
DynaaDCP: Dynamic Navigation of Autonomous Agents for
Distributed Capture Processing

Sam Jijina, Ramyad Hadidi, Jun Chen, Zhen Jiang, Ashutosh Dhekne, Hyesoon Kim
{sam.jijina, rhadidi, jchen706, zjiang330, dhekne, hyesoon.kim}@gatech.edu

Georgia Institute of Technology

1 INTRODUCTION
Effective autonomous agents must perform complex tasks and ana-
lyze multidimensional raw data to function in diverse situations.
Even though all the operations performed on these agents require
computation power, with the advancement of deep learning and
computer-vision algorithms, analyzing the multidimensional raw
data constitutes a large portion of these computations. Specifically,
due to the limited energy and computation power of individual
autonomous agents (e.g., drones), it is a challenge to perform all
the computations on a single agent. One solution to this challenge
is integrating high-performance computing units such as GPUs
or customized ASICs. However, such an approach will incur high
energy costs which will add extra battery weight. Another solution
is to offload computations to the cloud or a nearby base-station,
necessitating high-speed data connections to powerful datacenters.
Nevertheless, this solution requires additional costly datacenter
machines and dedicated low-latency and high-bandwidth links to
autonomous agents, which are almost impossible to acquire due
to the agent’s movements and ever-changing environments, and
potentially remote operations.

In this paper we present DynaaDCP, a novel and yet generic
framework to suggest a mobility pattern for autonomous agents so
that distributed computation on these agents benefit from reduced
communication overhead.We demonstrate this capability through a
set of exemplar applications of computer vision algorithms running
in parallel on multiple autonomous agents. Concretely, we show
how a set of autonomous survey drones capturing and processing
aerial images benefit from this approach. The drones, while using
distributed computer vision algorithms, alternate between getting
close to each other and moving back to their survey locations to
improve the overall computation efficiency.

2 SYSTEM ARCHITECTURE AND DESIGN
Figure 1 illustrates two critical configurations in our DynaaDCP
framework using autonomous drones capturing and processing
aerial images as an example. The two configurations are as follows:
(i) drones are far away from each other and capturing aerial im-
ages while performing computation on the previous batch, and
(ii) drones are near each other to communicate recently acquired
aerial images using high data rate links. Processing captured data
in-flight allows utilizing the compute power of the drones to the
fullest, while also enabling dynamic mid-flight decision making.
Our focus in this work is on improving communication efficiency
which in turn improves the overall efficiency of the distributed
algorithms. Existing studies categorize the communication link
between processing units in two categories: (1) multi-processor
distributed systems that assume a tight linkage between various
processing units, and therefore, a low communication overhead; and
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Figure 1: DynaaDCP near-far schedule guides autonomous agents to
alternate between communication and capture tasks, minimizing
the overall time needed for completing a mission.

(2) geo-distributed systems, which in contrast, are built assuming a
significant uncertainty about the communication overhead.

We propose that there is a third category of communication
links, that is a distributed system in which we have control over
the parameters of the communication links. For example, if a fleet
of flying drones comes within physical proximity of each other
(reducing the inter-drone distance), then higher communication
data rates are achievable. Furthermore, provisioning more than
one communication technology, such as Wi-Fi and mmWave [3],
allows switching between long-range and high data-rate alterna-
tives when appropriate. If drones are organized such that they are
within a few meters of each other, then mmWave links provide high
throughput between the drones, enabling extremely fast exchange
of information which is then made available to the computing units
even when the drones are far away.

We envision two design settings in which we expect to use
DynaaDCP: (1) pre-programmed mode, and (2) reactive mode. For
any application or workload, we expect that the reactive mode is
always be applicable. For many applications with fixed mission
objectives, the pre-programmed mode should be applicable, which
provides the most benefit from innovations proposed in DynaaDCP.
■ Pre-programmed Mode: The drones will be pre-programmed
with a specific mission that comprises several runs of a set of sub-
tasks. Each run, shown in Figure 2, accounts for many aspects of the
drones’ flight. At the end of each run, the drones can make future
path planning decisions based on the results of the previous com-
putations. To this end, DynaaDCP develops an analytical algorithm
to deduce a movement schedule for a set of autonomous agents
given a certain expected computation and communication trace,
illustrated in Figure 3. In the following, we describe the design of
our system in detail.
■ Reactive Mode: In this mode, we relax our assumption of com-
plete knowledge of the duration of each sub-task. Instead, we take a
simpler approach that should be applicable to all workloads. We just
assume we know the duration of the communication task before
the communication begins. Thus, in the reactive mode, DynaaDCP
decisions are limited to modified behavior during the communicate
subtasks only.
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Figure 2: Overview of a mission run executed by autonomous agents.
Each mission is comprised of multiple runs, and each run has multi-
ple compute, communicate, and capture sub-tasks.
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Figure 3: Envisioned System Design for the pre-programmed mode.

3 ALGORITHM DEVELOPMENT
At a high level, DynaaDCP abstracts out the specifics of the dis-
tributed task that the user wishes to run on a set of autonomous
agents. So, whether a set of drones are running a graphics depth
map, or a set of self-driving all-terrain vehicles are mapping a sur-
face, DynaaDCP’s abstraction allows simply dividing the entire
complex end-task into a sequence of capture, compute, and com-
municate subtasks. Among these, only the communication subtask
is elastic; we expect the trace to contain the approximate amount
of data to be transferred, and our algorithm converts it to time
elapsed based on the expected data transfer rate achievable. Other
subtasks can be represented in durations of time, though “number
of operations”, and “number of captured entites” are also acceptable
ways to represent the compute and capture subtasks.

The bottomline for the DynaaDCP algorithm is that it must
decide between two possible locations for the autonomous agents
at every time instant—near or far. A globally optimal algorithm
that takes an expected trace as input and produces a “near-far”
movement schedule with the aim of completing the set task in
the minimum amount of time or with the minimum amount of
energy consumed, is our primary contribution in this paper.

4 RESULTS
Distributed Computer-Vision Processing: We first analyze our
distributed computer vision processing on a Raspberry Pi 4with con-
figurations of 2 GB of RAM with unthrottled bandwidth of around
940𝑀𝑏𝑝𝑠 . The distributed pipeline for generation of orthophoto
includes EXIF extractions, detect features and feature matching
among the images, cluster computation of OpenSfm’s structure
frommotion [2],MVE’smulti-view stereo [1], andOpenDroneMap’s
orthophoto generation [4]. The comparison tradeoff results are
shown in Figure 4.
4.1 Effectiveness of DynaaDCP
We evaluate DynaaDCP’s performance with respect to the flight
time and the energy saved per run. We execute the DynaaDCP
algorithm over multiple traces of 6 computer-vision missions: com-
puting a stitched orthophoto from a group of images, 2 traces gen-
erating depth maps, and 3 traces with substantial time spent in
movement, capture, and communication respectively, for a total of
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Figure 4: Distributed Computer Vision Processing on VMs: (a) Com-
pute Benchmarks, (b) Communication Benchmarks.
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Figure 5: DynaaDCP reduces the total flight time required to com-
plete the mission, can comes close to the hypothetical least time
required (Oracle).

6 traces. For each trace, we compare DynaaDCP performance with
the performance expected when only Wi-Fi is used by all drones,
as a lower bound.

As an upper-bound, we compare DynaaDCP’s performance with
a hypothetical oracle that allows a single communicate subtask
to be broken into Wi-Fi and mmWave parts, allowing the best
communication paradigm when transiting between near and far
locations. These comparisons are summarized in Figure 5, which
shows that a significant speedup is offered by DynaaDCP over the
baseline, while not being too far from the hypothetical Oracle’s
performance.
5 CONCLUSION
Mobility of autonomous agents poses significant challenges to the
execution of collaborative distributed algorithms. However, in this
work, we showed that if we can control the motion patterns of the
autonomous agents, mobility can be used to selectively improve
communication data rates when demanded by the distributed algo-
rithm. We believe DynaaDCP provides a new direction to research
in this area with mobility providing an additional tuning knob in
the distributed systems.
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