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• M-best MAP

• Diverse M-best MAP

• Sampling

Previously...
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Use single-output model multiple times
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Explicitly model sets of multiple outputs

P({y1,y2,y3})

A unified approach:

P(y3)P(y2)P(y1)

Use single-output model multiple times
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Explicitly model sets of multiple outputs

P({y1,y2,y3})

• Sample entire sets of multiple predictions

• Marginal and conditional probabilities

• How can this be e!cient?
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• Encode diversity using kernel matrix

• Linear algebra makes inference easy (and fun)

• Probabilistic models of diverse sets of objects

• We will extend to structured objects

• But let’s start at the beginning...

Determinantal Point Processes



Image search: “jaguar”

Relevance
only:

...

Relevance
+ diversity: ...
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Summarization
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Importance only:

• NSA collecting customers' phone 
records
• NSA, Verizon surveillance program 
revealed
• NSA's phone snooping a di"erent kind 
of creepy



Importance + coverage:

• NSA collecting phone records
• PRISM: How the NSA wiretapped the 
Internet
• GCHQ taps fibre-optic cables
• Google, Apple, Facebook deny PRISM 
involvement

Summarization
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Graphical models?

item i
0/1
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Graphical models?

Loopy, negative interactions are hard
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Determinantal point processes (DPPs)

diversity

Global, negative interactions are easy
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• Tech report:
http://arxiv.org/abs/1207.6083
(120 pages, with all the proofs!)

• Matlab Code:
http://www.eecs.umich.edu/
~kulesza/code/dpp.tgz

Supporting Materials
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Outline

Large-scale inference, extensions, 
sets of structures, applications

Representation, inference,
comparison to other models, learning

Part I      

Part II



Inference: Sampling

Inference: Marginals, Conditionals

Representation

DPPs vs MRFs

Part I      

Learning
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Discrete point processes

P
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•      items (e.g., images or sentences):

•      possible subsets

• Probability measure      over subsets              

Y = {1, 2, ..., N}

P

N

2N

Y ⊆ Y
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Discrete point processes



• Each element i included with probability     :

• For example, uniform:

Independent point process

pi

P(Y ) =
∏

i∈Y

pi
∏

i "∈Y

(1− pi)

= =
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Point process samples

�������������� DPPIndependent
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Feature function g on items in 

g

( )

Y
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Feature function g on items in Y
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Feature function g on items in Y



18

Feature function g on items in Y
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Feature function g on items in Y



L =
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Lij = g(i)!g(j)



L =
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Determinantal point process

P(Y ) ∝ det(LY )

[Macchi, 1975]

= squared volume spanned by
g(i), i ∈ Y



Determinantal point process

P(Y ) ∝ det(LY )

L22 L24

L42 L44

L =









L11 L12 L13 L14

L21 L23

L31 L32 L33 L34

L41 L43

[Macchi, 1975]
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Determinantal point process

P(Y ) ∝ det(LY )

L22 L24

L42 L44

L11 L12 L13 L14

L21 L23

L31 L32 L33 L34

L41 L43

P({2, 4})

[Macchi, 1975]
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Determinantal point process

P(Y ) ∝ det(LY )

L22 L24

L42 L44

L11 L12 L13 L14

L21 L23

L31 L32 L33 L34

L41 L43

P({2, 4})

[Macchi, 1975]
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Determinantal point process

P(Y ) ∝ det(LY )

L22 L24

L42 L44
P({2, 4}) ∝

∣∣∣∣

∣∣∣∣

[Macchi, 1975]
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[Borodin et al, 2010]
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4       8       6       3       0       9       2       9       3   ...

[Borodin et al, 2010]
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4       8       6       3       0       9       2       9       3   ...

DPP

[Borodin et al, 2010]
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[Burton and Pemantle, 1993]
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[Burton and Pemantle, 1993]
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[Burton and Pemantle, 1993]

22



DPP

[Burton and Pemantle, 1993]
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[Dyson, 1970]
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Eigenspectrum

[Dyson, 1970]
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DPP

[Dyson, 1970]
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Inference: Marginals, Conditionals
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DPPs vs MRFs

Part I      

Learning



?
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P(Y ) ∝ det(LY )

Inference: normalization
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P(Y ) =
det(LY )

det(L+ I)

Inference: normalization
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Multilinearity of determinants

∣∣∣∣∣∣∣∣∣
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Inference: marginals
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K = L(L+ I)−1

P(A � Y ) = det(KA)



P(A � Y ) = det(KA)

P(i � Y ) = det(Kii) = Kii

30

E[|Y |] =
∑

i

P(i ∈ Y ) = trace(K)



P(A � Y ) = det(KA)

P(i � Y ) = det(Kii) = Kii

P(i, j ⇥ Y ) = det
�

Kii Kij

Kji Kjj

�

= KiiKjj �KijKji

= P(i ⇥ Y )P(j ⇥ Y )�K2
ij

Diversity>
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Inference: conditioning

31

P(B ⊆ Y |A ⊆ Y ) =?



Inference: conditioning
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Schur complement:

det(KA∪B) = det(KA) det(KB −KBAK
−1
A KAB)

KA

KB

KAB

KBA

KA∪B =



Inference: conditioning

33

det(KA∪B) = det(KA) det(KB −KBAK
−1
A KAB)

=
det(KA∪B)

det(KA)

P(B ⊆ Y |A ⊆ Y ) =
P(A ∪B ⊆ Y )

P(A ⊆ Y )

= det(KB −KBAK
−1
A KAB)



Inference: conditioning

34

= det(
[
K −K∗AK

−1
A KA∗

]
B
)

P(B ⊆ Y |A ⊆ Y ) = det(KB −KBAK
−1
A KAB)

DPPs closed under conditioning
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Eigendecomposition

�1 �2 �3 �4 �5 �6

v4 v6v1 v2 v3 v5

36

K =
NX

n=1

�nvnv
>
n



•        only supported on sets of size

• Exact sampling in

Elementary DPP

v4 v6v1 v2 v3 v5

P{2,3,6}

|J |PJ

37

O(|J |2N)



• The marginal kernel of        is

• Expected size  

• Since                             , 

• Hence

Elementary DPPs

38

P J

Pr(|Y | > |J |) = 0rank(KJ) = |J |

Pr(|Y | = |J |) = 1

E[|Y |] = trace(KJ) =
X

n2J

||vj ||2 = |J |

KJ =
X

n2J

vnv
>
n



Every DPP is a “factored” mixture of its 
elementary DPPs:

Key insight

mixture weight

P ∝
∑

J⊆{1,...,N}

PJ
∏

n∈J

λn

[Hough et al, 2006]
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mixture weight

P ∝
∑

J⊆{1,...,N}

PJ
∏

n∈J

λn

v4 v6v1 v2 v3 v5

λ3λ5·

+ · · ·
v4 v6v1 v2 v3 v5

+ λ2λ3λ6·
�1 �2 �3 �4 �5 �6

v4 v6v1 v2 v3 v5
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Sampling algorithm

Pr(J) ∝
∏

n∈J

λn

Choose elementary DPP         by mixture weight:PJ

PHASE ONE

PHASE TWO
PJDraw sample from

41



Pr(J) ∝
∏

n∈J

λn

Choose elementary DPP         by mixture weight:PJ

PHASE ONE

• Let

• For

•                           with probability

J = ∅

n = 1, 2, . . . , N

J ← J ∪ {n} λn
λn+1

42



PHASE TWO

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8

PJDraw sample from
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PHASE TWO
PJDraw sample from

44

• Let              ,       is the kernel of    

• For     to 

• Choose     with probability
•  
• Update      to condition on event   

K PJY = ∅

K i ∈ Y

Y ← Y ∪ {i}
∝ Kiii

|J |1



PHASE TWO
PJDraw sample from

44

• Let              ,       is the kernel of    

• For     to 

• Choose     with probability
•  
• Update      to condition on event   

K PJY = ∅

K i ∈ Y

Y ← Y ∪ {i}
∝ Kiii

Could be expensive!
But with lazy eval,                    .O(|J |2N)

|J |1



• Phase one determines:

• Size of sample (      )

• Likely content of sample (eigenvectors)

➡ Size and content are tied 

➡ Size is sum of Bernoulli variables 

Consequences

|J |

46



Inference: Sampling

Inference: Marginals, Conditionals

Representation

DPPs vs MRFs

Part I      

Learning
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diversity

MRFDPP
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diversity

MRFDPP
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diversity

MRFDPP

y1

y2 y3

y1

y2 y3
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diversity

DPP

y1

y2 y3
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diversity

DPP

y1

y2 y3

L11 L12 L13

L21 L22 L23

L31 L32 L33

P(Y ) ∝ det(LY )
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diversity

DPP

y1

y2 y3

L11 L12 L13

L21 L22 L23

L31 L32 L33

P(Y ) ∝ det(LY )
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diversity

DPP

y1

y2 y3

L11 L12 L13

L21 L22 L23

L31 L32 L33

P(Y ) ∝ det(LY )

L ! 0
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MRF

y1

y2 y3
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MRF

y1

y2 y3

w1 w2 w3

w12 w13 w23

P(Y ) ∝
exp

(∑
i wiyi +

∑
i<j wijyiyj

)
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MRF

y1

y2 y3

w1 w2 w3

w12 w13 w23

P(Y ) ∝
exp

(∑
i wiyi +

∑
i<j wijyiyj

)

wij ≤ 0
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L11 L12 L13

L21 L22 L23

L31 L32 L33

w1 w2 w3

w12 w13 w23

DPP

MRF



y1 y2 y3

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1
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L11 L12 L13

L21 L22 L23

L31 L32 L33

w1 w2 w3

w12 w13 w23

DPP

MRF



Arbitrary

y1 y2 y3

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1
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L11 L12 L13

L21 L22 L23

L31 L32 L33

w1 w2 w3

w12 w13 w23

DPP

MRF



Arbitrary

y1 y2 y3

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1
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L11 L12 L13

L21 L22 L23

L31 L32 L33

w1 w2 w3

w12 w13 w23

DPP

MRF



Arbitrary

Fix this

y1 y2 y3

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

52

L11 L12 L13

L21 L22 L23

L31 L32 L33

w1 w2 w3

w12 w13 w23

DPP

MRF



Arbitrary

Fix this

Plot these

y1 y2 y3

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

52

L11 L12 L13

L21 L22 L23

L31 L32 L33

w1 w2 w3

w12 w13 w23

DPP

MRF



MRFDPP
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MRFDPP
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Figure 4: Realizable values of entries 110, 101, 011 in a 3-factor when 111 = 0.001 (red), 0.25 (green), 0.5 (blue),
and 0.75 (grey). Left: MRF. Middle: DPP. Right: Superimposed MRF (red) and DPP (blue) surfaces when
111 = 0.1 (figure rotated for better perspective).

5 LEARNING

Assume now that we are given a training set consist-
ing of T pairs (X1, Y 1), . . . , (XT , Y T ), where each Xt

is an input (e.g., a document cluster) and the corre-
sponding Y t ⇤ Y(Xt) is a selected subset (e.g., an
“ideal” extractive summary). To learn the parameters
� of our model, we maximize the log-likelihood of the
training set:

L(�) = log
⇧

t

P�(Y
t|Xt) =

⌅

t

logP�(Y
t|Xt) . (17)

For ease of notation, going forward we assume that the
training set contains only a single instance and drop
the instance index t. Of course, this does not change
the generality of the results.

Proposition 1. L(�) is concave in �.

Proof.

logP�(Y |X) = �⌅
⌅

i⇤Y

f i(X) + log det(SY (X))

� log
⌅

Y 0

exp

�
�⌅

⌅

i⇤Y 0

f i(X)

⇥
det(SY 0(X)) . (18)

With respect to �, the first term is linear, the second is
constant, and the third is the composition of a concave
function (negative log-sum-exp) and a non-negative
linear function, so the expression is concave.

We can therefore apply standard convex optimization
techniques as long as we can e⇤ciently compute the
gradient �L(�). As in standard maximum entropy
modeling, the gradient of the log-likelihood can be seen
as the di�erence between the empirical feature counts

and the expected feature counts under the model dis-
tribution:

�L(�) =
⌅

i⇤Y

f i(X) �
⌅

Y 0

P�(Y
⇥|X)

⌅

i⇤Y 0

f i(X) .

(19)

The sum over Y ⇥ is exponential in |Y(X)|; hence we
cannot compute it directly. Instead, note that we can
rewrite:
⌅

Y 0

P�(Y
⇥|X)

⌅

i⇤Y 0

f i(X) =
⌅

i

f i(X)
⌅

Y 0�{i}

P�(Y
⇥|X).

input : instance (X,Y ), parameters �
output: gradient �L(�)

1 Compute L(X) as in Equation (8);
2 Eigendecompose L(X) =

⇤
k ⇥kvkv⌅k ;

3 for i ⇤ Y(X) do
4 Kii ⇥

⇤
k

⇥k
1+⇥k

v2ki;

5 end
6 �L(�) ⇥

⇤
i⇤Y f i(X)�

⇤
i Kiif i(X);

Algorithm 1: Gradient of the log-likelihood.

That is, we can compute the expected feature counts if
we know the marginal probability of inclusion for each
sentence i. Recall that for DPPs, these probabilities
are given by the diagonal of K, the marginal kernel,
which can be computed through an eigendecomposi-
tion of the kernel L(X). Thus, we can e⇤ciently com-
pute the gradient as described in Algorithm 1.

6 MAP INFERENCE

At test time, we need to take the learned parameters �
and use them to predict a set Y for a previously unseen

MRF

DPP
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Gaussian DPP

Parameters

Closure marginalization, conditioning marginalization, conditioning

Independence given by zeros of          .                given by zeros of       .
(context specific) 

Su!cient
Statistics

1st + 2nd moments 1st + 2nd + 3rd moments

⌃�1 K�1

O(N2) O(N2)

Term 'determinant' first introduced by Gauss in Disquisitiones arithmeticae (1801)
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L =

Lij = g(i)!g(j)

58



Lij = q(i)�(i)��(j)q(j)

Diversity features
�(i) � RD, ��(i)�2 = 1

L =

Quality score
q(i) ∈ R+

58

Q Φ Q
Φ



q(i)�(i)

q(j)�(j)

Increased quality Reduced diversity

59



= det
�
�(Y )��(Y )

� �

i�Y

q2(i)

= det({q(i)�(i)��(j)q(j)}i,j�Y )

P(Y = Y ) � det(LY )

60



= det
�
�(Y )��(Y )

� �

i�Y

q2(i)

Balance  quality  and  diversity

= det({q(i)�(i)��(j)q(j)}i,j�Y )

P(Y = Y ) � det(LY )

60



= det
�
�(Y )��(Y )

� �

i�Y

q2(i)

Balance  quality  and  diversity

= det({q(i)�(i)��(j)q(j)}i,j�Y )

P(Y = Y ) � det(LY )

60



• Intuitive and natural tradeo"

• Log-linear quality model:

• Optimize      by maximum likelihood

• Open question: how to learn diversity

Quality vs. diversity

�

q(i) = exp(θ!f(i))
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• Log-likelihood of training example Y:

• Concave in   ; gradient is:

��
�

i�Y

f(i) + log det(⇥(Y )�⇥(Y ))� log(Z)

�

i�Y

f(i)�
�

Y �

P(Y �)
�

j�Y �

f(j)

�

Quality Diversity Normalization

62



�

i�Y

f(i)�
�

Y �

P(Y �)
�

j�Y �

f(j)

Gradient of log-likelihood:
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�

i�Y

f(i)�
�

Y �

P(Y �)
�

j�Y �

f(j)

�

j

f(j)
�

Y ��j

P(Y �)
�

i�Y

f(i) �=

Gradient of log-likelihood:
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marginal of j

�

i�Y

f(i)�
�

Y �

P(Y �)
�

j�Y �

f(j)

�

j

f(j)
�

Y ��j

P(Y �)
�

i�Y

f(i) �=

Gradient of log-likelihood:
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�

i�Y

f(i)�
�

Y �

P(Y �)
�

j�Y �

f(j)

�

j

f(j)
�

i�Y

f(i) � Kjj=

Compute gradient e!ciently

Gradient of log-likelihood:
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News summarization

• Input: 10 news articles, ~250 sentences

• Output: 665 character summary

• Eval: ROUGE metric (four human summaries)
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• A gut-busting pizza has been launched — 
with a hot dog sausage stu"ed in the 
crust.

• Pizza Hut has released the limited edition 
dish after the success of its cheese and 
BBQ crusts.

Hot dog in pizza is the stu! of dreams

[The Sun, 
4/12/12]

• Dubbed the “pizza dog”, the 14-inch feast 
is only available for delivery and costs up 
to £19.49.
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is only available for delivery and costs up 
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• Dubbed the “pizza dog”, the 14-inch feast 
is only available for delivery and costs up 
to £19.49.

66

Quality features
2. Pizza Hut has released the limited edition 

dish after the success of its cheese and 
BBQ crusts.

4. The firm was the first to stu" its crusts 
and has been selling the hot dog variety in 
Thailand and Japan since 2007.

3.Position 
in article



• Dubbed the “pizza dog”, the 14-inch feast 
is only available for delivery and costs up 
to £19.49.
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Quality features

2. Pizza Hut has released the limited edition 
dish after the success of its cheese and 
BBQ crusts.

4. The firm was the first to stu" its crusts 
and has been selling the hot dog variety in 
Thailand and Japan since 2007.
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• Dubbed the “pizza dog”, the 14-inch feast 
is only available for delivery and costs up 
to £19.49.

66

Quality features

2. Pizza Hut has released the limited edition 
dish after the success of its cheese and 
BBQ crusts.

4. The firm was the first to stu" its crusts 
and has been selling the hot dog variety in 
Thailand and Japan since 2007.

LexRank



The 14-inch “pizza dog” is 
available for delivery.

Diversity features

•     are tf-idf vectors: cosine similarityφ

67

Dubbed the “pizza dog”, the 14-inch feast is only 
available for delivery and costs up to £19.49.



Sadly, this caloric coma is not 
available in the U.S. yet.

Diversity features

•     are tf-idf vectors: cosine similarityφ

67

Dubbed the “pizza dog”, the 14-inch feast is only 
available for delivery and costs up to £19.49.



Greedy MAP decoding

68

[Lin and Bilmes, 2010]

• Initialize summary Y to empty

• Add sentence i maximizing:

✓  Simple, fast, good results

-  Inexact, ignores loss

Until 
budget 

full
logP(Y ∪ {i}|X)− logP(Y |X)

length(i)



Minimum Bayes risk decoding

69

[Goel and Byrne, 2000]

• Choose Y  to maximize:

E
Y ∗

[ROUGE-1F(Y, Y ∗)]
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Minimum Bayes risk decoding
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[Goel and Byrne, 2000]

• Choose Y  to maximize:

1

R

R∑

r=1

ROUGE-1F(Y, Y r)

Y 1, Y 2, . . . , Y R• Draw samples:



Minimum Bayes risk decoding

69

[Goel and Byrne, 2000]

• Choose Y  to maximize:

1

R

R∑

r=1

ROUGE-1F(Y s, Y r)

Ys

Y 1, Y 2, . . . , Y R• Draw samples:



Minimum Bayes risk decoding

69

[Goel and Byrne, 2000]

• Choose Y  to maximize:

✓  Loss-sensitive, improves results

-  Slower

1

R

R∑

r=1

ROUGE-1F(Y s, Y r)

Ys

Y 1, Y 2, . . . , Y R• Draw samples:



System ROUGE-1F ROUGE-1R R-SU4F

Begin 32.08 32.69 10.37

MMR 37.58 38.05 13.06

Peer 65 37.87 38.20 13.19

SubMod* 39.78 40.43 -

DPP greedy 38.96 39.15 13.83

DPP MBR 40.33 41.31 14.13

LR+DPP 37.96 38.31 13.13

70

[*Lin and Bilmes, 2012]



Break

Large-scale inference, extensions, 
sets of structures, applications

Representation, inference,
comparison to other models, learning
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Conclusion
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L = Q Φ Q
Φ

Lij = q(i)�(i)��(j)q(j)
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Q ΦQ
Φ
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Q ΦQ
ΦC =

Q2
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Dual representation

L = C = 2

N x N D x D

• C and L have same (non-zero) eigenvalues

• Eigenvectors are related

• Use C for sampling and other inference
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DPPs at scale

76

Small N Large N

Small D Standard DPP
or dual DPP Dual DPP

Large D Standard DPP ?
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Projection

78

=x ?ΦN

D

Φ~N

d

D

d



Random projection
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80

Random projection 
to log N dimensions
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All distances approximately 
preserved (w.h.p.)

[Johnson & Lindenstrauss, 1984]



81

All volumes approximately 
preserved (w.h.p.)

[Magen & Zouzias, 2008]



• Theorem: For                                  random 
projections, with high probability we have

• Logarithmic in N, no dependence on D

• Small, d x d dual representation

Random projection for DPPs

82

d = O

�
log N

�2

�

�P � P̃�1 � O(�) .
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DPPs at scale

84

Small N Large N

Small D Standard DPP
or dual DPP Dual DPP

Large D Standard DPP
Random

projection 
dual DPP
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What if we need exactly k diverse items?

86



• Simple idea: condition DPP on target size k

• Can choose k at test time

• But inference (naively) looks exponential!

k-DPPs

Pk(Y ) =
det(LY )∑

|Y ′|=k det(LY ′)

87



P ∝
∑

J⊆{1,...,N}

PJ
∏

n∈J

λn

k-DPP
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P ∝
∑

J⊆{1,...,N}

PJ
∏

n∈J

λn

|J | = k

k-DPP
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+ · · ·
v4 v6v1 v2 v3 v5

+ λ2λ3λ6·

P ∝
∑

J⊆{1,...,N}

PJ
∏

n∈J

λn

|J | = k

v4 v6v1 v2 v3 v5

λ1λ3λ5·

k = 3
�1 �2 �3 �4 �5 �6

v4 v6v1 v2 v3 v5
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• Need new PHASE ONE to pick

• No longer independent:

• Once we pick one, can only pick k-1 more

k-DPP sampling

|J | = k

90



k-DPP sampling

• Solution: recursion on elementary symmetric 
polynomials:

• Using dynamic prog. PHASE ONE is

• PHASE TWO is unchanged 

O(Nk)

eNk =
∑

J∈{1,...,N}
|J|=k

∏

n∈J

λn
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Image search

• 2,016 images from Google Image Search

• 3 categories: cars, cities, dog breeds

• Diversity judgments: Amazon Mechanical Turk
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k-DPPs: Fixed-Size Determinantal Point Processes

Figure 2. Sample labeling instances from each search category. The five images on the left form the partial result set, and
the two candidates are shown on the right. The candidate receiving the majority of actual annotator votes has a blue
border.

We then create 45 pairwise combination kernels by
concatenating every possible pair of the 10 basic fea-
ture vectors. This technique produces kernels that
synthesize more than one source of information, of-
fering greater flexibility.

Finally, we augment our kernels by adding a constant
hyperparameter ⇥ to each entry. ⇥ acts a knob for
controlling the overall preference for diversity; as ⇥ in-
creases, all images appear more similar, thus increasing
repulsion. In our experiments, ⇥ was chosen indepen-
dently for each category to optimize performance on
the training set.

5.3. Methods

We tested three di�erent methods on each search cat-
egory. For all of the methods, a training set consisting
of 75% of the available labeled data (selected at ran-
dom) was used to set hyperparameters, and evaluation
was performed on the remaining 25%. In the follow-
ing we use Yt to denote the five-image partial result
set for instance t, and Ct = {i+t , i�t } to denote the set
of two candidates, where i+t is the candidate preferred
by judges.

MMR: Maximal Marginal Relevance is a standard
technique for generating diverse sets of search re-
sults (Carbonell & Goldstein, 1998). The idea is to
build a set iteratively by adding on each round a re-
sult that maximizes a weighted combination of rele-
vance (with respect to the query) and diversity, mea-

sured as the maximum similarity to any of the previ-
ously selected results. For our experiments, we assume
relevance is uniform; hence we merely need to decide
which of the two candidates has the smaller maximum
similarity to the partial result set. For a given kernel
L, the MMR prediction is

MMRt = arg min
i⇥Ct

�
max
j⇥Yt

Lij

⇥
. (29)

We select the kernel that achieves the best zero-one
accuracy on the training set, and then apply it to make
test set predictions.

Best k-DPP:. Given a single kernel L, the k-DPP
prediction is

kDPPt = arg max
i⇥Ct

P6
L(Yt ⇥ {i}) . (30)

As with MMR, we select the single best kernel on the
training set, and apply it to the test set.

Mixture of k-DPPs:. We apply our learning method
to the full set of 55 kernels. We map training instances
to the form given in Section 4 as follows:

Y +
t =Yt ⇥ {i+t } (31)

Y �t =Yt ⇥ {i�t } . (32)

Optimizing Equation (26) on the training set yields a
55-dimensional mixture vector �, which is then used
to make predictions on the test set:

kDPPmixt = arg max
i⇥Ct

55⇤

d=1

�dP6
Ld

(Yt ⇥ {i}) . (33)
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Learning

• Learn mixture of 55 “expert” k-DPPs:

• SIFT

• Color histograms

• GIST

• Center only / all pairs
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k=2

k=4

“porsche”
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k=2

k=4

“philadelphia”
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k=2

k=4

“cocker spaniel”
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System Cars Cities Dogs

Single
MMR* 55.95 56.48 56.23

Mixture
 MMR* 59.59 60.99 57.39

Mixture
 k-DPP 64.58 61.29 59.84

Labeling accuracy

98

*[Carbonell and Goldstein, 1998]
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Structured DPPs

• Exponentially many complex “items”

• Can’t even handle O(N)

• But can still compute marginals and sample!

1. Factorized model

2. Dual DPPs

3. Second order message-passing

102



Structure

• Each item              is a structure with factors    :

• For instance, standard sequence model:

i � Y

i = {i�}

�

i1 i2 i3 i4 i5
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1. Factorization

q(i) =
�

�

q(i�)

• Quality scores factor multiplicatively:

• Diversity features factor additively:

�(i) =
�

�

�(i�)

e.g., MRF

e.g., Hamming
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SDPP

Indep.

Time

Synthetic particle tracking
Po

sit
ion

105



L = C = 2

N x N D x D

Crl =
�

i

q2(i)�r(i)�l(i)

C is covariance of      under                 .� Pr(i) � q2(i)

106

2. Dual representation



3. Second-order message passing

• Can compute feature covariance using 
message passing when graph is a tree

• Use special semiring in place of sum-product

• Linear in number of nodes

• Quadratic in dimension of diversity features

[Li + Eisner, 2009]
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Multiple-pose estimation

• Images from TV shows

• 3+ people/image, similar scale, hand labeled

• Trained quality model, spatial diversity model
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Quality
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Diversity
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Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed, for a variety of input images (shown on the
left). In some cases the quality scores are not accurate enough to properly localize a person, and
we also fail to identify the correct number of people in certain instances. Nonetheless, similar to
the unstructured case (Figure 1), the SDPP marginals reflect the desire to include diverse structures
(poses) in the set. These examples were selected by hand to show a range of performance.
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Figure 3: Results for pose estimation. The horizontal axis gives the distance threshold used to
determine whether two parts are successfully matched. 95% confidence intervals are shown.

Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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Figure 4: Structured marginals for the pose estimation task on successive steps of the sampling
algorithm, with already selected poses superimposed. Input images are shown on the left.

For illustration, we show the sampling process for a few images in Figure 4. As in Figure 1b, the
SDPP efficiently discounts poses that are similar to those already selected.

6 Conclusion

We introduced the structured determinantal point process (SDPP), a probabilistic model over sets of
structures such as sequences, trees, or graphs. We showed the intuitive “diversification” properties
of the SDPP, and developed efficient message-passing algorithms to perform inference through a
dual characterization of the standard DPP and a natural factorization.
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• Input: large news corpus

• Output: threads of articles

• Each thread narrates a major story

• Threads are diverse to cover many stories

• Combine k-DPPs, structured DPPs, dual 
DPPs, and random projection

News threading
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Jun 19: Paula Deen 
embroiled in racism scandal
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Jun 19: Paula Deen 
embroiled in racism scandal

Jun 21: Food Network fires 
Paula Deen
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Jun 19: Paula Deen 
embroiled in racism scandal

Jun 24: Butter commodities 
trading 2.5 points lower

Jun 21: Food Network fires 
Paula Deen



121



Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

cancer heart breast women disease aspirin risk study 

palestinian israel baghdad palestinians sunni korea gaza israeli 

social security accounts retirement benefits tax workers 401 payroll 

mets rangers dodgers delgado martinez astacio angels mientkiewicz 

hotel kitchen casa inches post shade monica closet 

Dynamic topic model
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Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17
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palestinian israel baghdad palestinians sunni korea gaza israeli 

social security accounts retirement benefits tax workers 401 payroll 

mets rangers dodgers delgado martinez astacio angels mientkiewicz 

hotel kitchen casa inches post shade monica closet 

Jan 11: Study Backs Meat, Colon Tumor Link
Feb 07: Patients Still Don’t Know How Often Women Get Heart Disease
Mar 07: Aspirin Therapy Benefits Women, but Not the Way It Aids Men 
Mar 16: Radiation Therapy Doesn’t Increase Heart Disease Risk
Apr 11: Personal Health: Women Struggle for Parity of the Heart
May 16: Black Women More Likely to Die from Breast Cancer
May 24: Studies Bolster Diet, Exercise for Breast Cancer Patients
Jun 21: Another Reason Fish is Good for You

122



Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 

DPP threads
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Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 

Feb 24: Parkinson’s Disease Increases Risks to Pope
Feb 26: Pope’s Health Raises Questions About His Ability to Lead 
Mar 13: Pope Returns Home After 18 Days at Hospital
Apr 01: Pope’s Condition Worsens as World Prepares for End of Papacy 
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers
Apr 18: Europeans Fast Falling Away from Church
Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name
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• ~35,000 articles per six month time period

• About 10360 possible sets of threads

• D = 36,356-dimensional diversity features

• Naively, requires 1600 TB of memory

• Use random projection to make it e!cient

Scale

124



• Gold timelines too expensive

• Human news summaries to evaluate content

•                              to evaluate thread quality

Evaluation
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System k-means DTM k-SDPP

ROUGE-1F 16.5 14.7 17.2

R-SU4F 3.76 3.44 3.98

Coherence 2.73 3.19 3.31

Interlopers 0.71 1.10 1.15

Results: Human summaries & ratings

Runtime (s) 626 19,434 252
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• DPPs model global, negative correlations

• E!cient inference:
- normalization
- marginals
- conditioning
- sampling

• Extensions make DPPs useful for modeling and 
learning from large-scale real-world data
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Food Processing

Determinantal Process, akaDirichlet Process, aka
Chinese Restaurant Process

Beta-Bernouli Process, aka
Indian Bu"et Process 

Antisocial Co"eeshop Process



• Tech report (120 pages, with all 
the proofs!)
http://arxiv.org/abs/1207.6083

• Matlab Code: 
http://www.eecs.umich.edu/
~kulesza/code/dpp.tgz

Supporting Materials
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