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Commercial UAV industry will reach 805,000

in sales in 2021, a CAGR of 51%][1]

Increasing use cases of UAVs from surveying
land to emergency services and national

security

Communication between multiple UAV
agents is increasingly becoming a bottleneck

[2]

Optimizing communication directly affects

overall flight range and mission time

Different physical form factors have different

communication signatures

.
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Should we

get the drones closer and use high
bandwidth communication while

incurring the movement penalty?

.

FF'C.'lr Should we
keep the drones at distance and use low

bandwidth communication while

incurring the bandwidth penalty?

> Distributed CV Processing

»  Single node, Two/Four node Wi-Fi, Two/Four node mmWave

> Compute model from Raspberry Pi 4 [7] and parameters configured

> Parameters and knobs imported into VirtualBox[8] VMs

» OpenDroneMap[4]

» VMs configured for each run to simulate different mission characteristics

>  Network monitoring using Wireshark[5] and iperf3[3]
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C =8B lﬂgz(l + E) [Shannon-Hartley Theorem]

Understanding
these tradeoffs and
their characteristics
are critical to solve
the correct set of
problems
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Millimeter Wave (mmWave) spectrum
between 30 GHz and 300 GHz

V band (60 GHz) set aside by FCC to be
unlicensed

High bandwidth
Limited by short range

Due to oxygen absorption[6]

Bandwidth vs. Data Rate

Attenuation (dB/km)

0.01 4

0.004 4
0.002 4
0.001

Channel Capacity (C) is increased w/ higher
bandwidth (B) keeping signal-to-noise ratio
constant.
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Utilizing mmWave for UAVs Envisioned Setting

> Two utility configurations b d » Large scale forest fire
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- Key Contributions & Future Directions
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— O Oracle > The key contributions of our work as summarized
] » A novel approach to run distributed algorithms on autonomous agents where control of
5 B proximity improves efficiency.
[ ] 4 » A movement scheduling algorithm that incorporates goals of compute, communicate, and
ml m capture of data.
1 » Example use-cases that demonstrate the proposed scheduling algorithm’s benefits to
various distributed application scenarios.
| | | | | — > Future Directions
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» Variations in Compute Tasks
»  Real-time Decision making

»  Scalability analysis
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