
BASS: A Resource Orchestrator to Account for Vagaries in
Network Conditions in Community Wi-Fi Mesh

Manasvini Sethuraman
msethuraman3@gatech.edu

Georgia Tech
Atlanta, Georgia, USA

Anirudh Sarma
anirudhs@gatech.edu

Georgia Tech
Atlanta, Georgia, USA

Netra Ghaisas
nghaisas6@gatech.edu

Georgia Tech
Atlanta, Georgia, USA

Adwait Bauskar
adwait.bauskar@gatech.edu

Georgia Tech
Atlanta, Georgia, USA

Ashutosh Dhekne
dhekne@gatech.edu

Georgia Tech
Atlanta, Georgia, USA

Anand Sivasubramaniam
anand@cse.psu.edu

Pennsylvania State University
University Park, Pennsylvania, USA

Umakishore Ramachandran
rama@gatech.edu
Georgia Tech

Atlanta, Georgia, USA

Abstract

We investigate the issue of deploying applications on a set of loosely
coupled compute devices, connected through a wireless mesh, typi-
cal in community networks. Wireless mesh networks experience
significant temporal and spatial variations in link bandwidth. When
application components, modeled as a directed acyclic graph, need
to be scheduled on such a mesh with bandwidth constraints (and
variations), the problem of mapping components to specific com-
pute nodes becomes an instance of bin packing with constraints of
CPU, memory, and bandwidth limits within the mesh. To make the
scheduling tractable, we propose BASS (Bandwidth Aware Sched-
uling System), and develop heuristics for scheduling, based on the
directed graph topology of the application components.We evaluate
BASS on an emulated mesh using bandwidth traces collected from
an actual wireless testbed - CityLab. Detailed evaluations show that
contemporary orchestration frameworks can plug in BASS to pro-
vide better end-to-end performance for the applications deployed
on the mesh while reducing resource utilization.

CCS Concepts

• Computer systems organization → Distributed architec-

tures; Distributed architectures; • Networks→Wireless ac-

cess networks.

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0623-3/24/12.
https://doi.org/10.1145/3652892.3700754

ACM Reference Format:

Manasvini Sethuraman, Anirudh Sarma, Netra Ghaisas, Adwait Bauskar,
Ashutosh Dhekne, Anand Sivasubramaniam, and Umakishore Ramachan-
dran. 2024. BASS: A Resource Orchestrator to Account for Vagaries in
Network Conditions in Community Wi-Fi Mesh. In 25th International Mid-
dleware Conference (MIDDLEWARE ’24), December 2–6, 2024, Hong Kong,
Hong Kong. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3652892.3700754

1 Introduction

Today’s internet landscape is diverse, both in terms of the underly-
ing infrastructure and the applications that run on it. At one end,
we have individual users at the edge, running applications on their
personal devices, and at the other end, we have cloud operators
who provision compute and memory, running services in data cen-
ters. The two are connected through a combination of a volatile
edge network, and a relatively stable backbone. The edge network
which provides the “last mile” connectivity to end users is often
the most variable, in capacity, reliability, and availability. This last
mile comprises traditional broadband, cellular networks, wireless
ISPs, satellite, and mesh networks. While service deployment and
operation for data centers with reliable network connectivity has
been well studied, the performance of these services in settings
exposed to the vagaries of weather, obstructions, and other unpre-
dictable conditions, as experienced by wireless mesh networks, is
not well understood. Fig. 1 depicts a community mesh network,
with applications deployed on it. Running applications like mes-
saging, video sharing, and other services is standard in community
mesh networks [24]. These mesh networks often provide essential
services to support severe weather situations, search and rescue
operations after disasters, etc. In fact, a community-run wireless
mesh network in New York City’s Red Hook neighborhood was
the only operational network during Hurricane Sandy [4]. Fur-
thermore, past research has shown that wireless infrastructure is

131

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3652892.3700754
https://doi.org/10.1145/3652892.3700754
https://doi.org/10.1145/3652892.3700754
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652892.3700754&domain=pdf&date_stamp=2024-12-02

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Sethuraman, Sarma et al.

Wireless link

Mesh Hosted Apps

Figure 1: Applications hosted on a wireless mesh infrastruc-

ture. Wireless links have different bandwidths and also ex-

perience temporal variations due to environmental factors,

such as reflections from a truck or attenuation from foliage.

usually faster to recover from weather-related outages [44], and
sometimes, wireless infrastructure is the only available option for
connectivity to its users [54], and without services running on this
infrastructure, simply having localized connectivity is of limited
value.
An attribute that differentiates mesh networks from datacenter net-
works is the bandwidth variability on links between nodes. In this
work, we show that bandwidth variations are commonplace in wire-
less links, and impact the performance of applications running at
the edge. While many prior works perform traffic-aware placement
of applications, they do so in resource rich environments like data
centers, with reliable connectivity, for which there are theoretical
formulations, solvers, and approximation algorithms [6, 39, 46, 49].
However, our focus is on simple heuristics that allow for agile ap-
plication component placement mechanisms, which are practical
and adaptive to fluctuations in bandwidth capacity on constrained
facilities at the edge. While orchestrators like k3s [48] have been
deployed in edge environments, they operate on edge clusters with
wired links [7], or in the edge-cloud continuum with fixed band-
width [26], but not in wireless mesh environments with variable
bandwidth.
Wireless links vary in bandwidth over time due to interference
and fading effects, and services may require migration when their
resource requirements are no longer met. Resource management
is further complicated by the fact that on ad-hoc wireless mesh
networks, routing is decentralized, and therefore the developer has
limited control over how packets are routed. Changing the routing
behavior in response to bandwidth variations could be a potential
solution, and there are proposals to make a hierarchical SDN-like
control plane for wireless mesh networks [25]. In this work, we
instead build bandwidth awareness into the resource orchestration
system that runs on top of the wireless mesh-connected compute
nodes, capable of working with any routing mechanism, as long as
there is no partitioning of the network and/or node failures.
In this work, we develop heuristics for making scheduling decisions
tractable. We show that our scheduler, which is developed as an
extension for k3s is able to make feasible scheduling decisions and
leads to lower tail latencies and higher bitrates for users than the
current state-of-the-art. Assuming that an application is made up
of multiple interconnected components modeled as a graph, and
bandwidth requirements between components modeled as edge
weights, we build heuristics based on the topology of this compo-
nent graph. We develop two heuristics for component placement,

using a modified breadth first traversal of the component graph,
and by identifying the most bandwidth intensive paths in the com-
ponent graph. Since bandwidth fluctuations are commonplace on
wireless networks, we also investigate strategies for migrating ap-
plication components, when the bandwidth requirements of the
component are no longer met, in the current deployment config-
uration. To do so, we rely on a lightweight probing mechanism
aimed at maintaining some small, spare capacity on each link in the
network, paired with passive measurement of the application’s use
of the allocated capacity (termed goodput). Our evaluations show
that being bandwidth aware on wireless networks can improve
application performance.
The contributions of this work are fourfold:
• Network bandwidth variability is widely prevalent in wireless
mesh networks.We show that bandwidth becomes an important
consideration in service placement at the edge. Instead of using
existing tools for measuring point-to-point and link bandwidth,
we design and develop a lightweight mechanism to measure
bandwidth variations.

• Present-day orchestrators, like k3s, which are intended for edge
environments, but are based on the architecture of schedulers
meant for cloud/datacenter settings often do not address link
capacity variations. We show through evaluations that such
link capacity changes affect the performance of a variety of
applications. Beyond the obvious bandwidth-intensive appli-
cations like video conferencing or camera stream processing,
applications that care about end-to-end latency and at the out-
set do not seem bandwidth-intensive, may still be impacted by
changes in link capacity due to the placement of components
that may, on aggregate, exchange significant amounts of data.
To mitigate the impact of bandwidth variation, we introduce
two metrics that use an application component’s link usage
pattern, and the link’s available excess capacity, to determine if
component migration may be necessary, in order to meet the
application’s bandwidth requirement.

• Based on limitations in the state-of-the-art, we develop greedy
heuristics to map the components of the application’s dataflow
graph onto the nodes, prioritizing the network bandwidth need-
s/availability while maintaining other intracomponent resource
capacities as hard constraints. We implement these new pro-
posals in BASS with modules for monitoring network-wide
bandwidth, triggers for invoking re-orchestration, and subse-
quent migration of application components. We also explore
tradeoffs for fine-tuning system parameters to produce the best
outcomes for an application.

• Using three different example applications that are representa-
tive of workloads that will likely be deployed in these environ-
ments, we show that it is possible to improve video download
quality from 240 Kbps to 480 Kbps for a subset of affected partic-
ipants in a video conference, improve the end-to-end latency of
camera processing by 100 ms just by being cognizant of link ca-
pacities, and reduce tail latency of a social network application
from 66 seconds to 28 seconds, in the presence of bandwidth
variations.

The rest of the paper is organized as follows: §2 motivates the
problem of scheduling applications in wireless environments. The

132

BASS: A Resource Orchestrator to Account for Vagaries in Network Conditions in Community Wi-Fi Mesh MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

0 250 500 750 1000 1250 1500 1750
Time (s)

10

20

B
itr

at
e

(M
bp

s)

Link 1
Link 2

Figure 2: Bandwidth variation (10-second rolling mean) on

two different links in the CityLab Testbed. Bandwidth in

the first link is relatively stable (mean=19.9 Mbps, std=10%

from mean) compared to the second link (mean=7.62 Mbps,

std=27% from mean).

node 2
PION

node 3
Clients

node 11 Gbps 1 Gbps

30 Mbps
1 Gbps

Figure 3: Experiment setup showing change to the outgoing

bandwidth at node 2. The interface originally has 1 Gbps

capacity. During the experiment we limit outgoing traffic at

node 2 to 30 Mbps.

scheduling heuristics and system design are covered in §3 and §4,
followed by a brief description of the implementation in §5, and
detailed evaluations in §6. §7 briefly summarizes the related work
in the space of scheduling in various environments. Finally, we
discuss the limitations and future work in §8, and conclude the
paper in §9.

2 Motivation

Our work is based on the following observations: (1) wireless links
can vary widely in bandwidth over time, and (2) state-of-the-art
schedulers do not account for this in deploying and/or orchestrating
edge applications.

2.1 Variation in Bandwidth of Wireless Links

In order to understand how link capacity fluctuates in the wild, we
collected bandwidth traces from CityLab [56], an outdoor 802.11n
deployment in an urban area in Antwerp. We found time-varying
behavior of bandwidth availability even during hours where user
traffic was minimal, as shown in Fig. 2. This time varying through-
put on wireless links has also been reported in a study of wire-
less 802.11g and 802.11a wireless backbone [28], and on 802.11an
links [8].

2.2 Existing Schedulers on Wireless Networks

We first demonstrate that existing schedulers like k3s [48], a Ku-
bernetes [29] based orchestrator suited to resource constrained
environments, are agnostic to variations in link bandwidth. We
deploy Pion [52], an open source video conferencing platform (an
important application at the edge) as a container in a 3-node clus-
ter managed by k3s. The cluster consists of Ubuntu 18.04 VMs
on a bridged LAN. Using tc [33], we restrict the bandwidth be-
tween the clients (on node 3) of the Pion server (on node 2) and the
node on which Pion is deployed, as shown in Fig. 3. Ideally, Pion
should be moved to the other unaffected node (node 1), but today’s
schedulers do not perform bandwidth-aware migrations because
they are bandwidth oblivious. The end users’ quality of experience
degrades, even though a different deployment of application com-
ponents could have maintained the experience. Fig. 4 shows that

5 10 15
of subscribers

25

50

To
ta

l b
an

dw
id

th

50 Mbps cap No cap

5 10 15
of subscribers

0

25

Pa
ck

et
 L

os
s(

%
)

50 Mbps cap
No cap

Figure 4: Variation in per client bandwidth and packet loss

with link capacity for Pion.

0 50 100 150 200 250 300
Time(s)

104

106

La
te

nc
y(

us
)

b/w reduced Full b/w
B/w change

Figure 5: Variation in average end-to-end latency in social

network application from DeathStarBench when bandwidth

is sufficient (cyan line) and when network conditions change

and bandwidth becomes insufficient at 25 Mbps (navy line).

bitrate experienced by users worsens, and packet loss significantly
increases when we increase the number of participants beyond 10
on a bottleneck link.
For latency sensitive applications with some bandwidth require-
ments between the components, the reduction in bandwidth trans-
lates to an increase in end-to-end latency, as shown in Fig. 5. We
deploy one of the applications from DeathStarBench [20] (social
network, another important application at the edge, especially dur-
ing disaster recovery) on a 3-node cluster. We traffic shape one of
the links, reducing the bandwidth to 25 Mbps for 2 minutes during
the experiment (same topology as Fig. 3). We then run DeathStar-
Bench’s benchmarking tool at 400 requests per second (exponential
arrival), and observe the average end-to-end latency at every second.
Latency increases by an order of magnitude during the bandwidth
restricted period.
These scenarios can be mitigated if we can (i) detect variations in
the bandwidth of different links, (ii) evaluate whether these link
bandwidths can still meet the communication demand between
application components mapped to the nodes at either side of these
links, and (iii) migrate (to nodes with links that have the neces-
sary bandwidth) and/or consolidate (co-location of communicating
components on a node avoids network altogether) offending appli-
cation components, so long as the resource constraints on the node
are satisfied. Motivated by these observations, we build BASS, to
perform bandwidth-aware application deployment and migration.

3 BASS Scheduling Heuristics

In this section, we state the assumptions we made about the envi-
ronment in which BASS operates and then describe the heuristics
used for scheduling and migration.

3.1 Assumptions

We consider a community mesh scenario: wireless network infras-
tructure connecting compute nodes, and compute nodes that com-
prise a combination of heterogeneous devices such as Raspberry
Pi’s, desktops, and server-grade machines. On these networks, the
monitoring, maintenance, and expansion of the mesh is typically
done by community members/volunteers. For example, NYCMesh
has a dedicated set of volunteers who run the effort and maintain

133

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Sethuraman, Sarma et al.

a set of repositories and scripts on GitHub for ease of manage-
ment [43].
An application deployed on this networked set of nodes may consist
of multiple components that can be expressed as a directed acyclic
graph (DAG). We discuss how the dependencies can be specified
for a component in §5. We assume that a centralized orchestrator
on a robust node manages the applications deployed on the mesh.
Since wireless mesh networks are expected to be small, with tens of
nodes, a centralized orchestrator is sufficient. Further, we assume
that the orchestrator either collects metrics or provides hooks to
collect resource usage metrics.

3.2 Heuristics for Component Deployment

The BASS scheduler is responsible for (i) mapping application com-
ponents on the available nodes under constraints of bandwidth,
latency, compute, and memory, when an application is first de-
ployed, and (ii) for redeploying components owing to changes in
the link capacities that may affect application SLOs.We next discuss
these two scheduling aspects.
3.2.1 (Static) Initial Placement

Consider an application whose components can be spread across
multiple nodes in the physical infrastructure. Each node may be
able to accommodate one or more components. Our heuristics are
based on the intuition that components with the highest data rates
between them will benefit from being co-located, as long as the
cumulative CPU and memory requirements of the components can
be accommodated at that node. The idea of co-locating commu-
nicating components is common in serverless platforms, where
network transfers are avoided since they contribute to a significant
increase in end-to-end latency for function chains [2, 37].
To schedule a component, we first rank nodes based on their CPU,
memory, and combined capacity across all of the node’s links. We
pack the node with application components as long as its capacity
permits. We use two heuristics to decide which components should
be placed on a node. The ordering is determined by traversing the
application’s component graph, which we assume to be a DAG. A
component ordering a,b,c, implies that either a and b, or, b and c,
or all three, should be co-located. An application may consist of
components that do some parallel processing, or components that
interact in stages. The former class would have high outdegrees
at some vertices, and the latter would contain long paths in the
application DAG. To handle these two classes of applications, we
propose two heuristics: (1) modified breadth-first (BFS) traversal of
the DAG and (2) longest-path in the application component DAG.
The developer is expected to pick the heuristic that is best suited
to the application’s data flow.
Breadth-First Heuristic We topologically sort the DAG of appli-
cation components to identify the root of the BFS tree. We then
greedily explore the edges in the order of decreasing bandwidth
requirements (i.e., edge weights) from the root of the BFS tree.
While inserting components into the queue for traversal, we sort
the yet unexplored components by the edge bandwidth to the cur-
rently explored component. The pseudocode is listed in Algorithm 1.
The input 𝐺 denotes the graph of application components, with
edge weights representing the bandwidth requirement between
two components. The 𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 is determined through a

topological sort of the vertices (O(|V| + |E|). The algorithm sorts the
queue of yet unexplored vertices (|V|log|V|), for every vertex, so its
complexity is O((|V|+|E|) + (|V|2log|V|)) at worst, where |V| denotes
the number of vertices and |E| denotes the number of edges in the
application graph.

Algorithm 1: Breadth First Heuristic
1 Function BreadthFirst(𝐺 , 𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡):
2 visited := {}, parents := {}, paths := {}, componentOrder

:=[]
3 queue := [𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡]
4 while !queue.Empty() do
5 currentComp := queue.pop(0)
6 visited[currentComp] = True
7 componentOrder.append(currentComp)
8 queue.sort(by=dep.weight)
9 for dep : currentComp.dependencies do
10 if !visited[dep] then
11 parents[dep] = currentComp, visited[dep] =

True
12 paths[dep] = paths[currentComp] +

G.weight[currentComp][dep]
13 dep.weight = paths[dep]
14 queue.append(dep)

15 return componentOrder

Longest Path Heuristic In prior work, the longest unweighted
chains in terms of number of edges in a topologically sorted DAG of
functions were identified as candidates for placement on the same
node [2]. We use a weighted version of the same methodology,
using bandwidth requirements as edge weights. We identify the
most bandwidth intensive paths within an application component
graph and try to co-locate the components along those paths on the
same node. Once all the vertices reachable from the starting node
v, in a topologically sorted graph have been visited, we backtrack
from the leaf vertices to find the longest path (i.e., the paths with
the largest sum of edge weights) leading up to v. We colocate as
many components on the path on the same node as possible. We
repeat this process until all the vertices have been traversed. The
pseudocode for this heuristic is listed in Algorithm 2. Since we
remove the longest chains each time from the graph, at worst, we
will repeat the BFS |V| times, once from each vertex in the DAG,
therefore the worst case complexity is O(|V|(|V| + |E|)).
Fig. 6 illustrates the difference in component ordering achieved by
the two heuristics. The breadth-first heuristic, suitable for appli-
cations with large fanouts, will choose components for placement
in the order 1, 3, 2, 4, 5, 7, 6 and try to pack the available nodes.
The longest-path heuristic, suitable for linear pipelines, will select
1, 2, 4, 5, 7, 3, 6 and then pack the available nodes. The components
will then be placed on the nodes already ranked by their resource
availability. Intuitively, the longest path heuristic reduces latency
by minimizing data transfer between nodes by co-locating com-
ponents with the most data intensive flow. For applications with

134

BASS: A Resource Orchestrator to Account for Vagaries in Network Conditions in Community Wi-Fi Mesh MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

Algorithm 2: Longest Path Heuristic
1 Function LongestPath(𝐺):
2 components := topoSort(𝐺)
3 startVertex := components[0], visited := { },

componentOrder := []
4 while componentOrder.length < 𝐺.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do

// Regular breadth first search

5 parents, pathLength := BFS(𝐺 , startVertex, visited)
6 maxLen := 0
7 lastVertex := startVertex
8 for dep,length : pathLength do

9 if pathLength[dep]> maxLen then

10 maxLen = pathLength[dep]
11 lastVertex = dep

12 visited[startVertex] = true
13 while lastVertex != startVertex do
14 nextVertex = parents[lastVertex]
15 visited[nextVertex] = true
16 componentOrder.Append(nextVertex)
17 lastVertex = nextVertex
18 startVertex := findUnvisitedVertex(𝐺 , visited)
19 return componentOrder

1

2

4

7

6

100
Kbps

800
Kbps

800
Kbps

400
Kbps

500
Kbps

400 Kbps

800
Kbps

400
Kbps

3
5

node 1

node 2

BFS

longest
path

Algo1

Algo2

Figure 6: Application component DAG example: the color

at the top and bottom half of the component indicates the

node chosen for the component by the BFS and longest-path

heuristics respectively, assuming each node has 4 cores and

each component requires 1 core.

high fan-outs in their DAG, the BFS heuristic tries to co-locate
consumers with the producers of that data.
3.2.2 (Dynamic) Component Migration

When the bandwidth on a link fluctuates, it may affect a particular
component’s SLO. We try to migrate the affected component to a
different node in order to mitigate the effects of bandwidth fluctua-
tion. There are two situations in which migration may take place:
(1) When a component generates traffic such that the link’s capac-
ity is almost used up, and (2) when the link’s capacity degrades
so much that the component’s goodput is affected. In the first sce-
nario, migration is triggered by the component’s bandwidth usage,
which can be detected via application level monitoring, whereas
the second scenario can be handled using a probing mechanism
proposed in the next section. affected
We identify component pairs whose bandwidth requirements are
not being met, or likely to be not met, based on the bandwidth re-
quirement that the components specify, and the available capacity
at the node. We compute the fraction of the allocated bandwidth

Algorithm 3: Component Migration Heuristic
1 Function

FindComponentsToMigrate(𝐺 , threshold, headroom):
2 migrationCandidates := []
3 availableBw := computeAvailableBw()
4 for component: components do
5 for dep: component.dependencies do
6 link := availableBw[component.node][dep.node]
7 goodput := dep.bandwidth / dep.required
8 if (goodput > threshold) && (link.bandwidth <

dep.bandwidth + headroom) then
9 migrationCandidates.append(component)

10 sort(migrationCandidates, by=bandwidth)
11 finalCandidates := migrationCandidates
12 for candidate: migrationCandidates do
13 for dep: candidate.dependencies do
14 if migrationCandidates.contains(dep) then
15 finalCandidates.remove(dep)

16 return migrationCandidates

quota the component has used (i.e., the goodput), as an indicator for
component migration. We migrate a component when its goodput
falls below a system defined threshold in response to the changes
in link capacity. Starting with the component with the largest band-
width requirement, we iterate over all of its dependencies, and
delete each dependency from the migration list, if present. We re-
peat the process until all the components in the migration list have
been processed. This way, by migrating only one component of
the dependency pair, we avoid cascading effects. The pseudocode
for selecting migration candidates is listed in Algorithm 3. We
traverse the application DAG to find bandwidth requirement vio-
lations, therefore, at worst, we have O(|V| + |E|) operations. While
rescheduling a component in need of migration, we first identify
candidate nodes, where the component already has dependencies
deployed. We re-deploy the component on the node which ranks
highest in terms of the number of existing deployed dependencies,
and with sufficient CPU, memory, and bandwidth to accommodate
the component, minimizing inter-node data transfer when possible.

4 BASS Design

In this section, we present the architecture of our system (Fig. 7),
describing each part in depth.
Our system consists of three main parts: 1○ Scheduler for deploying
application components, 2○ Network monitor for gathering the
information about wireless links, and 3○ Controller for making
decisions about component migration.

4.1 BASS Scheduler

The scheduler maps components to nodes for deployment by apply-
ing the heuristics described in §3. It is also responsible for reschedul-
ing components being migrated (using strategies described in §3),
by querying the net-monitor (described next) to gauge link capaci-
ties and the and link usage on the mesh.

135

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Sethuraman, Sarma et al.

API Server

Controller
Manager

Scheduler

Supervisor

Bandwidth
Aware

Scheduler
network
monitor

bandwidth
Controller
Manager

Kube-proxytunnel
proxy

containerd

pod

pod

pod
network
monitor

k3s
Server

k3s
Agentmetric

collector

Kubelet
3

1
2

2

Figure 7: System Architecture. Green boxes are our additions

to the k3s ecosystem. The k3s server is a centralized entity

that communicates with worker nodes. The networkmonitor

component runs on every node.

4.2 BASS Net-Monitor

The net-monitor is responsible for gathering metrics about band-
width between nodes, and bandwidth usage between different ap-
plication components. While Kubernetes monitors network traffic
(more for the injection/delivery rates over time at the end-points
rather than the time-varying bandwidth of the links), it does not
treat network bandwidth as a resource. We add the capability to use
network bandwidth as an additional constraint to modify schedul-
ing behavior.
Detecting Bandwidth Changes. Our measurements from the
wireless links on the CityLab testbed indicate that link bandwidth
can significantly fluctuate over time. To avoid repeatedly probing
the link, while still maintaining reliable estimates of available band-
width, we devise a scheme to minimize the number of times we
probe the link, as well as the amount of data consumed during the
probe. We perform two types of probing: (1) max capacity prob-
ing, where we flood the link to know the full link capacity; and (2)
headroom probing, where we only probe the link to understand
whether a certain amount of spare capacity is available.
Max. Capacity Probing. When the system starts up, we perform
a round of probing in the net-monitor to understand the capacity
of each link by flooding each link with packets. We then cache
these values in the net-monitor to respond to network capacity
queries from the scheduler or the bandwidth controller, until a new
capacity probe request is made by the bandwidth controller.
Headroom Probing. Headroom is the spare capacity the system is
expected to maintain on every link, to allow for sudden bursts and
variance in the link capacity to make applications more resilient
to them. We specify headroom as a percentage of the link capacity.
During monitoring, we only check that there is enough headroom
on the links that the component is expected to use. This way, we
avoid flooding the link in order to determine its capacity. During
normal probing cycles, we only perform headroom probing.When a
change is detected in the available headroom, the controller checks
the system for violation of bandwidth requirements and determines
if components need to be rescheduled.
An example of component migration is shown in Fig. 8. We con-
sider a component pair that requires at least 8 Mbps bandwidth,
initially deployed on nodes 3 and 4 respectively (see Fig. 15(a) for
topology). The bandwidth of node3-node4 link is set to 25 Mbps. We
set the threshold for migration at 50% goodput, and headroom to 4
Mbps (∼20% of link capacity) on each link. We set a conservative
headroom probing frequency at 30 seconds (0.6% network over-
head), however, this frequency can be adjusted to suit application

requirements. The component pair’s goodput changes (teal hatched
line) in sync with node3-node4 link capacity. At around t=540, we
reduce the link capacity (dotted blue line). The controller, noticing
a drop in the headroom capacity (vertical dashed red line), triggers
a full probe at t=634. The probe eventually completes at t=750. The
controller now is aware that the bandwidth has dropped on the
link (solid blue line with dots). At t=840, the headroom (4 Mbps)
requirement on node3-node4 link is no longer met, and goodput
falls below the 50% threshold, and the total capacity on the link is 7
Mbps, triggering a migration from node4 to node1 at t=870. After
the migration, we see that the goodput immediately increases. We
reduce the node1-node3 capacity at t=1119 (dotted orange line), and
increase node3-node4 capacity back to 25 Mbps (solid orange line
with dots). At t=1240, the headroom for node1-node3 falls below
the 4 Mbps threshold, and the goodput falls below 50%, triggering
a migration from node1 back to node4.
Network Resource Monitoring. We estimate path bandwidth
availability by first measuring the link bandwidth between 1-hop
neighbors and then applying traceroute (to get the path between
the pair of nodes). Then we determine the capacity of the node pair
to be the bottleneck link along the path. We deploy a daemon on
each node in our cluster to periodically measure link bandwidth.
We gather two sets of metrics: TX/RX bytes between (1) each pair
of nodes; and (2) between application components. The first metric
is necessary to estimate if the current deployment will satisfy ap-
plication SLOs. When an application is scheduled for the first time,
we only look at the bandwidth requests by the application while
making scheduling decisions. When the bandwidth availability in
the system changes, we use both metrics to make reconfiguration
decisions.

4.3 BASS Controller

The controller is responsible for deciding if applications have the
desired amounts of resources they requested. When there are band-
width fluctuations, an application component may have to be re-
located to a different node to avoid bandwidth requirements not
being satisfied. The controller fetches each component’s resource
requirements from the component configurations, listens to the
net-monitor for network capacity/usage updates, and in the event
of bandwidth change leading to a component not getting sufficient
bandwidth, instructs the scheduler to reschedule the component.
The scheduler also has access to net-monitor, and makes the final
decision about where the offending component should be placed.
A migration is not free, however. The application’s performance
may degrade due to temporary service unavailability, while the
component is being moved. Depending on how long the migra-
tion takes, the disruption to availability may not be amortized. To
avoid reacting to transient changes in bandwidth availability, we
ensure that there is a “cooldown” period between the detection of
low bandwidth and the migration trigger. The controller uses two
parameters to make migration decisions: (1) available headroom
capacity on the link, which is determined using headroom probing,
described in §4.2, and (2) goodput threshold (described in §3.2.2). If
the goodput falls below the set threshold on a constrained link, or if
the component uses the link to the extent that the headroom on the
link shrinks even without capacity change on the link, migration
may be triggered by the controller.

136

BASS: A Resource Orchestrator to Account for Vagaries in Network Conditions in Community Wi-Fi Mesh MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

0 200 400 600 800 1000 1200 1400
time(s)

10

20

b/
w

(M
bp

s)

Full probe
Node 4

Node 1 Node 4

low
headroom

low
goodputTrigger full

 probe

Observed bandwidth headroom probe Actual bandwidth Goodput Full probe

0.00

0.25

0.50

0.75

G
oo

dp
ut

Node 4
Node 1

Figure 8: Illustration of migration on bandwidth change. Orange and blue lines indicate the actual/observed bandwidth on

nodes 1 and 4, respectively.

Camera
stream

frame
sampler

object
detector

image with
bounding box

labels and
timestamps

5
Mbps

5
Mbps

1 Mbps

5
Mbps

Figure 9: Camera Pipeline Components.

5 Implementation

BASS is built a set of extensions to k3s, a lightweight orchestrator
that conforms to the Kubernetes API1.
Specifying Bandwidth Requirements. BASS takes an applica-
tion’s component DAG, with edge weights specifying the maximum
bandwidth requirements (gathered through independent offline pro-
filing) as input. Bandwidth requirements between components do
not change for the duration of the application’s deployment and
are added to the metadata section of the application’s deployment
file.
Monitoring Network Usage.We use iPerf3 to gather bandwidths
between nodes and traceroute to identify paths between nodes, and
a Berkeley Packet Filter [16] to measure data exchanged between
nodes. The network statistics are exposed through a gRPC endpoint
on every node in the cluster. To measure bandwidth usage between
pods, we enable Istio sidecar injection [27, 34] for the application.
The metrics are logged into Prometheus [55], from which they are
queried via the HTTP API. The monitoring services consist of about
500 lines of code (LoC), in a combination of C, Go, and Python.
Scheduling all components at once. Kubernetes deploys one
pod at a time. Since we want to consider bandwidth requirements
between pods, our scheduler extension cannot use this strategy. We
instead wait for all of the pods in the application to be received
by the custom scheduler and build the dependency graph before
applying scheduling heuristics. The scheduler is implemented in
Go in about 2k LoC.
Bandwidth Controller. The controller is written as a separate
component in Go (1k LoC), that listens to the monitoring services
and gets inter-pod communicationmetrics from Prometheus. It then
compares the traffic against the available bandwidth and makes
rescheduling decisions.

6 Evaluations

In this section, we first describe our microbenchmark experiments,
aimed at understanding: (1) the effectiveness of our scheduling al-
gorithm in a scenario with no bandwidth variations, and (2) the use-
fulness of application component migration after initial scheduling,
1Source code: https://github.com/Manasvini/mesh-bw-scheduler

under controlled bandwidth variation. We perform microbench-
mark experiments on a 3 to 4 node cluster on CloudLab [15]. For
the evaluations on real world bandwidth variations, we emulate the
layout of a subset of the nodes, and the link capacities in CityLab
wireless testbed on CloudLab.

6.1 Applications

We first briefly describe the open source applications used in the
evaluations. Application components are containerized and the im-
ages are pre-downloaded on nodes as-is. The applications have dif-
ferent characteristics with regard to being network or CPU bound.
Video Conferencing. This application has a single component
server, which all participants (clients) connect to. The server col-
lects video feeds from participants and forwards those feeds to
other participants in the conference, thereby requiring significant
outgoing bandwidth at the node where the component is placed.
The application is network bound, and we use the average bitrate
per client as the metric for evaluating application performance. We
use Pion [52], an open source SFU (selective forwarding unit or the
conference server) for video conferencing based on WebRTC.
Camera Processing. The camera processing application emulates
a camera pipeline (Fig. 9) for a given recorded mp4 video, from
which an object detector is used to annotate frames in real time. We
use ffmpeg [18] to publish the video to an RTP stream server. The
streamed video is read by a sampling application that picks frames
that are dissimilar and feeds them into a YOLO object detector [19].
The object detector publishes two streams: one consisting of an-
notated images and the other with just the text labels. In addition
to being bandwidth intensive, the application is CPU bound in the
object detector stage of the pipeline, and network bound at the
output of the camera stream and frame sampler, and input to the
image listener.
Social Network. This Social Network application is a collection of
27 microservices, consisting of front end servers, backend services,
caches, and databases published as a part of the DeathStarBench
microservice benchmark [20]. The application requires low latency
communication between microservices, and predominantly per-
forms RPC calls, alongside some caching and database accesses.
While the application may not necessarily seem bandwidth inten-
sive at the level of a user request, there are complex patterns of
interaction between the componentmicroservices which can induce
bandwidth dependence, as we will show. As a result, the co-location
(or lack thereof) of certain pairs of services, and sudden drops in
the bandwidth of these non-colocated services, can influence the
end-to-end latency of the application.

137

https://github.com/Manasvini/mesh-bw-scheduler

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Sethuraman, Sarma et al.

6.2 Microbenchmarks

We evaluate our scheduler against the default k3s scheduler for
scheduling under static bandwidth conditions and then compare
our heuristic scheduler with and without migration support under
time-varying bandwidth conditions.
6.2.1 Setup

We use a cluster of CloudLab machines (c6525-25g or d710 depend-
ing on availability), connected over a LAN. One node runs the k3s
control plane and BASS’s extensions to the k3s’s ecosystem (left-
half of the of the system architecture Fig. 7). Since for the first
experiment, we are not evaluating migrations, we disabled BASS’s
bandwidth controller.
6.2.2 (Static) Initial Component Placement

In this set of experiments, we examine the importance of being cog-
nizant of bandwidth requirements between different components
of an application in deciding the initial placement of components
across nodes. We study the performance of the camera process-
ing application and social network, as a function of their initial
deployments.
Camera Processing.We run the camera processing pipeline for 30
minutes on three c6525-25g machines (AMD EPYC 7302P processor,
16 cores, 128 GB RAM) and plot the end to end latency of the
pipeline. We use a 12-second video clip of a traffic intersection and
play it on loop for 5 minutes for evaluating the end to end latency
of the pipeline. We observe that the BFS scheduler (mean latency
410 ms) performs better than the longest-path scheduler (428 ms)
and default k3s (433 ms) schedulers (Fig. 10(a)). The greedy breadth
first/maximum bandwidth heuristic works well in this scenario
since much of the data transfer happens in the first two stages of
the pipeline (vis a vis the longest-path heuristic heuristic which
prioritizes longer chains). As shown in Fig. 10(b), the BFS scheduler
places the camera stream and frame sampler on the same node,
and the remaining components on the other node. On the other
hand, the longest-path scheduler places the object listener alone
on one different node and the remaining components on the other
node. Note that the longest chain would normally include the object
detector, but because of the detector’s high CPU demand, it doesn’t
fit on the same node as the sampler and the camera stream.
Social Network. We deploy the social network application on
four d710 (Intel Xeon E5530 with 4 cores, 2 threads, 12 GB RAM)
machines and study the impact of component placement on the
end-to-end latency. We consider a fixed request distribution of
100-300 requests/second (RPS) and report the mean and standard
deviation of p99 latency across five trials. When there are no band-
width restrictions (Fig. 11), the tail latency is comparable between
the longest-path and k3s default scheduling policy. On the other
hand, when we restrict the bandwidth to 25 Mbps on one node,
we observe that the tail latency difference between the default k3s
scheduling and the bandwidth aware longest-path heuristic is about
two orders of magnitude higher at higher request rates (200 and
300). Components with higher data rate requirements were often
co-located on the same node when the longest-path scheduler was
used, in comparison to the k3s scheduler.

(a)

400 420
End to end latency (ms)

0

50

100

%
 o

f t
im

e longest-
path
BFS
k3s

(b)

Component BFS longest-
path k3s

camera
stream node 1 node 1 node 1

frame
sampler node 1 node 1 node 2

object
detector node 2 node 2 node 1

image
listener node 2 node 1 node 2

object
listenet node 2 node 1 node 2

Figure 10: (a) End to end latency for camera processing appli-

cation under different scheduling policies on 3-node cluster

with no bandwidth limits. (b) Camera pipeline component

placement by each scheduler.

100 200 300
RPS

103

105

La
te

nc
y(

m
s)

BASS
k3s
25Mbps
1Gbps

Figure 11: Comparison of p99 latency of heuristic and default

schedulers under no bandwidth constraint in the network

and bandwidth on one node restricted to 25Mbps at different

request rates.

0 50 100 150 200 250 300
Time (s)

0

5

M
ea

n
b/

w
 (M

bp
s)

30s No migration

Figure 12: Effect of bandwidth variation in video conferenc-

ing application under different bandwidth querying intervals.

Red vertical lines indicate when bandwidth restrictions are

imposed and lifted in the experiment.

From these experiments, we see that bandwidth aware placement
can help improve the end-to-end latency of two types of applica-
tions. Even without link constraints, end-to-end latency decreases
when we use bandwidth aware placement due to the significant
communication bandwidth required between the components. In
the social network application, the necessity for network bandwidth
aware placement becomes apparent in the presence of constrained
links. The application exchanges messages between its multiple
components frequently. The communication overhead between
nodes grows when there is a link capacity constraint, thereby ne-
cessitating bandwidth aware component placement.
6.2.3 (Dynamic) Component Migration

We next show the need for dynamic migration with bandwidth vari-
ations, and the effectiveness of our mechanisms. In this experiment,
we initially do not set any bandwidth restriction. We deploy the
application using our longest-path scheduler. Ten seconds into the
experiment, we introduce bandwidth limits on two of the nodes
in the cluster. The restriction persists for 3 minutes and then is
lifted. On every node, BASS’s network monitor makes headroom

138

BASS: A Resource Orchestrator to Account for Vagaries in Network Conditions in Community Wi-Fi Mesh MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

0 50 100 150 200 250 300
Time (s)

0

100

La
te

nc
y(

s) 90s
60s
30s
no migration

Figure 13: Effect of bandwidth variation on end-to-end-

latency, under 25 Mbps throttling. The red vertical lines de-

note the start and end of the bandwidth restriction. The dots

on each line indicate componentmigration events. The violet

line shows the default behavior without any migrations.

probes to its neighbors every 30 seconds. We use the same setup as
in Fig. 3, with three c6525-25g machines.
Video Conferencing. The Pion server is initially deployed on node
2. We set the number of participants in the conference to 9. One
participant shares their video, and others only receive one stream.
We then measure the bandwidth experienced by each participant re-
ceiving the video. When the application’s bandwidth requirements
are evaluated every 30 seconds (cyan line in Fig. 12), the bandwidth
violation is soon discovered and the application is migrated from
node2 to node1, where the link bandwidth satisfies the application’s
requirements, whereas when there is no migration strategy in place,
the Pion server remains deployed at node2 (initial location). With
BASS, for the duration of the migration, however, lasting 30 sec-
onds, the participants experience temporary disruption to the video
stream. This 30 second period is the time taken to reschedule the
application and reestablish the RTC connections. Once the con-
nection is reestablished, the clients experience the same bitrate as
before the bandwidth limitation. When no migration is performed,
the clients experience poor bitrate for the entire 3-minute duration
of the bandwidth disruption.

Iteration Components exceeding link utiliza-

tion quota

Components mi-

grated

1 6 2
2 1 1
3 1 1

Table 1: Social Network component migration across succes-

sive iterations of the scheduler for a 30 second bandwidth

querying interval when bandwidth is reduced to 25 Mbps at

node 3.

Social Network.We consider a fixed request distribution of 400
RPS on 3 625-25g nodes. Here, to study the effect of component
migration to nodes with better link capacity, we enable component
scheduling on all 3 nodes. We throttle the bandwidth on the out-
going interface of nodes 2 and 3 during the experiment. We then
report the average latency at every second for the duration of the
experiment which runs for 5 minutes. We find that not migrating
components results in up to 50% higher latency than when com-
ponents are migrated (violet line in Fig. 13). We consider various
monitoring intervals for migration (30, 60, and 90 seconds), and
for this bandwidth variation scenario, evaluating the placement of
components every 30 seconds has the best impact on tail latency
reduction. We inspect the set of components that were relocated
to node 1, and we find that, though several components were ex-
periencing insufficient availability of bandwidth, only a few were
migrated (Table 1). For example, in the first iteration, two of the

components that were identified for migration were communicat-
ing with each other, (and have some of the highest data rates of
all components in the application), but only one member of the
component pair was actually migrated. As described in §3, we do
not migrate both a component and its dependency in one shot.

6.3 Evaluations on Emulated Mesh Network

In this section, we describe the performance of BASS on an em-
ulated mesh testbed, with bandwidth variations collected from a
citywide deployment of wireless routers previously described in
§2.1. We set up a 5-node subset of the CityLab topology as shown
in Fig. 15(a) on CloudLab VMs. We run all control plane functions
on one of the VMs, while the remaining 4 run applications. Since
we expect resources on a mesh to be heterogeneous, the VMs are
configured with 8GB RAM and either 12 (3 VMs) or 8 (2 VMs) cores.
All the VMs are located on a C8220 machine (Intel E5-2660v2 20
cores, 256 GB RAM, 2 threads per core, 2 sockets) and run Ubuntu
22.04. Since we work with one bandwidth trace and a fixed input
(request arrival is constant for social network, and the same video
is used as input for the camera pipeline and video conferencing),
we consider a single trial lasting around 20 minutes for each experi-
ment. We evaluate BASS’s efficacy towards answering the following
questions:
(1) How effective is BASS’s component placement strategy?
(2) Can BASS leverage migrations to improve application perfor-

mance?
(3) How to select the right thresholds for migration?
6.3.1 (Static) Initial Placement

We investigate the end to end latency of the camera processing
application under time-varying bandwidth conditions with different
schedulers. We deploy the camera processing pipeline on a set of 4
worker nodes. We use 4 cores for the sampler, and 8 for the detector
components.
The results in Table 2 show the utility of BASS compared to native
k3s. We compare the end-to-end latency achieved by the schedulers
in two scenarios: no bandwidth variation, where the bandwidth on
the links is set to the maximum value observed in the CityLab trace
(i.e., the baseline), and the trace with time-varying bandwidth on
each link. There is only a small difference (around 2 ms for BFS) in
the end-to-end latency for both the BASS strategies for application
component placement (BFS and longest-path), regardless of band-
width variations. On the other hand, it can be seen that the latency
inflation in the presence of bandwidth variation is close to 20%
when k3s default scheduler is used. We did not any observe compo-
nent migrations for this workload because the headroom thresholds
were not violated even when there were bandwidth variations. Sim-
ilar to the microbenchmark evaluations, the BFS heuristic does
better with this workload than the longest-path heuristic.

Scenario BFS (ms) longest-path (ms) k3s (ms)

No bandwidth varia-
tion

540 551 577

With bandwidth varia-
tion

538 552 692

Table 2: Median end-to-end latency on CityLab emulated

mesh, observed with, and without bandwidth variation using

different schedulers

139

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Sethuraman, Sarma et al.

0 20000
Latency (ms)

0

50

100

%
 r

eq
ue

st
s

No restart
With restart

0 50000
Latency (ms)

0

50

100

%
 r

eq
ue

st
s k3s

longest path:
no migration
BFS:
threshold 50%
longest path:
threshold 65%

25 50 65 75 95
Threshold (%)

0

20000

40000

60000

80000

La
te

nc
y

(m
s)

headroom(%)
30 20

25 50 65 75 95
Threshold (%)

0

20000

40000

60000

La
te

nc
y

(m
s)

Headroom(%)
30 20

Figure 14: (a): CDF of end-to-end latency when restarting a component (b): CDF showing the latency comparison of different

schedulers for the social network application. We picked the threshold and headroom combination for each algorithm that

yielded the lowest upper quartile latency from the (c) and (d) plots. (c) and (d): End-to-end latency under different capacity

headroom and bandwidth use thresholds for BFS and longest-path, respectively.

(a)

node 0

node 1
node 4

node 3 node 2

22
Mbps

7.5
Mbps

21.5
Mbps

18.2
Mbps

13.6
Mbps

21
Mbps

(b)

1 2 3 4
Node #

0

1

2

B
itr

at
e

(M
bp

s) With migration
(thres 65)
No migration
With migration
(thres 85)

Figure 15: (a) 5-Node subset of the Citylab topology. The

links on the testbed are wireless. The measured bandwidth

values are averaged over half an hour. Links are bidirectional,

and have similar bandwidth in both directions. (b) Effect of

bandwidth variation on average bitrate for participants at

each node in the cluster.

Take-away. The camera processing application, though bandwidth
intensive, does not experience significant inflation in end to end
latency under the bandwidth variations in the trace because the
initial placement itself suffices in meeting the bandwidth needs
of the applications, and the variations are not severe enough to
require migration.
6.3.2 (Dynamic) Component Migration

In this section, we explore how BASS is able to leverage migra-
tions to improve performance of the video conferencing and social
network applications.
Video Conferencing. For this experiment, we deploy the Pion
video conference server on one of the 4 worker nodes. We investi-
gate download bitrates experienced by clients in a video conference
under variable bandwidth conditions, and if they can be improved
by migrating the Pion server. To do so, we first quantify the over-
head associated with migration: it takes around 20 seconds for the
server to be restarted, and the WebRTC connections to be reestab-
lished. At each worker node (nodes 1 through 4 in Fig. 15(a)), we
create 3 clients that are in a video conference, which share their
feed and subscribe to all the other participants’ video feed. We
replay the bandwidth trace collected from the CityLab testbed, and
start a video conference that lasts 10 minutes, with 3 participants
at each node. We expect the bandwidth variations will cause the
application’s bandwidth requirements to be violated, and neces-
sitate migration. In Fig. 15(b), we plot the bitrate experienced by
the clients on average, when (1) no migration is performed (2) mi-
gration is performed at two thresholds of link utilization (65% and
85%). We don’t consider lower thresholds for migration because of

the significant overhead in reestablishing RTC connections. Both
strategies result in some improvement in the median bitrate of the
participants at node 1 from 1.4 (without migration) to 1.6 Mbps
(with migration, 65% threshold), and for the participants at node
2 from 240 Kbps (without migration) to 480 Kbps (with migration,
65% threshold); there is no improvement for the participants in the
other two nodes.
Take-away: Migrating the conference server could help in mitigat-
ing periods of low download bitrate for participants in the video
conference. The cost of reestablishing connections (20 seconds)
amortizes over time as long as the conference lasts at least tens of
minutes.
Social Network. For this application, we investigate the impact of
migrating components on the end-to-end latency. We compare the
performance of BASS schedulers against k3s under a time varying
bandwidth trace. We show that despite migration costs, there may
be overall improvements in latency. For all the experiments, we run
the workloads at 50 RPS, comprising both reads and writes.
Migration entails that a component be restarted, and hence we quan-
tify the overhead of restarting an application component while run-
ning the workload at a fixed request rate (50/second). In Fig. 14(a),
the end-to-end latency increases on average, from 552 ms to 4.9
seconds. Hence, we need to consider the overhead of temporary
increase in end-to-end latency as a consequence of migration.
We next investigate the performance of BASS scheduling heuristics
under a variable bandwidth trace, where migration of components
may become necessary. In Fig. 14(b), we plot the end-to-end la-
tency of the workload under the longest-path and BFS heuristics,
along with the k3s scheduler, and the longest-path heuristic with-
out migrations. We observe that without migration enabled, the
longest-path heuristic does slightly better than k3s, but the real
gains in latency reduction in the face of bandwidth variation come
from right-timed migrations. We find that the longest-path schedul-
ing performs slightly better than BFS scheduling for this workload.
The criteria for collocating components in the two algorithms is
slightly different. The longest-path scheduling favors placing long
chains of dependent components on the same compute node, which
works well for the common frontend-service-cache-database traf-
fic pattern that this application uses multiple times. In contrast,
BFS greedily places components with the highest bandwidth re-
quirements in a breadth-first manner. The p99 latency longest-path

140

BASS: A Resource Orchestrator to Account for Vagaries in Network Conditions in Community Wi-Fi Mesh MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

0 25000 50000 75000
Latency (ms)

0

50

100
%

 r
eq

ue
st

s No
migration
25%
50%
65%
75%

Figure 16: Performance of longest-path scheduler on a work-

load with exponential request arrival.

heuristic with migration support is 28 seconds, in comparison to
the 66 seconds observed in the default k3s scheduler.
Take-away: Despite the inflation in end to end latency that restart-
ing a component (as a consequence of a migration decision) can
create, migration of a component that is experiencing a shortfall in
available bandwidth can produce an overall reduction in end-to-end
latency for the application.
6.3.3 Finding the right migration threshold

Two parameters govern the behavior of the bandwidth controller
component in BASS—link utilization threshold for migration (i.e.,
migration threshold), and the headroom capacity that the system
needs to maintain at all times. The first parameter is an indicator
of the application’s link usage, and the second is an indicator of
spare capacity available on the link. We also investigate how these
parameters are dependent on the application’s traffic patterns. This
knowledge may be useful for the developer in tuning the system to
suit their application’s needs and traffic patterns.
We investigate the relationship between these parameters and end-
to-end latency for the social network application. For a request rate
of 50 RPS, we evaluate different thresholds for migration, based on
the component’s link utilization: 25, 50, 65, 75 and 95%, as illustrated
in Fig. 14(c) and (d) for the BFS and longest path scheduling respec-
tively. When we set the migration threshold too low (e.g., 25%), we
end up performing migrations when they could have been easily
avoided, due to the tradeoff between migration cost of component
(eviction and subsequent scheduling and re-deployment) and the
transience of the link capacity change. At the other extreme, if the
threshold is too high (e.g., 75%), we may wait too long before per-
forming a migration, leading to prolonged increases in end-to-end
latency. The 50% or 65% threshold is able to balance between the
two extremes.
Next, we look at the effect of request distribution on different mi-
gration thresholds by using an exponential distribution for request
arrival (commonly used to model arrival rates). We set the mean ar-
rival rate to 50 RPS and set the headroom capacity to 20%. We used
the longest-path scheduler with different link utilization thresholds
for component migration. We find that lower migration thresholds
in general perform better for this scenario (Fig. 16). Unlike the
fixed request distribution, where the traffic rate on the link can be
expected to not change by orders of magnitude, the requests arrive
in bursts in an exponential distribution. Since many components
have low request rates most of the time, early migration does not
inflate latency to the same degree in the exponential workload as it
did in the fixed workload.
Take-away: Choosing the right setting for headroom and link uti-
lization thresholds play a role in reducing end-to-end latency, and

in turn are influenced by the traffic patterns exhibited by the appli-
cation.
6.3.4 System Overheads

In this section we discuss the overheads that are incurred by BASS,
specifically, we look at per-component scheduling latency, over-
heads from performing graph traversals, and overheads of network
monitoring.
We compare the per-component scheduling latency of k3s versus
BASS (longest-path scheduler) on one C8220 machine on CloudLab
running 5 VMs (same as §6.3). We find that the per-component
scheduling latency on average across the two systems is compa-
rable (see Table 3). However, BASS incurs a one-time overhead of
processing the application component DAG before scheduling. We
note that while this overhead is in the order of tens of milliseconds,
the scheduler runs only when applications are being deployed, or
components are being migrated. Bandwidth fluctuations needing
a component migration happen in the order of minutes (as ob-
served from the CityLab traces [56]). Thus the scheduling overhead
accounts for less than 0.01% of the application run time.
In comparison to k3s, we incur the network cost of periodically
probingwireless links. Our headroomprobingmethodology ensures
that the overhead is bounded. We probe the links every 30 seconds
for 1 second, for 10% of the link’s capacity, accounting for 0.3%
of the network traffic. We noticed that on the CityLab bandwidth
trace, a full probe was required only three times in the 20 minute
duration of the trace when running the socialnetwork workload.
Full probes also last only 1 second, and therefore the overhead from
network probing is negligible (0.25% of the link traffic).

Application
Avg. Latency (ms) Std. Dev (ms)

k3s BASS k3s BASS
Social Network 1.27 1.5 0.08 0.1

Video Conference 1.28 1.28 0.08 0.07
Camera 1.27 1.4 0.08 0.56

Table 3: Per component scheduling latency comparison

Application comps. Avg. processing time(ms) Std. dev(ms)

Social Network 27 63.86 10.77
Video Conf. 1 26.31 0.99
Camera 5 30.59 3.37

Table 4: DAG processing times for all applications

7 Related Work

In this section, we briefly review existing literature on applications
of wireless mesh networks, and resource scheduling on clusters of
various kinds.
Services on Wireless Mesh Networks. Existing wireless mesh
networks like Guifi [24] support various services like video con-
ferencing, messaging and web servers. Prior work also explored
architectures for bandwidth intensive operations like live streaming
on wireless mesh networks [36]. Roofnet demonstrates that even
though ad-hoc networks are unplanned in their positioning of new
nodes, performance, in terms of throughput is still acceptable [5].
They also investigate various protocols for efficient decentralized
routing on these ad-hoc networks. Wireless mesh networks have
also been explored as a feasible option for providing communication
facilities during disaster response scenarios in difficult terrain [3]
and for emergency management [10].

141

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Sethuraman, Sarma et al.

Dynamism in Wireless Networks. Last mile connectivity is
known to be vary in both space and time for wireless links, in-
cluding cellular [47, 53] as well as unlicenced links [8, 28]. In the
Ninux community mesh networks, a subset of nodes is shown to be
important in routing, and their failures could significantly impact
the network [35].
General purpose Orchestrators. Kubernetes [29, 48] and its light-
weight variants are general purpose orchestrators that primarily
consider CPU and memory as the main resources for scheduling.
In addition, they support extensions that make use of tools like tc
to limit the bandwidth usage by a component [12, 58] to reduce
bandwidth resource contention. However, such general purpose
schedulers lack the capability to monitor bandwidth variability in
wireless mesh networks and mitigate application SLO violations
that stem from temporal bandwidth loss.
Orchestrators at the Cloud. Systems which improve orchestra-
tion do not treat bandwidth as a first-class citizen when sched-
uling [14, 21, 23]. Graphene [23] considers critical paths for task
pipelines but does not consider the communication requirements
between tasks. Similalry, Medea [21] models placement of long
running jobs as an ILP but does not account for the inter-node
bandwidth as a constraint in the formulation. Prior proposals [6,
9, 22, 38, 46] consider network bandwidth as a resource during
orchestration only to mitigate SLO violations due to resource con-
tention. Scheduling decisions in these past works target datacenter
environments that assume stable link capacities and the ability to
run solvers [6, 9, 39] which are infeasible for resource constrained
wireless mesh environments. For context, A Philadelphia-based
mesh network [45] has about 30 nodes, requiring 900 constraints
for path bandwidth alone. Finally, scheduling of function pipelines
modeled as DAGs have been considered in several Function-As-A-
Service (FaaS) systems [2, 32]. These systems do consider the data
transfer between components, but they are built to run on stable
networks and don’t have to consider migrating components when
link capacities change. In contrast, BASS incorporates bandwidth
requirements for initial application deployment and continuously
monitors for bandwidth availability to proactively migrate applica-
tion components to account for variability in bandwidth prevalent
in wireless mesh networks.
Orchestrators at the Edge. There are research efforts aimed at
edge environments, taking various resource constraints into ac-
count (in addition to CPU and memory), such as latency [40], band-
width [31, 57, 59], and energy [42, 60]. Prior efforts have also looked
at orchestrating geodistributed compute resources for latency sen-
sitive applications across the edge-cloud continuum [11, 50] do not
model the cost of migrating services when underlying network
capacity changes, and assume reliable connectivity to the wide
area network. Preliminary efforts aimed at measuring the perfor-
mance of orchestration platforms for low power devices [17] and
optimizing power consumption for specific applications, such as
camera networks [1] have been proposed which are complemen-
tary to BASS. Prior work has incorporated bandwidth awareness
[41] for specific domains (e.g. DNNs), but require modification to
the application code, whereas BASS is general and works across
applications and does not require changes to application code.

8 Discussion and Future Work

In this work, we considered the impact of bandwidth variations
on application performance and proposed a few ideas to mitigate
the impact. We considered a set of compute nodes connected wire-
lessly and created a system to monitor changes in bandwidth in
order to inform scheduling. In the current implementation of the
system, bandwidth requirements are independently determined
through offline profiling. Determining the bandwidth requirements
of every component pair in an application is cumbersome work
for the developer. As a part of future work, we plan to introduce
automated online profiling for gathering bandwidth requirements
for scheduling components once an application has been deployed.
In our evaluations, under a time varying bandwidth trace, we in-
vestigated combinations of headroom capacity and link utilization
thresholds that yield the best performance for two of our workloads.
The two parameters are configurable and the developer can specify
the threshold based on what works best for their use case. We leave
the exploration of automated migration parameter tuning to future
work.
In the current iteration of the work, we assume that components
are either stateless or that state can be discarded without impacting
correctness (e.g., caches), and that container images are readily
available on every node (this is at most a one time cost). In order
to perform stateful migration, we will have to save the state of the
container, or some part of it, and possibly transport it across the
network to a different node and may incur additional data transfer
cost. Medes [51] performsmemory deduplication of container states
using CRIU [13], which is a tool for saving container states in user
space. Similar techniques are being proposed in Kubernetes for
checkpointing [30], though this is mainly intended for forensic
analysis, and not for live migration.
We proposed two different heuristics for component placement on
a wireless mesh. The two heuristics are essentially based on the fan
out or depth of an application’s data flow graph. The applications
we investigated favored one or the other, but it is possible that a
subgraph of the application may have high fanout, and another
part could be a deeper pipeline. A potential avenue of future re-
search is combining the two heuristics depending on the application
specifics.

9 Conclusion

In this work, we explored the effects of treating network bandwidth
as an important property in the decision for application component
placement. We developed heuristics for this placement and investi-
gate the impact of component migration on application SLOs. We
expect our modifications to k3s to benefit wireless mesh networks,
making them resilient to bandwidth fluctuations.

Acknowledgments

Wewould like to thank our anonymous reviewers from both submis-
sion cycles and members of the Embedded Pervasive Lab at Georgia
Tech for their thoughtful feedback that helped to improve this paper.
This work was funded in part by NSF grants (CCF-1909004, SCC-
2125354, CNS-2008368, CCF-2211018), and a gift from Microsoft
Corp.

142

BASS: A Resource Orchestrator to Account for Vagaries in Network Conditions in Community Wi-Fi Mesh MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong

References

[1] Kevin Abas, Katia Obraczka, and Leland Miller. Solar-powered, wireless smart
camera network: An iot solution for outdoor video monitoring. Computer
Communications, 118:217–233, 2018.

[2] Mania Abdi, Samuel Ginzburg, Xiayue Charles Lin, Jose Faleiro, Gohar Irfan
Chaudhry, Inigo Goiri, Ricardo Bianchini, Daniel S Berger, and Rodrigo Fonseca.
Palette load balancing: Locality hints for serverless functions. In Proceedings
of the Eighteenth European Conference on Computer Systems, pages 365–380,
2023.

[3] Usman Ashraf, Amir Khwaja, Junaid Qadir, Stefano Avallone, and Chau Yuen.
Wimesh: leveraging mesh networking for disaster communication in resource-
constrained settings. Wireless Networks, 27:2785–2812, 2021.

[4] Carly Berwick. Yesterday’s Internet Isn’t Good Enough for Tomor-
row’s Cities. https://nextcity.org/features/internet-connection-mesh-networks-
resilience, 2016. [Online; accessed 18-Feb-2023].

[5] John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris. Architecture
and evaluation of an unplanned 802.11b mesh network. In Proceedings of the
11th Annual International Conference on Mobile Computing and Networking,
MobiCom ’05, page 31–42, New York, NY, USA, 2005. Association for Computing
Machinery.

[6] Ofer Biran, Antonio Corradi, Mario Fanelli, Luca Foschini, Alexander Nus, Danny
Raz, and Ezra Silvera. A stable network-aware vm placement for cloud systems.
In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), pages 498–506, 2012.

[7] Difei Cao, Jinsun Yoo, Zhuangdi Xu, Enrique Saurez, Harshit Gupta, Tushar
Krishna, and Umakishore Ramachandran. Microedge: A multi-tenant edge cluster
system architecture for scalable camera processing. In Proceedings of the 23rd
ACM/IFIP International Middleware Conference, Middleware ’22, page 322–334,
New York, NY, USA, 2022. Association for Computing Machinery.

[8] Llorenç Cerdà-Alabern, Axel Neumann, and Pau Escrich. Experimental evalua-
tion of a wireless community mesh network. In Proceedings of the 16th ACM
International Conference on Modeling, Analysis amp; Simulation of Wireless
and Mobile Systems, MSWiM ’13, page 23–30, New York, NY, USA, 2013. Associ-
ation for Computing Machinery.

[9] Jianhai Chen, Kevin Chiew, Deshi Ye, Liangwei Zhu, and Wenzhi Chen.
Aaga: Affinity-aware grouping for allocation of virtual machines. In 2013
IEEE 27th International Conference on Advanced Information Networking and
Applications (AINA), pages 235–242, 2013.

[10] Francesco Chiti, Romano Fantacci, Leonardo Maccari, Dania Marabissi, and
Daniele Tarchi. A broadband wireless communications system for emergency
management. IEEE Wireless Communications, 15(3):8–14, 2008.

[11] Ka-Ho Chow, Umesh Deshpande, Veera Deenadhayalan, Sangeetha Seshadri, and
Ling Liu. Atlas: Hybrid cloud migration advisor for interactive microservices,
2023.

[12] CNI. bandwidth-plugin, 2021. https://www.cni.dev/plugins/current/meta/
bandwidth/.

[13] CRIU. CRIU, 2023. https://criu.org/Main_Page.
[14] Pamela Delgado, Diego Didona, Florin Dinu, and Willy Zwaenepoel. Kairos:

Preemptive data center scheduling without runtime estimates. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18, page 135–148, New York,
NY, USA, 2018. Association for Computing Machinery.

[15] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 1–14, July 2019.

[16] eBPF. bpf-helpers, 2022. https://man7.org/linux/man-pages/man7/bpf-helpers.7.
html.

[17] Rafael Fayos-Jordan, Santiago Felici-Castell, Jaume Segura-Garcia, Jesus Lopez-
Ballester, andMaximoCobos. Performance comparison of container orchestration
platformswith low cost devices in the fog, assisting internet of things applications.
Journal of Network and Computer Applications, 169:102788, 2020.

[18] FFmpeg. A complete, cross-platform solution to record, convert and stream audio
and video., 2022. https://ffmpeg.org/.

[19] Frank Schmitz. Object detection using deep learning with Yolo, OpenCV and
Python via Real Time Streaming Protoco, 2022. https://github.com/foschmitz/
yolo-python-rtsp.

[20] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-
source benchmark suite for microservices and their hardware-software im-
plications for cloud & edge systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 3–18, 2019.

[21] Panagiotis Garefalakis, Konstantinos Karanasos, Peter Pietzuch, Arun Suresh, and
Sriram Rao. Medea: Scheduling of long running applications in shared production
clusters. In Proceedings of the Thirteenth EuroSys Conference, EuroSys ’18, New

York, NY, USA, 2018. Association for Computing Machinery.
[22] IC Gog, Malte Schwarzkopf, Adam Gleave, Robert NMWatson, and Steven Hand.

Firmament: Fast, centralized cluster scheduling at scale. Usenix, 2016.
[23] Robert Grandl, Srikanth Kandula, Sriram Rao, Aditya Akella, and Janardhan

Kulkarni. GRAPHENE: Packing and Dependency-Aware scheduling for Data-
Parallel clusters. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 81–97, Savannah, GA, November 2016. USENIX
Association.

[24] guifi.net. Commons Telecommunications Network Open, Free and Neutral .
https://guifi.net, 2004. [Online; accessed 18-Feb-2023].

[25] Akram Hakiri, Aniruddha Gokhale, and Pascal Berthou. Software-defined wire-
less mesh networking for reliable and real-time smart city cyber physical ap-
plications. In Proceedings of the 27th International Conference on Real-Time
Networks and Systems, RTNS ’19, page 165–175, New York, NY, USA, 2019. As-
sociation for Computing Machinery.

[26] Yiwen Han, Shihao Shen, Xiaofei Wang, Shiqiang Wang, and Victor C.M. Leung.
Tailored learning-based scheduling for kubernetes-oriented edge-cloud system. In
IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, pages
1–10, 2021.

[27] Istio. Istio, 2022. https://istio.io/.
[28] Roger P. Karrer, Ístvan Matyasovszki, Alessio Botta, and Antonio Pescapé. Ex-

perimental evaluation and characterization of the magnets wireless backbone. In
Proceedings of the 1st International Workshop on Wireless Network Testbeds,
Experimental Evaluation & Characterization, WiNTECH ’06, page 26–33, New
York, NY, USA, 2006. Association for Computing Machinery.

[29] Kubernetes. Scheduling, Preemption and Eviction. https://kubernetes.io/docs/
concepts/scheduling-eviction/, 2022.

[30] Kubernetes. Forensic container checkpointing in Kubernetes, 2023.
lhttps://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-
alpha/ .

[31] Adisorn Lertsinsrubtavee, Mennan Selimi, Arjuna Sathiaseelan, Llorenç Cerdà-
Alabern, Leandro Navarro, and Jon Crowcroft. Information-centric multi-access
edge computing platform for community mesh networks. In Proceedings of the
1st ACM SIGCAS Conference on Computing and Sustainable Societies, pages
1–12, 2018.

[32] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jiagan Cheng, Wenli Zheng, and
Minyi Guo. Faasflow: Enable efficient workflow execution for function-as-a-
service. ASPLOS ’22, page 782–796, New York, NY, USA, 2022. Association for
Computing Machinery.

[33] Linux. tc. https://man7.org/linux/man-pages/man8/tc.8.html, 2001. [Online;
accessed 18-Feb-2023].

[34] Lyft. Envoy, 2022. https://www.envoyproxy.io/.
[35] Leonardo Maccari. Detecting and mitigating points of failure in community

networks: A graph-based approach. IEEE Transactions on Computational Social
Systems, 6(1):103–116, 2019.

[36] Leonardo Maccari, Luca Baldesi, Renato Antonio Lo Cigno, Jacopo Forconi,
and Alessio Caiazza. Live video streaming for community networks, experi-
menting with peerstreamer on the ninux community. In Proceedings of the
2015 Workshop on Do-It-Yourself Networking: An Interdisciplinary Approach,
DIYNetworking ’15, page 1–6, New York, NY, USA, 2015. Association for Com-
puting Machinery.

[37] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh
Elnikety, Saurabh Bagchi, and Somali Chaterji. Wisefuse: Workload characteriza-
tion and dag transformation for serverless workflows. Proc. ACM Meas. Anal.
Comput. Syst., 6(2), jun 2022.

[38] Ying Mao, Jenna Oak, Anthony Pompili, Daniel Beer, Tao Han, and Peizhao Hu.
Draps: Dynamic and resource-aware placement scheme for docker containers in a
heterogeneous cluster. In 2017 IEEE 36th International Performance Computing
and Communications Conference (IPCCC), pages 1–8. IEEE, 2017.

[39] Xiaoqiao Meng, Vasileios Pappas, and Li Zhang. Improving the scalability of
data center networks with traffic-aware virtual machine placement. In 2010
Proceedings IEEE INFOCOM, pages 1–9, 2010.

[40] Matteo Nardelli, Valeria Cardellini, and Emiliano Casalicchio. Multi-level elastic
deployment of containerized applications in geo-distributed environments. In
2018 IEEE 6th International Conference on Future Internet of Things and Cloud
(FiCloud), pages 1–8, 2018.

[41] Vinod Nigade, Pablo Bauszat, Henri Bal, and LinWang. Jellyfish: Timely inference
serving for dynamic edge networks. In 2022 IEEE Real-Time Systems Symposium
(RTSS), pages 277–290, 2022.

[42] Zhaolong Ning, Jun Huang, Xiaojie Wang, Joel J. P. C. Rodrigues, and Lei Guo.
Mobile edge computing-enabled internet of vehicles: Toward energy-efficient
scheduling. IEEE Network, 33(5):198–205, 2019.

[43] NYC Mesh. A complete, cross-platform solution to record, convert and stream
audio and video., 2024. v.

[44] Ramakrishna Padmanabhan, Aaron Schulman, Dave Levin, and Neil Spring.
Residential links under the weather. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 145–158. 2019.

143

https://nextcity.org/features/internet-connection-mesh-networks-resilience
https://nextcity.org/features/internet-connection-mesh-networks-resilience
https://www.cni.dev/plugins/current/meta/bandwidth/
https://www.cni.dev/plugins/current/meta/bandwidth/
https://criu.org/Main_Page
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://ffmpeg.org/
https://github.com/foschmitz/yolo-python-rtsp
https://github.com/foschmitz/yolo-python-rtsp
https://guifi.net
https://istio.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://kubernetes.io/docs/concepts/scheduling-eviction/
https://man7.org/linux/man-pages/man8/tc.8.html
https://www.envoyproxy.io/
v

MIDDLEWARE ’24, December 2–6, 2024, Hong Kong, Hong Kong Sethuraman, Sarma et al.

[45] Philadelphia Community Wireless. Network Coverage Map, 2021. https://
phillycommunitywireless.org/networkmap/.

[46] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. FIRM: An intelligent fine-grained resource management frame-
work for SLO-Oriented microservices. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 805–825. USENIX Associ-
ation, November 2020.

[47] Darijo Raca, Jason J. Quinlan, Ahmed H. Zahran, and Cormac J. Sreenan. Beyond
throughput: A 4g lte dataset with channel and context metrics. In Proceedings of
the 9th ACM Multimedia Systems Conference, MMSys ’18, page 460–465, New
York, NY, USA, 2018. Association for Computing Machinery.

[48] Rancher. Lightweight Kubernetes. https://k3s.io/, 2019.
[49] Huzur Saran and Vijay V Vazirani. Finding k cuts within twice the optimal. SIAM

Journal on Computing, 24(1):101–108, 1995.
[50] Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachan-

dran. OneEdge: An Efficient Control Plane for Geo-Distributed Infrastructures. In
SoCC ’21: ACM Symposium on Cloud Computing, Seattle, WA, USA, November
1 - 4, 2021, pages 182–196. ACM, 2021.

[51] Divyanshu Saxena, Tao Ji, Arjun Singhvi, Junaid Khalid, and Aditya Akella.
Memory deduplication for serverless computing with medes. In Proceedings of
the Seventeenth European Conference on Computer Systems, EuroSys ’22, page
714–729, New York, NY, USA, 2022. Association for Computing Machinery.

[52] Sean DuBois. The Open Source, Cross Platform Stack for Real-time Media and
Data Communication, 2020. https://github.com/pion/.

[53] Manasvini Sethuraman, Anirudh Sarma, Ashutosh Dhekne, and Umakishore
Ramachandran. Foresight: planning for spatial and temporal variations in band-
width for streaming services on mobile devices. In Proceedings of the 12th ACM

Multimedia Systems Conference, pages 227–240, 2021.
[54] Esther Showalter, Nicole Moghaddas, Morgan Vigil-Hayes, Ellen Zegura, and

Elizabeth Belding. Indigenous internet: Nuances of native american internet use.
ICTD ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[55] SoundCloud. From metrics to Insight, 2022. https://prometheus.io/.
[56] Jakob Struye, Bart Braem, Steven Latré, and Johann Marquez-Barja. The citylab

testbed—large-scale multi-technology wireless experimentation in a city envi-
ronment: Neural network-based interference prediction in a smart city. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pages 529–534. IEEE, 2018.

[57] Lin Wang, Lei Jiao, Ting He, Jun Li, and Henri Bal. Service placement for collab-
orative edge applications. IEEE/ACM Transactions on Networking, 29(1):34–47,
2021.

[58] Cong Xu, Karthick Rajamani, and Wesley Felter. Nbwguard: Realizing net-
work qos for kubernetes. In Proceedings of the 19th International Middleware
Conference Industry, Middleware ’18, page 32–38, New York, NY, USA, 2018.
Association for Computing Machinery.

[59] Mingjin Zhang, Jiannong Cao, Lei Yang, Liang Zhang, Yuvraj Sahni, and Shan
Jiang. Ents: An edge-native task scheduling system for collaborative edge com-
puting. In 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), pages
149–161. IEEE, 2022.

[60] Tongxin Zhu, Tuo Shi, Jianzhong Li, Zhipeng Cai, and Xun Zhou. Task scheduling
in deadline-aware mobile edge computing systems. IEEE Internet of Things
Journal, 6(3):4854–4866, 2019.

144

https://phillycommunitywireless.org/networkmap/
https://phillycommunitywireless.org/networkmap/
https://k3s.io/
https://github.com/pion/
https://prometheus.io/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Variation in Bandwidth of Wireless Links
	2.2 Existing Schedulers on Wireless Networks

	3 BASS Scheduling Heuristics
	3.1 Assumptions
	3.2 Heuristics for Component Deployment

	4 BASS Design
	4.1 BASS Scheduler
	4.2 BASS Net-Monitor
	4.3 BASS Controller

	5 Implementation
	6 Evaluations
	6.1 Applications
	6.2 Microbenchmarks
	6.3 Evaluations on Emulated Mesh Network

	7 Related Work
	8 Discussion and Future Work
	9 Conclusion
	References

