Mobility Patterns to Optimize Communication for Distributed Capture Processing Onboard Autonomous UAVs

Sam Jijina, Jun Chen, Zhen Jiang, Ashutosh Dhekne, Hyesoon Kim

Georgia Institute of Technology

Wavelength (mm)
30 20 15 10 8 6 5 4 3 2 1.5 1.0 0.8

Frequency (GHz)

Motivation

- Commercial UAV industry will reach 805,000 in sales in 2021, a CAGR of 51%[1]
- Increasing use cases of UAVs from surveying land to emergency services and national
- Communication between multiple UAV agents is increasingly becoming a bottleneck
- Optimizing communication directly affects overall flight range and mission time
- Different physical form factors have different communication signatures

mmWave

- Millimeter Wave (mmWave) spectrum between 30 GHz and 300 GHz
- V band (60 GHz) set aside by FCC to be unlicensed
- High bandwidth
- Limited by short range
- Due to oxygen absorption[6]
- Bandwidth vs. Data Rate
- Channel Capacity (C) is increased w/ higher bandwidth (B) keeping signal-to-noise ratio

 $C = B \log_2(1 + \frac{3}{N})$ [Shannon-Hartley Theorem]

Utilizing mmWave for UAVs

- Two utility configurations
- Star config
- Cone config
- Two modes of operation
- Wi-Fi for long range low

throughput

- throughput mmWave for short range high
- Dynamically switch between the two modes on-the-fly
- But when should it switch? 😥

Envisioned Setting

> Large scale forest fire

WiFi

- Objective is to quickly 3D map areas with immediate threat to human life & property
- 3D Map to be used for SAR
- High signal attenuation, cannot use base station
- Area of interest is too large for a single UAV
- Limited backhaul links
- > Can be extended to any situation where backhaul and cloud links are not feasible
- > Ocean rescue, oil spill mapping, missions in mountain ranges etc.

Should we get the **drones closer** and use **high** bandwidth communication while incurring the **movement penalty**?

Predicted value of drones by industry

Or Should we keep the drones at distance and use low bandwidth communication while incurring the bandwidth penalty?

Experiment Setup

- Distributed CV Processing
- Single node, Two/Four node Wi-Fi, Two/Four node mmWave
- Compute model from Raspberry Pi 4 [7] and parameters configured
- Parameters and knobs imported into VirtualBox[8] VMs
- > VMs configured for each run to simulate different mission characteristics
- Network monitoring using Wireshark[5] and iperf3[3]

Key Contributions & Future Directions

- > The key contributions of our work as summarized
- > A novel approach to run distributed algorithms on autonomous agents where control of proximity improves efficiency.
- > A movement scheduling algorithm that incorporates goals of compute, communicate, and capture of data.
- > Example use-cases that demonstrate the proposed scheduling algorithm's benefits to various distributed application scenarios.

- End-to-end System Implementation
- Variations in Compute Tasks
- Real-time Decision making
- Scalability analysis

