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ABSTRACT
Tracking a pet’s location and activity indoors is of acute interest
to pet owners who want to feel connected to their pet as well
as of interest to pet owners who feel concerned about their pet’s
well-being. Today, such tracking is performed using pet cameras.
However, cameras need to be installed in every room accessible to
the pet, do not work well in the dark, and generate a tremendous
amount of data. In this paper we develop an indoor localization and
pose detection system for pets using ultra-wideband (UWB) radios
and an accelerometer affixed to the pet’s collar. We also develop
a new message format for UWB packets to carry accelerometer
data in addition to localization data to estimate the pet’s pose. Our
pose-estimation logic detects the pet’s pose using accelerometer
data via a K-nearest neighbor classifier. The pet’s location and pose
is shown to the pet-owner via a functional mobile application. We
believe this cost-effective and efficient new way of tracking a pet
indoors will inspire others to extend this research further.

CCS CONCEPTS
• Networks → Location based services; • Human-centered
computing →Mobile devices.

1 INTRODUCTION
Monitoring pets in indoor spaces is predominantly performed
through pet cameras today. Indeed cameras offer direct view of
our pets and pet-owners enjoy the connection they feel with their
pets even when the owners are away from home. However, cameras
are required to be placed in every room (and sometimes several cam-
eras are required in each room), cameras consume a very high data
bandwidth for streaming and storage, and cameras have known
to cause privacy risks due to the likelihood of them being hacked.
In this work, we ask these questions: Is it possible to track a pet’s
activities using body-worn sensors and wireless localization instead
of cameras? In answering this question in the affirmative, we have
created PetTrack, an ultra-wideband (UWB) localization solution
for tracking a pet’s indoor location, and monitoring the pet’s ac-
tivity. The system comprises of a set of UWB anchors installed in
the indoor space, and a UWB device worn by the pet, on the collar
or a harness. The UWB device is also equipped with an accelerom-
eter to detect the pet’s posture and infer activities. Our custom
platform also allows adding more sensors to the collar, including
microphones, whistles, etc. for better monitoring and management
of the pet’s activities.
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But before we describe the platform and our system design for
PetTrack, it is important to motivate the features enabled by Pet-
Track and its advantages over a camera-based solution. (1) Pet-
Track directly provides the coordinates of the pet inside an indoor
space. This enables simple queries such as “how much time does
my pet spend in the living room?” The analysis required to answer
such a question is minimal compared to the analysis needed by
a camera-based system. Thus, PetTrack provides a simpler, less
compute-intensive solution to pet-location analytics. (2) PetTrack
uses the orientation data measured from the collar device to deduce
the pet’s pose, which is crucial in exercise and weight management
for pet physical therapy, and for monitoring general pet health.
While we have not achieved fine-grained pose estimation, we are
able to distinguish between sitting, standing, walking, and sleeping
poses. Pet-pose analytics is thus greatly simplified compared to a
camera-based system. (3) The data bandwidth required to transmit
the pet’s location and pose information over the network is quite
small. This saves home Internet data usage and mobile cellular data
usage when accessing the information. A vast majority of video
data captured by cameras is never used. By distilling out only the
most relevant information through location and orientation sensors,
PetTrack takes a minimalist data approach. (4) Wireless signals can
penetrate through walls, furniture, etc. Therefore a small number of
UWB anchors suffice to cover the entire home. In contrast, camera
coverage is limited to a single room, requiring several cameras to
be installed in a typical home. Thus, PetTrack requires minimal
hardware to track a pet.

In this work, the core principle for pet localization is wireless dis-
tance measurements. The ultra-wideband radio on the pet’s collar
performs wireless ranging with fixed anchors in the environment.
The pet’s location is solved using trilateration, which involves con-
verting the time of flight between each anchor and the collar device
to distances and using those distances to each anchor to determine
the indoor location of the pet. The calculated location of the pet is
then periodically sent to a cloud server, from where it is available to
the pet’s owners. At the same time, an accelerometer on the collar
device piggy-backs its data on the UWB packets. Estimations of the
pet’s pose are made using the accelerometer readings, coupled with
the pet’s movement data from the wireless ranging. An aggregating
compute device in the home, a raspberry pi in our prototype, per-
forms the trilateration and the pose estimation. This aggregating
device is connected to the Internet over the home network and
keeps a cloud service informed about the pet’s whereabouts.
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Our contributions in PetTrack are:
(1) We introduce a methodology for localization of a pet in an

indoor environment using UWB ranging.
(2) We introduce a system that combines accelerometer data

with UWB ranges to determine a pet’s pose
(3) We introduce a mobile application that renders the pet’s

whereabouts and pose in real-time.

2 BACKGROUND ON SENSORS
PetTrack primarily relies on two sensors: (a) ultra-wideband radios
for distance measurements, (b) inertial sensors for orientation mea-
surements. In this section, we will describe background material
on sensors themselves, including the standard ways of using them.
In the next section, we will delve into our specific improvements
to the state-of-the-art localization techniques.
Ultra-wideband Localization: The core idea in wireless local-
ization is measurement of the amount of time it takes for wireless
signals to go from one device to another. Since wireless signals
travel at the speed of light (3 × 108𝑚/𝑠), this time of flight for
wireless signals must be computed at nanosecond precision. A
challenge in precise time of flight measurement is in obtaining
exact arrival times. For a narrow-band signal, the arriving signal
rises above the noise floor rather slowly, making it difficult to tell
what the exact arrival time is. Hence, we need to use signals with
large bandwidths—ultra-wideband signals. Such signals rise quickly
above the noise floor within a few picoseconds and therefore result
in highly precise arrival time estimates.

However, accurate estimation of arrival times, while necessary
for precise distance measurements, is not sufficient. We also need
tight synchronization between the clocks of the two devices in-
volved in the message exchange. Intelligent ranging protocols have
been devised to overcome this challenge. For example, the alterna-
tive two-way ranging [14] relaxes the constraints of response time
through a crafted formulation that naturally removes the clock drift
errors, allowing more flexibility to the participating devices and
finding wide adoptions [9].
Inertial Sensors: Ego-centric tracking of the orientation can be
performed using inertial sensors. Typically this includes accelerom-
eters, gyroscopes, andmagnetometers. Unfortunately, indoor spaces
are not amenable to the use of magnetometers since various elec-
trical and electronic components in a household frequently corrupt
the magnetometer readings. Gyroscopic movements only measure
the angular velocity, which in this context does not provide much
relevant data without frequent re-calibration. Hence, we only focus
on the use of accelerometer output.

3 PETTRACK SYSTEM DESIGN
Ultra-wideband (UWB) localization techniques have existed for
several years now. Therefore, it might seem that localization for
any application can simply use the existing UWB ranging and trilat-
eration methods. However, tracking a pet’s location and capturing
their pose will need several modifications to the standard two-way
ranging scheme [6]. As shown in Fig. 1, we install a small number
of anchor devices in the pet’s home, and affix a client device to the
pet’s harness or collar. We now present the modifications made in
PetTrack below.

UWB Collar

Anchor 1 Anchor 2 

Anchor 3Anchor 4

Figure 1: PetTrack Systemdesign includes several fixedUWBanchors
in a home, with the pet wearing a UWB collar.
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Figure 2: Illustration of Double Buffering

3.1 One to Many TWR Ranging
Serially performing two-way ranging (TWR) with every anchor
and the pet’s UWB device is a slow process since every individual
ranging operation takes time. We find that pipelined two-way rang-
ing mitigates this issue by reusing just a single message transmitted
by the UWB to behave as a trigger for all anchors to respond.

More specifically, in PetTrack, the pet’s wearable device performs
a pipelined two-way ranging[5] with the deployed anchors in the
indoor environment. The pet’s wearable device initiates TWR by
sending a POLLmessage, which contains a schedule for the anchors’
transmissions. Upon receiving this POLL message, the anchors
transmit the RESPONSE messages in their respective slots dictated
by the schedule. The pet’s wearable device replies with a single
FINAL message (see Fig. 3). The POLL, RESPONSE, and FINAL
messages contain the receive and transmit timestamps necessary
for calculating the Time-of-Flight(ToF) between the pet’s wearable
device and each anchor. Note that the schedule can be configured
by the user, or through a one-time neighbor discovery protocol at
system initiation. We have currently assigned the schedule based
on hard-coded anchor IDs stored on the devices.

Pet-Wearable Responders

Propagation 
Delay (𝜌𝜌)

Schedule

Figure 3: Pipelined TWR between the Pet’s Wearable Device and
Anchors for a fast update rate.2
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3.2 Eavesdropper based Location Solver
Conventionally, in TWR, each anchor measures its ToF from the
pet’s wearable device, and all the ToF measurements are then col-
lected by a central processor where a localization solver produces
a location result. However, doing so requires additional hardware
such as a wired backbone network, or dedicated ToF collection time
slots, which reduce the localization rate. We propose an alternative
approach where an eavesdropping device at the central processor
overhears the TWR messages and computes the ToFs between the
pet wearable device and the anchors. The only requirement is that
all the receive and transmit timestamps at the anchors and the pet
wearable device are embedded in the TWR messages, a require-
ment of the conventional TWR. However, in addition, the anchor’s
receive timestamp of the FINAL message also needs to be trans-
mitted, which can be embedded in its next RESPONSE message.
Once the ToF measurements are available at the eavesdropper, the
central processing unit then computes the pet’s location using a
least-sqaure solver [13].

3.3 Accelerometer Data in UWB packets
In addition to performing TWR, the pet wearable device continu-
ously collects the 3-axis acceleration data from the accelerometer on
the pet-wearable device. To keep the computation complexity low,
raw accelerometer data is transmitted to the central processing unit
for pose classification. We exploit the existing TWR messages to
carry the accelerometer data. To deal with the asynchronous nature
of data collection and communication, we use a double buffering
technique (see Fig. 2) to handle the sampled accelerometer data on
the pet’s wearable device: the data samples are stored in one of two
buffers, and when it is filled, this buffer is marked as "Ready-to-
Transmit" while the newer samples are stored in the other buffer;
before transmitting the TWR messages, the pet wearable device
checks the buffer status and will embed the entire data buffer in the
TWRmessage if one of the buffer is marked as “Ready-to-Transmit”.
Note that both POLL and FINAL messages transmitted by the pet
wearable device can carry the accelerometer data. This ensures the
same length of accelerometer data is received by the pose classi-
fier, making the processing simpler. The TWR message structure is
shown in Fig. 4.

POLL ID TX TS Loc(x, y) Slot1 Slot2 …Num
Slots

RESP ID TX TS Loc(x, y) Poll Rx Ts

FINAL ID TX TS Loc(x, y) Resp 
ID1

Resp 
RX TS1

Num
Slots …

TOKEN ID TS To ID Acc2
(t, Ax, Ay, Az) …

Acc1
(t, Ax, Ay, Az)

Acc2
(t, Ax, Ay, Az) …

Prev Final 
RX TS

Poll Rx 
Ts

Acc1
(t, Ax, Ay, Az)

Acc2
(t, Ax, Ay, Az) …

Acc1
(t, Ax, Ay, Az)

Acc2
(t, Ax, Ay, Az) …

Figure 4: Packet structure for TWR message exchanges.

3.4 Pose Inferencing
Understanding the pose of the pet can help us gain insights into
the activities that a pet performs throughout the day. To detect the
pet’s motion, an accelerometer has been integrated on the pet’s
wearable device. The 3-axis acceleration data is collected at 50𝐻𝑧
and is processed by the central device for pose classification. To
visualize how the acceleration data can be used for pose inference,
we show a 3D scatter plot( Fig. 5) from our measured data, where
different poses manifest as distinct clusters.

Machine learning techniques have been widely used for classi-
fication tasks. For its simplicity and wide application, we use the
K-nearest neighbor(KNN) classifier to let the system automatically
determine the pose of the pet. The accelerometer data is taken in
windows of a fixed size. Because of our double buffering technique,
the accelerometer data is always taken at a constant rate and there-
fore doesn’t contain any jumps in time. To remove the data related
to movements and transitions between poses, we first check each
windowed signal based on its variance to only retain the data that
can be classified as static poses (with low variance). Then the win-
dowed signal is vectorized into [𝐴𝑥1, 𝐴𝑦1, 𝐴𝑧1, ..., 𝐴𝑥𝑛, 𝐴𝑦𝑛, 𝐴𝑧𝑛]
and fed into the KNN classifier for classification.

Raw X accelerometer
Raw Y accelerometer

Raw Z accelerom
eter

Sit
Sleep
Stand

Figure 5: Visualizing the clusters of accelerometer measurements in
different poses

3.5 Cloud Storage
To render read-time data on the app and persist it for later use for
offline analysis we use Firebase as a cloud storage platform. Cloud
storage is a common Cloud Computing model to store data on the
Internet through various cloud computing service providers who
manage and operate data storage as a service. For our work, we use
Firebase which is a simple, powerful and cost-effective service built
by Google to scale. To capture data in real time, we used Firebase
Real-Time Database which stores data as a JSON and synchronizes
it in real-time to every connected client. The most important reason
why we use Firebase is that we can build cross-platform apps with
iOS, Android, JavaScript and all of our clients share only one real-
time database instance and automatically receive updates with the
newest data.

3.6 Mobile Application
Since the focus of this work is on the techniques for localization
of the pet, we have created only a minimal mobile application.
Currently, the underlying floorplan map is fixed, and the anchor
locations are manually inputted.

4 IMPLEMENTATION
We have created a custom-built PCB that houses a UWB chip, and
an accelerometer. A cortex M0 microcontroller on the PCB runs the
ranging code by interfacing with the Decawave DWM1000 UWB
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Anchors mounted on the walls
Eavesdropper 
+ RaspPi

Pet-Wearable

Acc

UWB

SDCard

BuzzRTC Battery

Figure 6: Our experimental setup using our custom wireless ranging
and accelerometer devices.

module and samples the accelerometer data from an ADXL335 chip
using the microcontroller’s ADC. This device is also provisioned
with a piezoelectric buzzer, an SDCard, and a real-time clock. Code
is uploaded to the device via a micro USB port. The device can
be powered either through a micro-USB port or via a battery. We
use copies of this device as the pet’s wearable device where all of
its sensors are utilized, as well as anchors mounted on the wall at
various places in the house. Anchors only use the microcontroller
controlled UWB module, and are powered via a USB charger. The
pet’s wearable device is powered using a 1200mAh LiPo battery. The
eavesdropper is another copy of the same device, but only the UWB
module is used as a gateway between the UWB data exchanges and
the Raspberry Pi which finally computes the pet’s location and pose
information. The eavesdropper UWB device is directly connected
with a RaspPi 4 and prints out all observed packets on its serial
interface. The Rasp Pi captures this information via a USB-to-Serial
driver and runs a python program to continuously deduce the pet’s
location. The UWB packets originating from the pet’s wearable
device also include accelerometer readings which are processed at
the Rasp Pi in real-time to infer the pet’s pose. Fig. 6 shows how
the anchors were mounted on walls of a two bedroom apartment,
how the pet-wearable device was mounted on a pet dog(Fig. 7)1,
and the eavesdropper+Raspberry Pi combination which captures all
exchanged data. Separating our the RaspPi from the pet-wearable
device allowed us to keep the weight of the pet-wearable device to
a minimum at about 17.886g.

Obtained information at the Raspberry Pi is transmitted to a
Firebase cloud server. A python application on the eavesdropper’s
Raspberry Pi device collects all the localization and accelerometer
data in one place. This data is obtained over the serial port by the
Raspberry Pi. The placement of the anchors in the house is assumed
to be known. To store the obtained data on cloud, we use Firebase.
It’s data config contains apikey, authodomain, databaseURL, and
storageBucket. We push all the obtained raw information to the
firebase database. An Android app obtains this information and con-
verts it to an animated pet character superimposed on the home’s
floor plan. The user is expected to provide the floorplan beforehand,
and is also expected to mark the locations of the anchor devices
1This project has obtained the required permissions from both the institutional review
board and the Institutional Animal Care and Use Committee

Figure 7: Pictures of the Pet’s Wearable Device

Mila Tracker App

Figure 8: The mobile application interface showing the current loca-
tion and pose of the pet. Application screen-shot superimposed on
mobile phone graphics by [2].

on the floorplan. At this time, our mobile app does not allow mark-
ing the anchor locations on the mobile phone, but this feature is
planned for the future.

Our implemented system runs at about 1−2𝐻𝑧 end-to-end given
the delays introduced by the Firebase cloud server. Raw location
estimates are produced at the RaspPi at a rate of 10𝐻𝑧 and we
expect that a dedicated cloud service in the future will improve the
end-to-end update rate.

5 EVALUATION
We evaluate PetTrack on a dog2 of breed tiny bernedoodle in a
1350 sq.ft. apartment. The pet’s wearable device was attached to the
back of the harness behind the subject dog’s neck. We evaluate the
localization and pose inference accuracy with the subject dog being
instructed to stay in static poses. Then we show a visualization
of activity tracking of the subject dog freely moving around. The
anchor locations are obtained using a floorplan and a laser ranger.

5.1 UWB Localization
The subject dog wears the harness equipped with the pet’s wearable
device, and is instructed to remain in a certain static pose at a certain
location while localization data is recorded. In Fig. 9, the scatter plot
shows a visualization of the localization results. For quantitative
2Our study has been approved by our institution’s IACUC and IRB.
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Figure 9: Scatter plot of localization results at 7 different pet locations
(P1-P7).
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Figure 10: CDF of localization error at pet locations P1-P7.

analysis, we compute the localization error and plot the cumulative
distribution function (CDF) in Fig. 10 compared to the centroid tag
location. The subject dog is in Sleep pose at P1-P2, Sit pose at P3-P4,
and in Stand pose at P5-P7. Overall, at most locations while under
difference poses, the 75𝑡ℎ percentile localization error is less than
one meter.

5.2 Pose Inference
The subject dog is instructed to remain in different static poses (Sit,
Sleep, Stand) during training and testing. The real-time accelerom-
eter measurements are used to generate the predicted pose labels.
The classification accuracy is 98.6%, and the confusion matrix is

Sit Sleep Stand
Sit 100% 0 0

Sleep 0 100% 0
Stand 0 6.9% 93.1%

Table 1: Normalized Confusion matrix of KNN pose classification

Figure 11: Free Moving pose inference over time. Icons have been
obtained from the Noun Project [10, 19].

shown in Table 1. This result shows our classifier is reliable when
the pet remains in the same pose.

5.3 Free Moving Experiment
In this experiment, the subject dog moves freely in the test environ-
ment, while the localization and pose inference data are recorded.
The subject dog’s movement is videotaped for obtaining its ground
truth activity. To show the performance of the classifier, we do
not consider the data where the ground truth is non-static. Fig. 11
shows the inferred pose and the ground truth pose over time. The
classification accuracy is 88.4%.

6 RELATEDWORK
The area of pet analytics is an upcoming field. This is also reflected
by the fact that pet ownership is on the rise—71% of households
have pets in 2021 compared to 67% in 2019[1].

Outdoor localization of pets has been enabled using a GPS tracker
on the pet’s collar for tracking lost pets [16]. However, GPS based
solutions are not reliable for indoor environment. In recent years, in-
door localization solutions [7, 18] have shown tremendous success,
especially the UWB systems [5, 15], achieving decimeter-level ac-
curacy. UWB tracking has seen applications in first responders [5],
robots [11], and mobile phones [12]. But using indoor localization
for tracking and understanding pets’ activities have been missing
in literature.

Besides location tacking, pose tracking is also crucial for under-
standing the pets’ activity and overall health. Camera and convo-
lutional neural network (CNN) based pose tracking has enabled
dog pose recognition and reconstruction [17]. However, continu-
ously running a CNN on live visual data is very computationally
expensive and takes a lot of processing power, and the accuracy and
reliability of the pose estimation is highly dependent on the place-
ment of cameras and object occlusions. Accelerometer based pose
recognition is a much more cost effective, data efficient method
that have demonstrated high classification accuracy [3, 4], which
inspired us to adopt accelerometer as well.
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7 DISCUSSION AND FUTUREWORK

How different is pet tracking from tracking people? Typi-
cally, when people use localization technology, they wish to track
their own location. However, in pet tracking, pet-owners need to
know the location of their pet. Therefore, the correct underlying
algorithms must be selected that simplify external knowledge of
the pet’s location. Furthermore, tracking the pose of a pet is simpler
than that of a human being given the typically upright posture for
humans. Similarly, pets get easily occluded by furniture items in an
indoor setting. Therefore, obtaining accurate ranges can become
challenging.
Can more than one pet be tracked? It is possible to modify
the PetTrack ranging protocol to accommodate a few pet-wearable
UWB devices. However, this solution cannot support a large number
of pets, such as in a pet-daycare facility. A TDoA version of the
protocol will be required for supporting a very large number of
pets.
Can PetTrack be used to track activities like eating, drink-
ing? Can it be used to measure calories burned? Using the
accelerometer data and the know weight and breed of the pet,
we can determine rate of calorie burn. Right now, our model is
pet-dependent, which means the model has to be trained to de-
tect different types of activity for every pet that uses PetTrack. It
is possible to use more domain knowledge of different pets and
more advanced machine learning techniques to make this into a
pet independent model in the future.
Why does PetTrack use UWB for localization? There exist
many modalities that enable indoor localization, such as WiFi-FTM
(Fine Timing Measurement) and cameras. Similar to UWB, WiFi-
FTM devices can calculate distance through careful measurements
of the round-trip delay. However, due to bandwidth and hardware
limitations, the localization error is usually several meters and is
sensitive to multipath [8], making it unsuitable for fine-grained
indoor pet tracking. Camera systems also suffer from occlusions
and privacy concerns when deployed in people’s homes. On the
contrary, UWB, which uses a large bandwidth and possesses wall
penetration ability, can achieve sub-meter localization accuracy
with just a few sensors, and is non-intrusive on user privacy.
Can we improve the pose inference accuracy with other sen-
sors? It’s possible to fuse accelerometer data with other sensor
inputs, such as gyroscope, UWB, light sensor, etc. to improve the
inference accuracy. For example, we observed that for a dog laying
on its belly and standing on its legs, the accelerometer data is very
difficult to distinguish; but with a light sensor under the collar, it
will help differentiate whether the dog is touching the floor or not.
Can PetTrack be used to teach pets and reinforce what their
owners teach them? It is possible to define some indoor spaces
as being off-limits for the pet. If, for example, the pet attempts
to enter into a designated off-limits space, an ultrasonic sound
can be emitted, alerting the pet to the off-limits restriction and
discouraging the pet from entering certain rooms, even in areas
that are irregularly shaped.

8 CONCLUDING REMARKS

PetTrack is a pet tracking system that allows the pet owners to
monitor pets’ activities through real-time location and pose track-
ing. PetTrack demonstrates reliable localization and pose inference
performance, which we believe will enable a wide spectrum of
pet-centered analytics and applications.
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