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Abstract—This paper presents a UWB-IMU fusion approach
to obtain location and orientation of an object in 6 degrees
of freedom at the room level, without use of optical motion
capture systems. When tested with different human movement
patterns such as walking, running, jumping, and swirling on
a wheeled chair, we obtain less than 10cm of 3D localization
error and under 5◦ of orientation error at the 90th percentile.
We expect our system, called ObjectTrack, to enable spatial
audio and interaction for VR/AR applications, enable precision
tracking of objects, and for localization of robotic motion systems.
ObjectTrack significantly reduces the cost barrier by about 50×
compared to popular motion capture systems.

Index Terms—UWB, 6DoF, UWB-IMU fusion, factor graphs

I. INTRODUCTION AND RELATED WORK

Accurate real-time tracking of the six degrees of freedom
(6DoF) pose (position and orientation) of objects within room
level indoor environments is crucial for supporting augmented
/ virtual reality (AR/VR), tracking indoor robots, and human-
computer interaction [1], [2]. Whereas optical motion capture
(MoCap) systems provide high accuracy, they are quite expen-
sive (at least 25K for an entry-level system). Further, optical
systems suffer from line-of-sight requirements, sensitivity to
lighting conditions, and high computational needs, restricting
their use primarily to controlled lab environments.

This paper explores a way to combine Ultra-Wideband
(UWB) radio ranging with Inertial Measurement Units (IMUs)
to drastically reduce the cost of object tracking. Our goal is to
achieve accurate and robust 6DoF object tracking in room-
scale indoor spaces, overcoming several of the limitations
of visual systems. UWB radios, operating under standards
like IEEE 802.15.4z [12], use large bandwidths (> 500MHz)
to achieve centimeter-level ranging precision and improved
multipath resolution [10], while remaining robust to optical
occlusions. However, UWB devices suffer from biases due to
hardware and software delays, and standard protocols often
lack the update rate and simultaneous ranging capabilities
needed for smooth, high-fidelity tracking. Complementar-
ily, IMUs provide high-frequency measurements of motion.
Of course, naively integrating these measurements (dead-
reckoning) yields high-frequency continuous pose estimates,
but this process inherently suffers from drift accumulation over
time due to sensor noise [18].

Fusing these complementary sensors presents significant
challenges: synchronizing disparate data streams, mitigating
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Fig. 1: The full standalone helmet device being tracked. UWB-
IMU fusion is done on-board. Real-time pose information
is downlinked to applications using Wi-Fi. Optical MoCap
markers added for performance evaluation only.

UWB noise and multipath effects, correcting IMU drift and
biases, and achieving real-time performance on resource-
constrained platforms. We address these challenges with Ob-
jectTrack, an end-to-end system designed for low-cost, high-
performance 6DoF indoor object tracking.

Our key contributions are:

• A robust UWB-IMU fusion algorithm based on factor
graphs [16] for real-time 6DoF pose estimation directly
on an embedded platform attached to the tracked object.

• A novel cascaded UWB ranging protocol that signifi-
cantly increases the ranging update rate and improves
efficiency compared to standard two-way ranging.

• A comprehensive experimental evaluation of the Object-
Track prototype in a 7m × 9m room using 8 UWB
anchors, demonstrating its performance against a profes-
sional OptiTrack MoCap system.

Our results show that ObjectTrack, built with components
costing under $500, achieves a 90th percentile 6DoF tracking
error of less than 10 cm for complex human trajectories,
demonstrating the feasibility of accurate, low-cost indoor
object tracking using UWB-IMU fusion. An illustrative video
is available at: https://tinyurl.com/objtrackvideo.

Several recent systems have also performed fusion of UWB
and IMU data. Yao et.al., in [20] have used extended kalman
filters for predictable uniform motion. Zeng et.al. [22] and
Feng et.al. in [6] have shown commendable results for a



robot moving on 2D surface. In the control literature, [9] have
proposed a nonlinear complementary filter for localization of a
drone without occulusion. In comparison, ObjectTrack works
even for unpredictable human movements including jumping,
running, and walking when occluded by another person.

In the learning literature, [17] have proposed a tight learned
inertial-only odometry method. However, this method is highly
dependent on the motion pattern of the tracked object. In
comparison, ObjectTrack is able to track objects with arbitrary
motion patterns.

II. SYSTEM OVERVIEW

ObjectTrack enables real-time 6-DoF object tracking using
a combination of UWB ranging and IMU measurements.
Below we provide an overview of the calibration and deploy-
ment of the system, followed by a description of how the
system functions during regular use. Deployment involves a
technician installing a set of wireless anchors (typically 8)
on the walls of the operational space, preferably at varying
heights to improve 3D localization accuracy. These anchors
are powered using AC mains power supply in our imple-
mentation, hence no power optimization is performed at the
anchors. Anchor locations within the room’s coordinate frame
must be accurately determined through an assisted calibration
procedure (Section III-C). The anchors do not require wired
synchronization. The object to be tracked is instrumented
with multiple tags, each equipped with an IMU. The relative
location of UWB tags on the rigid object is measured and
used for joint inferencing of the object’s pose. These tags
perform UWB ranging with the anchors and compute local
sensor fusion using their IMUs. A one-time calibration step is
necessary to estimate UWB range biases for each tag-anchor
pair. This is achieved by moving the rigid body frame along a
trajectory while collecting UWB range data, tracked either via
self-calibration or an external system like MoCap for higher
precision. This entire setup and calibration process is only
one-time and typically requires only a few minutes.

During regular use, the always-on anchors continuously
perform two-way ranging with nearby tags using our modified
cascaded ranging protocol (Section III-A). Each tag collects
range measurements from all visible anchors and combines
this information with its own IMU data through a fusion
algorithm. This fusion runs locally on the tag or a connected
processing unit, generating real-time 6-DoF trajectory esti-
mates. While the UWB update rate is determined by the
ranging protocol and number of tags (it is 25 Hz for 3 tags in
our implementation), the final tracking update rate leverages
the high-frequency IMU data (up to 833 Hz), providing smooth
and responsive tracking suitable for applications like virtual
reality (Fig. 2). The system supports continuous operation with
no inherent limit on how long the object can be tracked.

III. SYSTEM DESIGN

We now describe in detail, the algorithms developed for the
regular use first, which are our primary contributions, and then
discuss those for the one-time calibration.

Fig. 2: A typical application for our system: 6-DoF tracking for
virtual reality. Image captured from our real-time visualizer.
Range rays indicate the error of range measurements. red/blue:
shorter/longer, white: no error. Rays intersect at the 3 tag
locations. Pyramid shows the user’s current view frustum.
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Fig. 3: ObjectTrack uses a cascaded ranging algorithm. Final
location can be calculated by each individual tag.

A. Regular Use: Modified Cascaded Ranging Protocol

We have developed a modified ranging protocol to support
fast multi-anchor ranging. Ranging between two UWB devices
is defined in the IEEE 802.15.4z standard, comprising a POLL,
RESP, and a FINAL message. Used naively for localization,
range measurements between each anchor and tag will need
to be sequential, consuming a significant amount of air-
time. However, since UWB messages can be broadcast, it
is possible to combine several of these sequential messages
into a compressed sequence of message exchanges as shown
in Fig. 3. Anchor Ax to tag Ty distance measurement is
denoted as ρAxTy in the formulations shown in the figure.
All anchors take turns in sending broadcast POLL messages
which are received by three tags in this example. Each tag
records the time at which each of the poll was received. After
all polls have been received, each tag takes turns replying back
with its own broadcast RESP message. The anchors record
the received time for the RESP messages and then send this
information back in the consecutive FINAL messages. Thus,
each FINAL message contains its own transmit time and the
receive timestamps of three RESP messages from the three
tags. On receipt of the FINAL messages, the tags can calculate
their distances from all 8 anchors, using the standard distance
measurement formula shown in Fig. 3, meaning a total of 24
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Fig. 4: UWB arrives at a much slower rate than IMU.
Preintegration helps reducing the number of variables that we
need to optimize. Note the IMU factor ϕIMU also connects
to the bias variable, which we omitted here for brevity.

distance measurements are obtained by the 3 tags together.
Robust 3D localization is then performed on the tags or at a
compute node with which all the tags share their timestamp
data, as described below.

B. Regular Use: Sensor Fusion for Object Tracking

We combine information obtained from inertial sensors with
that obtained from UWB ranges to perform localization. Factor
graphs are used in this process, and the reader is referred to
the seminal work by Dellaert [4] on the topic.

1) Model for Wireless Ranging: The error characteristics
(e.g. marginal distribution) of ranging errors differ signifi-
cantly from scene to scene, among different indoor scenar-
ios [3]. While more complex models, such as in [14], might
be able to increase the localization accuracy, in this work we
use a simple model for the ranging error, described below.

For each range measurement we define a (unary) factor,
ϕR(P

n
tag), which encodes the difference between the measured

range zR and the Euclidean distance hR(·) between the
estimated positions.

ϕR(P
n
tag) = ∥hR(P

n
tag, P

n
anchor) + βa + βb − zR∥ΣR

(1)

where Pn
tag is the tag’s position, Pn

anchor is the anchor’s
position, βa and βb are the antenna biases of the tag and
anchor, respectively, and ΣR is the covariance matrix of the
range measurement error.

2) IMU Preintegration:: We wish to integrate the faster
IMU measurements (833Hz) with slower UWB range mea-
surements (∼ 25Hz). However, direct IMU integration ac-
cumulates drift, and naive fusion incorporating every IMU
sample is computationally expensive due to the significant
rate mismatch (Fig. 4), requiring costly re-integration when
correcting past states. To circumvent these issues, we perform
IMU pre-integration between two UWB measurements. The
object’s state (rotation Rt, velocity Vt, position Pt) evolves
according to:

d
dtRt = Rt[ω]×
d
dtVt = g +Rtat
d
dtPt = Vt

(2)

where ωt,at are gyroscope and accelerometer readings.

To efficiently fuse these sensors, we use the IMU prein-
tegration on manifold technique [7], summarizing IMU mea-
surements between two UWB keyframes (ti, tj) into a single
relative motion constraint, independent of the initial state. This
constraint is represented by a factor ϕIMU on the NavState [7]
manifold X = {R,P, V }:

ϕIMU (Xi, Xj , bi) = ∥Xj ⊖ X̂j(Xi, bi)∥ΣIMU
, (3)

where X̂j is the predicted state based on preintegrated mea-
surements between Xi and Xj , and bi is the IMU bias,
estimated using a random walk model [5]. This factor enforces
consistency between keyframes, leveraging faster IMU data
to constrain motion and improve trajectory accuracy between
sparse UWB updates.

3) Real-time Online Optimization: We are now able to
define the factor graph of the complete problem. Since the
calibration (tag-anchor range biases) is already known, the
graph admits a very simple chain form, consisting of only
unary range and binary IMU factors, which greatly improves
performance. At keyframe t, we have

Φ(X) =
∏

j∈A,k∈T,i

ϕRj,k,ti
(Xn

ti) ·
∏
i

ϕIMU (X
n
ti−1

, Xn
ti , bti−1)

×
∏
i

ϕb(bti−1 , bti) (4)

where ϕRj,k,ti
is the range factor with known range biases and

anchor location, ϕIMU the IMU factor described above, and
ϕb the IMU bias random walk factor. The graph at t, Φ(Xt), is
only a chain-like extension of Φ(Xt−1), since the new factors
depend only on the last and current state Xn

{t−1,t}, b{t−1,t}.
This graph can be solved by an incremental smoother [16]

with minimal complexity. This allows our system to operate
in real-time with only a latency of ∼ 10ms.

C. Calibration and Deployment

Calibration of ObjectTrack requires the precise determina-
tion of many unknown variables, such as the 3D location of
anchors pAn

∈ R3, the range biases for each antenna βk ∈ R,
and the relative locations of each UWB tag on the object to be
tracked (hard hat helmet in our case) pb

Tm
. With N anchors

and M tags, this gives us a total number of unknowns, D:

D = 3N + (N +M) + 3M (5)

where we have an unobservable subspace of dimension 4 + 1
which consists of the global translation, global yaw, and the
arbitrary antenna bias zero point (as one could use any of the
devices as zero antenna bias).

Optical systems are not immune from similar ambigui-
ties (typically resolved using precisely measured calibration
wands [8]). For initial calibration during installation, a tech-
nician moves the tracked object in a random manner around
the capture volume. An external tracking source, such as a
smartphone with ARKit or a high-precision motion capture
system such as OptiTrack, provides ground truth trajectory
information. The technician collects synchronized IMU and
UWB ranging data while moving the tracked object within



the capture space. Simultaneously, we record the ground truth
trajectory using the external tracking source.

We then use a factor graph to compute the maximum
a posteriori (MAP) solution of all calibration variables, in-
cluding anchor positions, device transforms, etc. We define
here a quaternary range factor between each pair of devices
(regardless of anchor or tag) for which a range measurement
is available. The factor encodes the difference between the
measured range zR and the Euclidean distance hR(·) between
the estimated positions (note the difference with Equation (1)):

ϕR(P
n
a , P

n
b , βa, βb) = ∥hR(P

n
a , P

n
b )+βa+βb− zR∥ΣR

(6)

To handle potential non-line-of-sight measurements, we in-
corporate a robust cost function, here the Cauchy loss [21],
into the range factors. These robust cost functions reduce the
influence of outliers. The antenna biases for each tag (βt

n)
and anchor (βa

m) are modeled as unknown parameters in the
optimization problem. Similarly, the relative transformation
between the body frame and the tag frame (P b

tag) is estimated
to determine the precise location of the tags on the tracked
object. Mathematically, the graph is defined as

Φ(X) =
∏

i,j∈A∪T ,k

ϕRtk
(· · · ) ·

∏
i

ϕIMU (X
n
ti−1

, Xn
ti , bti−1

)

×
∏
i

ϕb(bti−1
, bti)×

∏
i∈A,k

ϕP (P
n
i,tk

)×
∏
i

ϕX(Xn
t ) (7)

where A set of anchors, T the set of tags, ϕRtk
are the range

factors at keyframe time tk, ϕIMU the IMU factor, ϕb the
IMU bias random walk factor, and ϕP and ϕX are the prior
factors for the anchor positions and body trajectory.

IV. IMPLEMENTATION

A. Hardware Design

Accurate motion and orientation tracking with UWB and
IMU requires two features: (i) accurate synchronization of
UWB measurements with IMU data, which is paramount to
correct data association during the fusion process, and (ii) high
quality IMU measurements with relatively stable IMU bias. To
achieve this, we used our custom hardware platform [15], and
custom software library based on Rust, that integrates UWB
and IMU measurements with microsecond-level timestamps.

The same hardware is used both as a tag and as an anchor.
An ESP32-S3 microprocessor serves as the main processing
unit. An LSM6DSO IMU is used to deliver inertial measure-
ments at 833Hz. To enable standalone operation, the platform
also includes a SGM41511 battery management system (BMS)
that supports LiPo battery. A DWM3000 [19] is used as the
UWB radio. The entire package is miniaturized to a small
5 cm × 2 cm × 1.5 cm block (see a photo in Fig. 6), so that
it can be easily attached to any moving object that needs to
be tracked. The onboard computer is a Khadas VIM4 single-
board computer that connects to the UWB tags via USB.

B. Software Design

To ensure seamless deployment and operation of Object-
Track in real-world scenarios, we have designed a robust and
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Fig. 5: Rust-based software pipeline system diagram.

fault-tolerant Rust-based software architecture that prioritizes
ease of configuration, safety, and modularity. The software
design is centered around the ZeroMQ [11] messaging library,
which provides a high-performance message queue and a pub-
lisher/subscriber communication model. As far as we know,
this is the first ever UWB and IMU object tracking platform
using the Rust programming language.

Figure 5 illustrates the overall software system diagram. All
system information, including sensor data and fusion results,
is transmitted as ZeroMQ message topics. This approach
enables any client application to subscribe to the relevant
topics, facilitating easy integration and abstraction of the client
applications from the internal workings of the system.

The software components running on the UWB tags and the
onboard computer are implemented using the Rust program-
ming language, reducing the risk of common programming
errors and enabling optimal utilization of system resources.

V. EVALUATION

In order to evaluate the accuracy and robustness of our
proposed system, we set up our system in a few typical
use cases and challenging scenarios. All experiments are
conducted inside our lab with an OptiTrack motion capture
system serving as ground truth, which typically has ∼0.1mm
accuracy when all markers on the rigid body are tracked.

Our evaluation environment is shown in Fig. 6. The ground
truth anchor locations are obtained with a Leica TCR703 Total
station (∼$2500) with an accuracy of ∼3mm (anchors are
outside the OptiTrack tracked volume). Anchors are then co-
located within the motion capture frame by measuring fixed
markers placed inside the motion capture tracking volume
(about 4m× 4m), which is smaller than ObjectTrack’s total
capture volume. The marker location on the tracked rigid body
is identified automatically by our calibration system.

We run all real-time experiments on the onboard computer
with an Amlogic A311D2 ARM processor. All metrics, visu-
alization and other data processing are done on a ThinkPad
X1 Yoga Gen 8 Laptop with Intel Core i7-1365U processor.

A. Object Localization Accuracy

We evaluate ObjectTrack’s localization and orientation ac-
curacy against OptiTrack ground truth using precisely cali-
brated anchor locations and best-case biases. A researcher
performed six diverse actions (walking near/with another
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Fig. 6: ObjectTrack evaluation setup in our lab.

person creating partial occlusions, walking/jumping, hopping,
running, and spinning on a chair). Raw data and trajectories
will be open-sourced creating a first of its kind dataset. These
movements were captured by UWB, IMU, and OptiTrack
(Fig. 1). We first assess the full system (ObjectTrack) using
UWB and IMU fusion, then perform ablation studies. Periods
of limited OptiTrack confidence due to marker occlusion are
marked by red intervals on timeline graphs.

1) ObjectTrack with 3 UWB tags, IMU, and data post-
processing: Fig. 7a shows the best-estimate Absolute Position
Error (APE) CDF using three UWB tags, IMU, and rigid
body constraints. The 90th percentile accuracy is under 10 cm
for most activities. The 3D trajectories (Fig. 8) and APE
timeline (Fig. 9, black trace) demonstrate robust localization
with minimal deviation from ground truth. Fig. 10 shows
rotation error. Apparent large rotation errors during OptiTrack
occlusion periods (red intervals) are artifacts of the ground
truth system’s sensitivity to marker occlusion, unlike the more
robust IMU/UWB fusion in ObjectTrack.

2) Real-time Trajectory Estimation: Without access to fu-
ture data, real-time estimation (Fig. 7b) achieves a 90th

percentile APE between 12 − 17 cm. Real-time position and
rotation errors are overlaid in blue on Figures 9 and 10.

3) Ablation Study: With only 3 UWB Tags (no IMU):
Removing the IMU significantly degrades performance. Using
only three UWB tags yields a 90th percentile APE between
20−30 cm (Fig. 7c). While median error remains below 15 cm
and trajectories are decipherable (Fig. 11), worst-case errors
increase and poses become discontinuous.

4) Ablation Study: With 1 UWB Tag and IMU: Using only
one UWB tag with the IMU increases the 90th percentile
APE slightly (∼1 cm) compared to three tags (Fig. 12),
demonstrating the complementary nature of UWB and IMU.
Initialization takes longer as initial pose and biases must be
estimated, but accuracy quickly converges.

B. Robustness: Challenging Scenarios

ObjectTrack maintains robust and accurate tracking (<
10 cm 90th percentile APE, < 5◦ rotation error) across
challenging scenarios designed to induce occlusion, dy-
namic multi-path, and high-speed motion (Fig. 8). These
include movement near/with another person, jumping, running
(∼5m/s), and spinning while seated on a chair.

C. System Considerations

1) Power Consumption: Our tags consume about 450mW
of power on an average with their UWB and IMU turned
on continuously, powered by an ESP32 microcontroller, with
no power optimizations. In comparison, a 50% duty cycling
mmWave radar [13] would consume about 2.14W .

2) UWB Update Rate: ObjectTrack obtains a reliable UWB
3-tag localization update rate of 25Hz due to our modified
cascaded ranging protocol (see Fig. 13). Without our opti-
mizations in the ranging protocol, the best possible update
rate would have been only ∼ 8Hz.

VI. CONCLUSION

ObjectTrack is an exploration in closing the gaps in UWB-
IMU based 3D object tracking. We have developed a method to
fuse information from IMU and UWB sensors which benefits
each other in improving tracking speed and limiting drift
over time. We expect that by lowering the costs associated
with object tracking, we might lower the barrier to entry and
bring this technology, though slightly inaccurate, to a larger
audience. We fully expect the research community to build
upon the foundations laid in this paper, improving upon the
limitations of ObjectTrack, for years to come.

REFERENCES

[1] Aditya Arun, Shunsuke Saruwatari, Sureel Shah, and Dinesh Bharadia.
XRLoc: Accurate UWB Localization to Realize XR Deployments,
November 2023.

[2] Tara Boroushaki, Isaac Perper, Mergen Nachin, Alberto Rodriguez, and
Fadel Adib. Rfusion: Robotic grasping via rf-visual sensing and learning.
In Proceedings of the 19th ACM conference on embedded networked
sensor systems, pages 192–205, 2021.

[3] Haige Chen and Ashutosh Dhekne. Pnploc: Uwb based plug & play
indoor localization. In 2022 IEEE 12th International Conference on
Indoor Positioning and Indoor Navigation (IPIN). IEEE, 2022.

[4] Frank Dellaert. Factor graphs and gtsam: A hands-on introduction.
Georgia Institute of Technology, Tech. Rep, 2(4), 2012.

[5] Jay A. Farrell, Felipe O. Silva, Farzana Rahman, and Jan Wendel. Inertial
measurement unit error modeling tutorial: Inertial navigation system
state estimation with real-time sensor calibration. IEEE Control Systems
Magazine, 42(6):40–66, 2022.

[6] Daquan Feng, Chunqi Wang, Chunlong He, Yuan Zhuang, and Xiang-
Gen Xia. Kalman-filter-based integration of imu and uwb for high-
accuracy indoor positioning and navigation. IEEE Internet of Things
Journal, 7(4):3133–3146, 2020.

[7] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza.
On-Manifold Preintegration for Real-Time Visual–Inertial Odometry.
IEEE Transactions on Robotics, 33(1):1–21, February 2017.

[8] Joshua S Furtado, Hugh H T Liu, Gilbert Lai, Herve Lacheray, and Jason
Desouza-Coelho. Comparative Analysis of OptiTrack Motion Capture
Systems. In Advances in Motion Sensing and Control for Robotic
Applications: Selected Papers from the Symposium on Mechatronics,
Robotics, and Control (SMRC’18)-CSME International Congress 2018,
May 27-30, 2018 Toronto, Canada, pages 15–31. Springer, 2019.

[9] Hashim A. Hashim, Abdelrahman E. E. Eltoukhy, and Kyriakos G.
Vamvoudakis. Uwb ranging and imu data fusion: Overview and
nonlinear stochastic filter for inertial navigation. Trans. Intell. Transport.
Sys., 25(1):359–369, January 2024.
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Fig. 7: CDFs of 3D Position Errors: various UWB/IMU configurations. (Full, 1×UWB+IMU, 3×UWB Only, Self Calibration)
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Fig. 8: 3D trajectory after post-processing. Green using 3 tags and IMU. Red: Reference Ground Truth (zoom-in to see details)
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Fig. 9: Timeline: APE using 3 tags and IMU. OptiTrack low confidence times are indicated in red.
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Fig. 10: Timeline: Absolute Rotation Error in degrees using 3 tags and IMU.
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Fig. 11: Abalation: 3D trajectory (X-Y) using 3 tags UWB,
without IMU. APE Error ().
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Fig. 12: Best-estimate APE
1 UWB with IMU.
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