w_{12} \quad w_{13} \quad w_{23}
$$

(111): $\quad 0.001$
 0.25
 $\square 0.5$
 $\square .75$

DPP

MRF

(011)

Gaussian

DPP

Parameters
$O\left(N^{2}\right)$ $O\left(N^{2}\right)$

Closure

Independence
marginalization, conditioning
marginalization, conditioning

$$
\begin{array}{l|l}
1^{\text {st }}+2^{\text {nd }} \text { moments } & 1^{\text {st }}+2^{\text {nd }}+3^{\text {rd }} \text { moments }
\end{array}
$$

given by zeros of K^{-1} (context specific)

Sufficient

 StatisticsTerm 'determinant' first introduced by Gauss in Disquisitiones arithmeticae (1801)

Part I

Representation
Inference: Marginals, Conditionals
Inference: Sampling

DPPs vs MRFs

Learning

$$
\mathrm{L}^{\square}=\underset{L_{i j}=g(i)^{\top} g(i)}{\Longrightarrow}\| \| \|
$$

Increased quality

Reduced diversity
$\mathcal{P}(\boldsymbol{Y}=Y) \propto \operatorname{det}\left(L_{Y}\right)$

$$
\begin{aligned}
& =\operatorname{det}\left(\left\{q(i) \phi(i)^{\top} \phi(j) q(j)\right\}_{i, j \in Y}\right) \\
& =\operatorname{det}\left(\phi(Y)^{\top} \phi(Y)\right) \prod_{i \in Y} q^{2}(i)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{Y}=Y) & \propto \operatorname{det}\left(L_{Y}\right) \\
& =\operatorname{det}\left(\left\{q(i) \phi(i)^{\top} \phi(j) q(j)\right\}_{i, j \in Y}\right) \\
& =\operatorname{det}\left(\phi(Y)^{\top} \phi(Y)\right) \prod_{i \in Y} q^{2}(i)
\end{aligned}
$$

Balance quality and diversity

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{Y}=Y) & \propto \operatorname{det}\left(L_{Y}\right) \\
& =\operatorname{det}\left(\left\{q(i) \phi(i)^{\top} \phi(j) q(j)\right\}_{i, j \in Y}\right) \\
& =\operatorname{det}\left(\phi(Y)^{\top} \phi(Y)\right) \prod_{i \in Y} q^{2}(i)
\end{aligned}
$$

Balance quality and diversity

Quality vs. diversity

- Intuitive and natural tradeoff
- Log-linear quality model:

$$
q(i)=\exp \left(\theta^{\top} \boldsymbol{f}(i)\right)
$$

- Optimize θ by maximum likelihood
- Open question: how to learn diversity
- Log-likelihood of training example Y :

Quality

Diversity Normalization
$\theta^{\top} \sum_{i \in Y} \boldsymbol{f}(i)+\log \operatorname{det}\left(\phi(Y)^{\top} \phi(Y)\right)-\log (Z)$

- Concave in θ; gradient is:

$$
\sum_{i \in Y} \boldsymbol{f}(i)-\sum_{Y^{\prime}} \mathcal{P}\left(Y^{\prime}\right) \sum_{j \in Y^{\prime}} \boldsymbol{f}(j)
$$

Gradient of log-likelihood:

$$
\sum_{i \in Y} \boldsymbol{f}(i)-\sum_{Y^{\prime}} \mathcal{P}\left(Y^{\prime}\right) \sum_{j \in Y^{\prime}} \boldsymbol{f}(j)
$$

Gradient of log-likelihood:

$$
\begin{aligned}
& \sum_{i \in Y} \boldsymbol{f}(i)-\sum_{Y^{\prime}} \mathcal{P}\left(Y^{\prime}\right) \sum_{j \in Y^{\prime}} \boldsymbol{f}(j) \\
= & \sum_{i \in Y} \boldsymbol{f}(i)-\sum_{j} \boldsymbol{f}(j) \sum_{Y^{\prime} \ni j} \mathcal{P}\left(Y^{\prime}\right)
\end{aligned}
$$

Gradient of log-likelihood:

$$
\begin{aligned}
& \sum_{i \in Y} \boldsymbol{f}(i)-\sum_{Y^{\prime}} \mathcal{P}\left(Y^{\prime}\right) \sum_{j \in Y^{\prime}} \boldsymbol{f}(j) \\
&= \sum_{i \in Y} \boldsymbol{f}(i)-\sum_{j} \boldsymbol{f}(j) \sum_{Y^{\prime} \ni j} \mathcal{P}\left(Y^{\prime}\right) \\
& \text { marginal of } j
\end{aligned}
$$

Gradient of log-likelihood:

$$
\begin{aligned}
& \sum_{i \in Y} \boldsymbol{f}(i)-\sum_{Y^{\prime}} \mathcal{P}\left(Y^{\prime}\right) \sum_{j \in Y^{\prime}} \boldsymbol{f}(j) \\
= & \sum_{i \in Y} \boldsymbol{f}(i)-\sum_{j} \boldsymbol{f}(j) K_{j j}
\end{aligned}
$$

Compute gradient efficiently

News summarization

- Input: 10 news articles, ~ 250 sentences
- Output: 665 character summary
- Eval: ROUGE metric (four human summaries)

Hot dog in pizza is the stuff of dreams

- A gut-busting pizza has been launched with a hot dog sausage stuffed in the crust.
- Pizza Hut has released the limited edition dish after the success of its cheese and BBQ crusts.

- Dubbed the "pizza dog", the 14 -inch feast is only available for delivery and costs up to £19.49.

[The Sun,

4/12/12]

Quality features

- Dubbed the "pizza dog", the 14 -inch feast is only available for delivery and costs up to $£ 19.49$.

Quality features

2. Pizza Hut has released the limited edition dish after the success of its cheese and BBQ crusts.

Position 3. Dubbed the "pizza dog", the 14 -inch feast in article is only available for delivery and costs up to £19.49.
4. The firm was the first to stuff its crusts and has been selling the hot dog variety in Thailand and Japan since 2007.

Quality features

Quality features

Diversity features

- ϕ are tf-idf vectors: cosine similarity

The 14 -inch "pizza dog" is available for delivery.

Dubbed the "pizza dog", the 14 -inch feast is only available for delivery and costs up to $£ 19.49$.

Diversity features

- ϕ are tf-idf vectors: cosine similarity

Sadly, this caloric coma is not available in the U.S. yet.

Dubbed the "pizza dog", the 14 -inch feast is only available for delivery and costs up to $£ 19.49$.

Greedy MAP decoding

- Initialize summary Y to empty
- Add sentence i maximizing:

$$
\frac{\log \mathcal{P}(Y \cup\{i\} \mid X)-\log \mathcal{P}(Y \mid X)}{\operatorname{length}(i)}
$$

Until
\checkmark Simple, fast, good results

- Inexact, ignores loss

Minimum Bayes risk decoding

- Choose Y to maximize:

$$
\underset{Y^{*}}{\mathbb{E}}\left[\operatorname{ROUGE}-1 \mathrm{~F}\left(Y, Y^{*}\right)\right]
$$

[Goel and Byrne, 2000]

Minimum Bayes risk decoding

- Choose Y to maximize:
$\left.\underset{Y^{*}}{\mathbb{E}} \operatorname{Rouge-1F}\left(Y, Y^{*}\right)\right]$
[Goel and Byrne, 2000]

Minimum Bayes risk decoding

- Draw samples: $Y^{1}, Y^{2}, \ldots, Y^{R}$
- Choose Y to maximize:
$\left.\underset{Y^{*}}{\mathbb{E}} \operatorname{RoUGE-1F}\left(Y, Y^{*}\right)\right]$
[Goel and Byrne, 2000]

Minimum Bayes risk decoding

- Draw samples: $Y^{1}, Y^{2}, \ldots, Y^{R}$
- Choose Y to maximize:

$$
\frac{1}{R} \sum_{r=1}^{R} \operatorname{ROUGE}-1 \mathrm{~F}\left(Y, Y^{r}\right)
$$

[Goel and Byrne, 2000]

Minimum Bayes risk decoding

- Draw samples: $Y^{1}, Y^{2}, \ldots, Y^{R}$
- Choose Y^{s} to maximize:

$$
\frac{1}{R} \sum_{r=1}^{R} \operatorname{ROUGE}-1 \mathrm{~F}\left(Y^{s}, Y^{r}\right)
$$

[Goel and Byrne, 2000]

Minimum Bayes risk decoding

- Draw samples: $Y^{1}, Y^{2}, \ldots, Y^{R}$
- Choose Y^{s} to maximize:

$$
\frac{1}{R} \sum_{r=1}^{R} \operatorname{ROUGE}-1 \mathrm{~F}\left(Y^{s}, Y^{r}\right)
$$

$\sqrt{ }$ Loss-sensitive, improves results

- Slower
[Goel and Byrne, 2000]

System	ROUGE-1F	ROUGE-1R	R-SU4F
Begin	32.08	32.69	10.37
MMR	37.58	38.05	13.06
Peer 65	37.87	38.20	13.19
SubMod*	39.78	40.43	-
DPP greedy	38.96	39.15	13.83
DPP MBR	40.33	41.31	$\mathbf{1 4 . 1 3}$
LR+DPP	37.96	38.31	13.13

[*Lin and Bilmes, 2012]

Part I Representation, inference, comparison to other models, learning

Break

Part II Large-scale inference, extensions, sets of structures, applications

Part II

Large-scale DPPs

k-DPPs
Structured DPPs
News threading
Conclusion

$$
L_{i j}=q(i) \phi(i)^{\top} \phi(j) q(j)
$$

$$
C=\square \Phi
$$

Dual representation

$$
\begin{gathered}
L=\square \square \square \\
N \times N
\end{gathered} C=\square D
$$

- C and L have same (non-zero) eigenvalues
- Eigenvectors are related
- Use C for sampling and other inference

DPPs at scale

Projection

D
d

Random projection

$\Omega \Omega \Omega \Omega \Omega \Omega \Omega$ $\Omega \Omega \Omega \Omega \Omega \Omega \Omega$

Random projection to $\log \mathrm{N}$ dimensions

All distances approximately
[Johnson \& Lindenstrauss, 1984]

All volumes approximately preserved (w.h.p.)
[Magen \& Zouzias, 2008]

Random projection for DPPs

- Theorem: For $d=O\left(\frac{\log N}{\epsilon^{2}}\right)$ random projections, with high probability we have

$$
\|\mathcal{P}-\tilde{\mathcal{P}}\|_{1} \leq O(\epsilon)
$$

- Logarithmic in N, no dependence on D
- Small, $\mathrm{d} x \mathrm{~d}$ dual representation

DPPs at scale

Small N	Large N	
	Standard DPP or dual DPP	Dual DPP
Large D	Standard DPP	Random projection dual DPP

Part II

Large-scale DPPs

k-DPPs

Structured DPPs
News threading
Conclusion

What if we need exactly k diverse items?

$k-D P P s$

- Simple idea: condition DPP on target size k

$$
\mathcal{P}^{k}(Y)=\frac{\operatorname{det}\left(L_{Y}\right)}{\sum_{\left|Y^{\prime}\right|=k} \operatorname{det}\left(L_{Y^{\prime}}\right)}
$$

- Can choose k at test time
- But inference (naively) looks exponential!

DPP

$$
\mathcal{P} \propto \sum_{J \subseteq\{1, \ldots, N\}} \mathcal{P}^{J} \prod_{n \in J} \lambda_{n}
$$

k-DPP

$$
\mathcal{P} \propto \sum_{\substack{J \subseteq\{1, \ldots, N\} \\|J|=k}} \mathcal{P}^{J} \prod_{n \in J} \lambda_{n}
$$

$$
\mathcal{P} \propto \sum_{\substack{J \subseteq\{1, \ldots, N\} \\|J|=k}} \mathcal{P}^{J} \prod_{n \in J} \lambda_{n}
$$

十•••

k-DPP sampling

- Need new PHASE ONE to pick $|J|=k$
- No longer independent:
- Once we pick one, can only pick k-1 more

k-DPP sampling

- Solution: recursion on elementary symmetric polynomials:

$$
e_{k}^{N}=\sum_{\substack{J \in\{1, \ldots, N\} \\|J|=k}} \prod_{n \in J} \lambda_{n}
$$

- Using dynamic prog. PHASE ONE is $O(N k)$
- PHASE TWO is unchanged

Image search

- 2,016 images from Google Image Search
- 3 categories: cars, cities, dog breeds
- Diversity judgments: Amazon Mechanical Turk

Learning

- Learn mixture of 55 "expert" k-DPPs:
- SIFT
- Color histograms
- GIST
- Center only / all pairs

$$
k=2
$$

"porsche"

$\mathrm{k}=4$

"philadelphia"

$$
k=2
$$

$\mathrm{k}=4$

Labeling accuracy

System	Cars	Cities	Dogs
Single MMR *	55.95	56.48	56.23
Mixture MMR	59.59	60.99	57.39
Mixture k-DPP	64.58	61.29	59.84

*[Carbonell and Goldstein, 1998]

Part II

Large-scale DPPs
k-DPPs

Structured DPPs

News threading
Conclusion

\mathcal{Y}

ज3
-6,
-00000000000000000
\mathcal{Y}

-00000000000000000
\bullet
\mathcal{Y}

\bullet

Structured DPPs

- Exponentially many complex "items"
- Can't even handle $O(N)$
- But can still compute marginals and sample!

1. Factorized model
2. Dual DPPs
3. Second order message-passing

Structure

- Each item $\boldsymbol{i} \in \mathcal{Y}$ is a structure with factors α :

$$
\boldsymbol{i}=\left\{i_{\alpha}\right\}
$$

- For instance, standard sequence model:

1. Factorization

- Quality scores factor multiplicatively:

$$
q(\boldsymbol{i})=\prod q\left(i_{\alpha}\right) \quad \text { e.g., MRF }
$$

- Diversity features factor additively:

$$
\phi(\boldsymbol{i})=\sum_{\alpha} \phi\left(i_{\alpha}\right) \quad \text { e.g., Hamming }
$$

Synthetic particle tracking

Position

SDPP

Indep.

Time

2. Dual representation

$$
\begin{gathered}
L=\square D \quad C=\square D \\
N \times N \\
C_{r l}=\sum_{i} q^{2}(\boldsymbol{i}) \phi_{r}(\boldsymbol{i}) \phi_{l}(\boldsymbol{i})
\end{gathered}
$$

C is covariance of ϕ under $\operatorname{Pr}(\boldsymbol{i}) \propto q^{2}(\boldsymbol{i})$

3. Second-order message passing

- Can compute feature covariance using message passing when graph is a tree
- Use special semiring in place of sum-product
- Linear in number of nodes
- Quadratic in dimension of diversity features ϕ
[Li + Eisner, 2009]

Multiple-pose estimation

- Images from TV shows
- 3+ people/image, similar scale, hand labeled
- Trained quality model, spatial diversity model

Quality

X

Diversity

Diversity

Diversity

Low diversity

Diversity

Low diversity

Diversity

Low diversity

High diversity

Pose accuracy

Part II

Large-scale DPPs
k-DPPs
Structured DPPs
News threading
Conclusion

News threading

- Input: large news corpus
- Output: threads of articles

- Each thread narrates a major story
- Threads are diverse to cover many stories
- Combine k-DPPs, structured DPPs, dual DPPs, and random projection

Jun 21: Food Network fires

 Paula Deen
Jun 19: Paula Deen

embroiled in racism scandal

Jun 21: Food Network fires

Paula Deen

Jun 24: Butter commodities trading 2.5 points lower

Jun 19: Paula Deen

embroiled in racism scandal

Dynamic topic model

hotel kitchen casa inches post shade monica closet
mets rangers dodgers delgado martinez astacio angels mientkiewicz
social security accounts retirement benefits tax workers 401 payroll
palestinian israel baghdad palestinians sunni korea gaza israeli
cancer heart breast women disease aspirin risk study

mets rangers dodgers delgado martinez astacio angels mientkiewicz

social security accounts retirement benefits tax workers 401 payroll
palestinian israel baghdad palestinians sunni korea gaza israeli
cancer heart breast women disease aspirin risk study

Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients Still Don't Know How Often Women Get Heart Disease Mar 07: Aspirin Therapy Benefits Women, but Not the Way It Aids Men Mar 16: Radiation Therapy Doesn't Increase Heart Disease Risk Apr 11: Personal Health: Women Struggle for Parity of the Heart May 16: Black Women More Likely to Die from Breast Cancer May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients Jun 21: Another Reason Fish is Good for You

DPP threads

iraq iraqi killed baghdad arab marines deaths forces
social tax security democrats rove accounts
owen nominees senate democrats judicial filibusters
israel palestinian iraqi israeli gaza abbas baghdad

iraq iraqi killed baghdad arab marines deaths forces

social tax security democrats rove accounts
owen nominees senate democrats judicial filibusters
israel palestinian iraqi israeli gaza abbas baghdad
pope vatican church parkinson

Jan 08	Jan 28	Feb 17	Mar 09	Mar 29	Apr 18	May 08	May 28	Jun 17

Feb 24: Parkinson's Disease Increases Risks to Pope Feb 26: Pope's Health Raises Questions About His Ability to Lead Mar 13: Pope Returns Home After 18 Days at Hospital
Apr 01: Pope's Condition Worsens as World Prepares for End of Papacy
Apr 02: Pope, Though Gravely III, Utters Thanks for Prayers
Apr 18: Europeans Fast Falling Away from Church
Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name

Scale

- ~35,000 articles per six month time period
- About 10^{360} possible sets of threads
- $D=36,356$-dimensional diversity features
- Naively, requires 1600 TB of memory
- Use random projection to make it efficient

Evaluation

- Gold timelines too expensive
- Human news summaries to evaluate content
- amazonmechanical turk to evaluate thread quality

Results: Human summaries \& ratings

System	k-means	DTM	k-SDPP
ROUGE-1F	16.5	14.7	$\mathbf{1 7 . 2}$
R-SU4F	3.76	3.44	$\mathbf{3 . 9 8}$
Coherence	2.73	3.19	$\mathbf{3 . 3 1}$
Interlopers	0.71	1.10	1.15
Runtime (s)	626	19,434	$\mathbf{2 5 2}$

Part II

Large-scale DPPs
k-DPPs
Structured DPPs
News threading

Conclusion

- DPPs model global, negative correlations
- Efficient inference:
- normalization
- marginals
- conditioning
- sampling
- Extensions make DPPs useful for modeling and learning from large-scale real-world data

Food Processing

Dirichlet Process, aka
Chinese Restaurant Process

Determinantal Process, aka
Antisocial Coffeeshop Process

Beta-Bernouli Process, aka Indian Buffet Process

Supporting Materials

- Tech report (120 pages, with all the proofs!) http://arxiv.org/abs/1207.6083
- Matlab Code:
http://www.eecs.umich.edu/
~kulesza/code/dpp.tgz

