
Esense: Communication through Energy Sensing

Kameswari Chebrolu
Department of Computer Science

IIT Bombay, Mumbai, India
chebrolu@cse.iitb.ac.in

Ashutosh Dhekne
Department of Computer Science

IIT Bombay, Mumbai, India
ashudhekne@gmail.com

ABSTRACT
In this paper, we present Esense: a new paradigm of commu-
nication between devices that have fundamentally different
physical layers. The same communication framework also
works between devices that have the same physical layer,
which are out of communication range but within carrier-
sense range. Esense is based on sensing and interpreting
energy profiles. While our ideas are generic enough to be
applicable in a variety of contexts, we illustrate the use-
fulness of our ideas by presenting novel solutions to exist-
ing problems in three distinct research domains. As part of
these solutions, we demonstrate the ability to communicate
between devices that follow two different standards: IEEE
802.11 and 802.15.4. We build an “alphabet set”: a set of
signature packet sizes which can be used for Esense. For
this, we take a measurement based approach by consider-
ing WiFi traces from actual deployments. We then analyze
the channel activity resulting from these traces and build an
appropriate alphabet set for Esense communication. Our re-
sults show that we could potentially construct an alphabet
of size as high as 100; such a large alphabet size promises
efficient Esense communication. We also validate this al-
phabet set via a prototype implementation, and show that
effective communication is indeed feasible even when both
sides use different physical layers.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication

General Terms
Design, Algorithms, Experimentation, Performance

Keywords
802.11, 802.15.4, Communication, Energy Sensing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’09, September 20–25, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-702-8/09/09 ...$10.00.

1. INTRODUCTION
A variety of standards have evolved to facilitate communi-

cation in different settings. A consequence of this is that in
the wireless domain, quite a few standards have evolved in
the same spectrum. For example the Industry, Scientific and
Medical (ISM) band supports a variety of standards such as
IEEE 802.11b/g [4], IEEE 802.15.4 [3], Bluetooth [2] and
cordless phones. The devices that implement these stan-
dards have very different physical layers (modulation, fre-
quency band) and cannot interpret the bits that constitute
a packet generated by the other standards. But since they
operate in the same spectrum, they do interfere with each
other.

In this paper, we present a new paradigm of communica-
tion between devices that have fundamentally different phys-
ical layers. This same paradigm can also be used for com-
munication between devices belonging to the same standard,
which are out of communication range but within carrier-
sense range. We term our scheme Esense since it is based
on energy sensing. Our scheme can enable communication
in any setting as long as the two end points can sense each
others energy. We illustrate the applicability of this frame-
work by proposing novel solutions to existing problems in
three distinct research domains. The three problems and
solution approaches are illustrated in Fig. 1, and summa-
rized in Table. 1; we describe these below.

• Coordinated Coexistence: With more standards
emerging for operation within limited spectrum, co-
existence between the standards becomes a very im-
portant issue. Current practices tend to mitigate the
problem by frequency hopping or assessing the amount
of interference in a given channel and choosing a chan-
nel that has minimal interference. While this helps
to some extent, performance suffers based on the ex-
tent of interference. The problem can be much more
effectively solved by explicit communication, and co-
ordination between the different entities operating in
the same spectrum. They can then potentially share
the spectrum in a time multiplexed fashion. For exam-
ple, a WLAN access point (AP) can coordinate with
nearby WPAN nodes operating within the same spec-
trum, by scheduling the latter’s transmissions as part
of the AP’s contention-free period. Such explicit com-
munication can also permit nodes in the WPAN to
duty-cycle, saving energy till their next activity pe-
riod.

85

Figure 1: Esense application in three example scenarios

Scenario Sender Intended Receiver Possible Message Content
Coordinated

WiFi Node All nodes (or Master) of a given WPAN
Identity of the WPAN, next CFP start time

Coexistence (relative to reception of this message)
Energy Savings WiFi Node Secondary radio of the WiFi node it wants to wake-up Identity of the secondary radio (or receiver WiFi)

Interference Map WiFi Node Broadcast Identity of the sender WiFi node

Table 1: Esense communication details for the three example scenarios

• Energy Management: WiFi enabled devices such
as smart phones, laptops and router boards often em-
ploy a variety of techniques to conserve battery power.
These techniques include enabling the PSM mode of
802.11, disabling the WiFi interface or turning the en-
tire device off. Turning the interface or the entire de-
vice off naturally conserves more power, however it
makes the task of waking up the device when neces-
sary (e.g. incoming VoIP call, forwarding traffic) that
much more difficult. A solution that helps in this set-
ting is to employ an extremely low power secondary
radio (such as 802.15.4) that operates in the same fre-
quency band as WiFi but consumes significantly lesser
power than WiFi. This secondary radio can then listen
for WiFi communication from the other end, interpret
any incoming WiFi communication, and then turn on
the WiFi device only when required.

• Network Management: Debugging performance anoma-
lies in deployed WiFi networks (infrastructure or long-
distance community networks) needs a good interfer-
ence map of the network. Such a map specifies which
node’s transmissions interfere with which other nodes.
An interference map can help plan the networks better
through proper transmit power or channel allocation.
However interference maps are hard to construct since
often the interference range exceeds the transmission
range. A node may be able to sense interference but
is often clueless as to who is responsible for it since
it cannot interpret the incoming packets. The Esense
framework of communication can help in these settings
by clearly identifying the nodes responsible for this in-
terference.

Our energy based framework achieves its task of commu-
nication by constructing an alphabet set of packet sizes; i.e.,
mapping an Esense message (or sequence of bits) to an ap-
propriate energy burst duration. With this approach, one
has to tackle the following challenge. How does one distin-
guish these message modulated energy bursts (henceforth

referred to as energy-sense or Esense packets), from other
packets that are exchanged (henceforth referred to as reg-
ular packets). The mechanism to make this distinction is
dependent on the communication patterns of the original
system. We explore this issue in depth in this paper; as a
proof of concept of the Esense framework, we enable uni-
directional communication from an IEEE 802.11 radio to an
802.15.4 radio. However we emphasize that Esense is equally
applicable to enable bi-directional communication as well as
communication across other wireless standards.

The 802.11 to 802.15.4 communication we illustrate is
directly applicable in the first two of the three scenarios
presented above: the communication is uni-directional and
originates from the WiFi domain, with the receiver being
an 802.15.4 radio. In the third scenario, the receiver is an
802.11 radio, but here too we could use an 802.15.4 radio to
overcome practical limitations in off-the-shelf 802.11 radios
(off-the-shelf WiFi radios do not export the carrier-sense in-
terface readily).

Analysis of the packet size traces of many WiFi instal-
lations reveals a packet size distribution that is mostly bi-
modal. Given this observation, a possible mechanism to dis-
tinguish between the Esense and regular packets is to assign
those packet sizes to Esense packets that do not normally
occur in practice.

Since the frequently occurring packet sizes (in regular pack-
ets) are few in number, it appears on first glance that is
possible to assign all the remaining packet sizes to Esense’s
alphabet set. However this is not as straightforward in prac-
tice. Commodity 802.15.4 hardware, such as the CC2420
chip platform we use, have limitations on the resolution of
energy detection. This limitation, combined with very high
data rates that can be employed by 802.11g (upto 54 Mbps)
make the problem of energy detection practically challeng-
ing.

In addressing this challenge, we take a measurement based
training approach to construct the alphabet set correspond-
ing to Esense packets. For the training, we use publicly
available traces of WiFi deployments. We then characterize

86

the channel activity such traces create on 802.15.4 hard-
ware. We use a prototype implementation of Esense, on the
CC2420-based Tmote Sky platform. The use of the pro-
totype during the training process itself, naturally incorpo-
rates the limitations of the 802.15.4 hardware. From the
observed channel activity profile, we exclude channel busy
run lengths that occur at high frequency and use the remain-
ing run length space to construct the alphabet set for the
Esense packets. We then validate the use of the constructed
alphabet set, using the prototype implementation and fur-
ther WiFi traces (different from those used for training).

Our overall contributions in this paper are three fold.
First, we propose a new framework for communication based
on energy and show how it can provide new solutions to
problems in three distinct research domains. Second, we
propose a methodology for enabling such communication
factoring in the limitations of receiver hardware. Third,
we thoroughly evaluate and validate our methodology via
an actual implementation which supports a uni-directional
communication from 802.11 to 802.15.4 devices.

The rest of the paper is organized as follows. In the next
section (Sec. 2), we describe related work. Sec. 3 presents
the background for the considered problem along with the
detailed solution approach. We then present results of our
evaluation in Sec. 4. Sec. 5 presents a few points of discus-
sion and Sec. 6 concludes the paper.

2. RELATED WORK
To our knowledge, the framework of communication through

energy sensing is quite novel. Some aspects of Esense resem-
ble steganography, where information is concealed in other-
wise normal looking messages. Steganography has been ap-
plied to networking protocols [12], for instance, by using the
reserved fields of protocol headers, or by manipulating the
timings of Ethernet’s CSMA backoff, to convey secret in-
formation. Esense resembles steganography in that we con-
struct an information stream embedded within another in-
formation stream. However, unlike steganography, our goal
is not to hide information; in fact messages (Esense pack-
ets) are explicitly generated for the purpose of conveying the
necessary information.

We have given three example research domains in which
our framework is applicable; there has been considerable
prior work with respect to these. We present the same below.

The Industry, Scientific and Medical (ISM) band is used
by a variety of standards such as IEEE 802.11b/g [4], IEEE
802.15.4 [3] and Bluetooth [2]. Coexistence studies [21] have
shown that there could be considerable interference between
the different standards resulting in as high as 90% frame loss
rate. The most common solution [17, 22, 11] to the above
problem is to assess the amount of interference in a given
channel and choose a channel that has no or minimum in-
terference. This solution approach works provided there are
enough channels that are relatively free of activity. With
ISM band increasingly getting crowded coupled with the
fact that the WLAN channels occupy much larger spectrum
(22MHz) as opposed to WPAN channels (5MHz), it would
be difficult to get away from interference. A better strategy
is to coordinate and share the spectrum in a time-division
multiplexed fashion. This would lead to better throughput,
lesser delay, and energy efficiency. Our solution based on
energy communication can make such coordination feasible.

Energy conservation in WiFi based devices has received

considerable attention. The IEEE 802.11 standard [4] sup-
ports a power save mode (PSM) which permits the WiFi
interface to duty-cycle. There are other MAC layer tech-
niques [13] that build on the PSM to achieve further energy-
savings. However, as shown in [8], the power consumption of
the WiFi interface while idle and using this power save mode
is still substantial (�440 mW as measured on a smartphone).
Given this high idle power consumption of WiFi, the work
in [20, 9] has considered the approach of totally shutting
down the WiFi-interface and using a low-power secondary
radio. A WiFi sender wishing to wake-up a WiFi-receiver
does so, by using its secondary radio to communicate with
the secondary radio of the receiver. This solution however
suffers from the disadvantage of range-mismatch: WiFi cov-
ers a much larger area than the secondary radio. The short
range of the secondary radio makes it necessary to place
multiple intermediate proxies and presence servers.

Wake-on-WLAN [14] is another solution that employs a
secondary radio and looks at the problem of energy savings
in rural long-distance WiFi networks. Unlike the previous
approaches, this solution advocates the need for turning the
entire router (soekris board) including the WiFi interface
off for conserving energy since the router board itself con-
sumes considerable energy when idle (5W). This solution
however employs the secondary radio only on the receiver
side (not sender) and avoids the range-mismatch problem
by making the secondary radio directly sense the WiFi en-
ergy of the sender. The solution has the fundamental lim-
itation that it will work only on point-to-point links. In
point-to-multipoint links, or in a regular infrastructure set-
ting, Wake-on-WLAN is incapable of telling exactly which
receiver to wake-up.

Cell2notify [8] is another approach that also tries to over-
come the range mismatch problem. It uses the cellular radio
as the secondary radio to bring-up the WiFi interface. The
solution has been specifically designed for enabling VoIP in
WiFi-based smart phones. Further it needs infrastructure
support in the form of a cell2notify server through which
the calls are routed and the danger that the cellphone oper-
ators may block the server ID.

In contrast to the above solutions, our Esense-based so-
lution has the following advantages. First, it can work in
a variety of settings: enterprise WiFi or long-distance com-
munity networks; whether the end-device WiFi interface is
off or the entire end-device is off. Second, it does not suffer
from the range mismatch problem since the secondary radio
directly senses the WiFi-energy. This is possible because the
receiver sensitivity of the secondary radio (-95dBm) is bet-
ter than the necessary WiFi received signal strength at the
end device (typically -90dBm @1 Mbps). Third, our solution
needs software changes at the WiFi sender side and integra-
tion of a very low cost ($10), low power (60mW) secondary
radio1 at the receiver side. Specifically, it does not need any
intermediate proxies or servers on the infrastructure side.

The third scenario in which our framework is applicable is
in constructing the interference map of an 802.11 network.
Prior work [16, 10, 15] in this domain rely on building the
map by conducting individual and pair-wise broadcast mea-
surements of order O(N2), where N is the number of nodes
in the network. [18] reduces the number of measurements
to O(N) by considering only individual broadcast measure-

1CC2430 is a system on a chip that comes for under 10$
that can be used for this purpose.

87

ments and relying on a physical layer model to derive the
delivery ratio/throughput of a link when it operates in con-
junction with others.

One of the major drawbacks of these approaches is that
it requires network down-time to conduct the experiments
([16] reports 28 hrs are needed for these experiments on a 22
node testbed). In a dynamic environment where the inter-
ference profiles can change over time (due to environmental
conditions) this is a serious limitation. Further it requires
careful coordination among the different nodes to conduct
the experiments apart from requiring a global view of the
network.

Our solution to this problem, on the contrary does not
require any downtime. The operating nodes need to just
periodically broadcast their identity (and possibly the traf-
fic load) and any receiver node R can process this identity
information to figure out the number of interfering nodes
and at what energy level they interfere with R. This infor-
mation can then be used to perform appropriate transmit
power/channel allocation, or TDMA-scheduling. The inter-
ference map may also be coupled with the traffic load in-
formation to derive the throughput achievable at this node
based on an analytical model. These derivations can help
with routing, call admission control etc.

3. THE ESENSE COMMUNICATION FRAME-
WORK

We now present the overall Esense framework. We first
develop the basic idea, then present practical limitations,
and subsequently our approach to Esense given the limita-
tions.

3.1 Esense: overall approach
Choices for Esense: In an energy based communication

system, the receiver can sense only the energy patterns on
the channel. Based on this sensing, it can interpret three
possible parameters: the intensity of the energy, the gap be-
tween energy bursts, and the duration of an energy burst.
So, whatever information the sender wishes to convey has to
be conveyed via these parameters. Among the three possibil-
ities, the intensity of energy is not a good parameter, since
it is highly dependent on the external environment which
could be dynamic. Similarly, the gap between energy bursts
is also not a good parameter since it cannot be controlled
at the sender, especially in distributed contention-based sys-
tems. This is because, before the sender can insert the next
energy burst at the specified gap, some other node in the
system can access the channel and transmit.

The third parameter, the duration of an energy burst,
seems promising since it can be controlled at a given sender.
In this paper, we develop a framework for communication
based on modulating the energy duration.

Alphabet set: Given that we wish to use the energy
burst lengths for Esense communication, the immediate ques-
tion then is, which of the possible energy burst lengths can
be used? We term this set as the alphabet set for Esense.
For any message exchange, we need a base alphabet, and
a set size of two is a minimum requirement for building a
vocabulary (i.e. sequences of alphabets).

Now, the larger the alphabet set, the more efficient and
less complex the communication framework would be. For
example, in the energy-savings scenario described in Sec. 1,

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600

F
re

qu
en

cy
 (

%
)

Packet Size

Cafeteria

Figure 2: Packet size distribution of cafeteria trace

we need to have a different message for waking up each of
the different WiFi receivers in the AP’s range. If the WiFi
receiver set is of smaller size than the Esense alphabet set,
a single Esense packet is sufficient to convey the message.
However, if the message space required (i.e. the receiver
set) is larger than the alphabet set, one needs to consider
combinations of the base alphabet to convey the necessary
information. Further one needs to allow for the media access
latency of each of the individual packets. Hence there is
merit in seeking a large alphabet set.

In an operational network, there may normally be energy
bursts of different lengths, due to the various packet sizes
and various transmission rates in use. Hence there is a risk
that a regular packet may be confused for an Esense alpha-
bet by the Esense receiver. That is, we may have a false
positive. Thus, in choosing the Esense alphabet set, while
we must seek a large set, we must also seek to minimize the
false positive rate.

Packet sizes in WiFi traces: As proof of concept of
the Esense framework, we enable uni-directional communi-
cation from an 802.11 radio to an 802.15.4 radio. As noted
in Sec. 1, this hardware choice applies in the three scenar-
ios listed. Hence, we attempt to construct the alphabet set
based on the communication patterns predominant in WiFi
networks. There are a variety of WiFi traces available in
the public domain [1]. We identify five representative traces
to study the communication patterns; these are traces from
various WiFi infrastructure mode deployments 2. The five
traces are: Cafeteria (Powells), Library, PSU-CSE depart-
ment (all from [7]), OSDI Conference [6], Stanford CSE de-
partment [5].

An analysis of the packet size distribution for two of the
five traces is depicted in Fig. 2 and Fig. 3. Note that the y-
axis is log scale. Across all traces, the majority of the packets
are either small packets (< 140 bytes) corresponding to the
ACKs, beacons, management frames. Or they are around
1500 byte packets corresponding to the Ethernet MTU. Such
a bimodal distribution is a well know observation in the
Internet as well; we confirm that the same applies in WiFi
networks too.

A possible approach for Esense: The above obser-
vation suggests a possible approach for Esense. As far the
802.15.4 receiver node is concerned, it detects the energy

2We were not able to procure a trace of an operational mesh
network since these networks are still mainly used for exper-
imental purposes.

88

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600

F
re

qu
en

cy
 (

%
)

Packet Size

Stanford CS Dept

Figure 3: Packet size distribution of Stanford trace

of both regular packets (part of the WiFi network) and the
Esense packets. It now needs a mechanism to distinguish
between regular and Esense packets and further to make
sense of the message content of the Esense packets. Suppose
we assume that the 802.15.4 node can detect channel occu-
pancy with high accuracy i.e. it can detect any packet size
upto an accuracy of a byte. The solution then is to exclude
all packet sizes whose frequency of occurrence in the WiFi
traces is greater than a threshold percentage. And allocate
the rest as alphabets for Esense.

The higher we choose the threshold percentage, the larger
the alphabet set since we would be excluding lesser number
of packet sizes. However increasing the threshold percentage
can result in high false positives, where some of the regular
packets that were not excluded get interpreted as Esense
packets.

The base alphabet thus corresponds to the complement of
the set corresponding to these packet sizes that exceed the
threshold percentage. Note that the alphabet set needs to be
bounded, since the underlying technology has a maximum
packet size (MTU). So, we bound the alphabet set by the
maximum packet size feasible in 802.11 i.e. 2304 bytes.

Suppose we choose a threshold percentage of 1%. From
the traces, if we were to count the packet sizes with fre-
quency greater than 1%, this number turns out to be under
16 for all the traces. Thus the base alphabet for the Esense
packets turns out to be 2288, which is quite large.

Detecting Esense alphabets: In this scheme, the task
of the receiving 802.15.4 node would be to measure the du-
ration of energy on the channel and subsequently map it
to a corresponding packet size. If it sees a packet size that
does not belong to the alphabet set, it considers it as a reg-
ular packet and rejects it. If it sees a packet that belongs
to the alphabet set, it considers it as an Esense packet and
the measured packet size corresponds to an Esense alpha-
bet. Of course, in detecting the alphabets, we could have a
small number of false positives; we characterize this in our
evaluation.

In this base scheme, we can have as many Esense mes-
sages as the size of the alphabet set. We can enhance this
by building a vocabulary (sequence of alphabets) from the
alphabet set. This paper does not consider vocabulary con-
struction in depth.

3.2 Practical Limitations
In reality, the above described scheme faces two main

Figure 4: Illustration of 802.15.4 hardware limita-
tions

practical challenges. (1) The 802.15.4 Esense receiver can
only sense the energy burst duration; mapping this to a
packet length is not straightforward since the WiFi sender
could be sending at any of the multiple possible data rates.
(2) The accuracy of commodity IEEE 802.15.4 radio hard-
ware in detecting channel occupancy is limited. Further the
below two issues make this even harder. (2a) 802.11 opera-
tion supports multiple rates, with 802.11g mode supporting
very high data rates, upto 54 Mbps. (2b) Also, the inter-
packet gaps in an operational system are unpredictable due
to the very nature of the CSMA/CA protocol. These gaps
could be as small as 50µs for 802.11b and 28µs for 802.11g.

The first issue implies that we cannot quite use packet
sizes to encode Esense alphabets. The second issue, that of
inaccuracy in channel occupancy estimation, may arise due
to two reasons: (a) finite granularity of time measurement,
and (b) finite sampling granularity. The inaccuracy issue
manifests in many ways, illustrated in Fig. 4. First, when
the channel occupancy is say x µs, the radio hardware may
indicate a number greater or smaller than this. Second, the
inherent inaccuracy combined with high data rate operation
may mean that an entire packet is missed by the Esense
receiver. For example, when operating at say 54 Mbps, a
40 byte packet’s transmission time is roughly 31 µs (includ-
ing PLCP overhead). The 802.15.4 radio may not even be
able to detect this packet. Third, if the time separation
between two adjacent packets is very small (this interval is
dictated by the random backoff of the 802.11 standard), the
radio may club two or more packets together and interpret
it as one large packet.

We characterize the accuracy of 802.15.4 radio in detail
in Sec. 4. For now, we outline the procedure we follow to
address the above limitations.

3.3 Practical Alphabet Extraction Algorithm
We address the issue of multiple 802.11 data rates, by

using energy burst lengths directly as Esense alphabets, in-
stead of using packet sizes as alphabets 3. We take a mea-
surement based approach to determining the base alphabet
for Esense.

The hardware we employ is the CC2420-based Tmote Sky.
It uses a relatively impoverished microcontroller, the MSP430,
but it is good for low-power operation. The microcontroller
is only 8 MHz, and has 40 KB of ROM, and 10 KB of RAM.

The time measurement granularity on this platform is
1/32 KHz, or approximately 30.5 µs, since it uses a 32 KHz
oscillator. We shall refer to this as one clock tick henceforth.
In the Esense prototype based on this platform, we poll the

3The 802.11 sender needs to figure out the packet size and
rate at which to send this packet, such that the resulting
channel activity results in the correct energy burst length.

89

CCA pin of the CC2420 chip “continuously”. We note that
since the microcontroller is slow, the polling has a finite time
granularity.

We factor in the limitations of the commodity 802.15.4
hardware by actually using the hardware during the pro-
cess of Esense alphabet construction itself. We measure the
channel occupancy when a real WiFi node transmits pack-
ets of sizes as dictated by the traces and packet intervals as
dictated by the standard. For a given packet, the 802.15.4
hardware measures the channel occupancy as a run-length of
clock ticks. Much like what we have done earlier for packet
sizes, we calculate the frequency of occurrence of a given
run length. We extract our alphabets from the complement
set of run lengths that exceed a threshold percentage of fre-
quency. This process needs to address the following four
issues.

1. What is the run length we should use to bound the
complement set?

2. Do we consider all run lengths in the complement set
as alphabets?

3. How do we handle false negatives resulting from merg-
ing of packets by the low resolution hardware?

4. How do we handle false positives resulting from regular
packets being confused as Esense packets?

We address the above issues in the following manner.

1. Bounding the complement set: The first issue is that
of determining the maximum run length to use for an
alphabet. This run length could correspond to that
which occurs when the maximum sized packet (MTU
corresponding to that standard) is transmitted at the
configured data rate of the sender i.e. the data rate
the sender uses to send regular packets. While this
may give enough alphabets at low data rates, at high
data rates, the alphabet set will be very limited. For
example, at 54 Mbps, a 1500 byte packet produces
a run length of about 8 ticks and the maximum size
packet of 2304 byte produces a run length of 12 ticks.
So, there are about 4 run lengths that can be con-
sidered as potential alphabets (assuming all packets
larger than 1500 bytes occur at a frequency less than
the threshold), which is very limited.

We can overcome this limitation by considering the
lowest rate at which an 802.11 node can operate. If an
802.11 node has been configured to operate in the g
mode only, we bound the alphabet by the run length
that occurs when a 2304 byte packet is sent at 6 Mbps
(lowest data rate in the g mode). If the 802.11 node has
been configured to operate in the b mode, we bound
the alphabet by the run length that occurs when a
2304 byte packet is sent at 1 Mbps (lowest data rate
in the b mode) 4. Note that regular data packet trans-
missions except management frames happen at high
data rates, but we restrict that the Esense packets
are always sent at the lowest possible data rate at the
sender.

4A 802.11 node in g mode can potentially transmit at
1 Mbps. Doing so can increase its alphabet space further
but we make the worst case assumption that its configura-
tion prevents it from doing the same.

2. Building-in margins between alphabets: Now, one could
consider all the run lengths in the complement set as
potential alphabets. But this is not a good idea since
this does not account for the measurement inaccura-
cies of the 802.15.4 hardware. That is, a given packet
size (at a given transmit rate) could be measured as
any one of a set of run lengths. So, in our algorithms,
we choose a margin, and ensure that for any run length
chosen as an alphabet, there is a gap of at least the
“margin” ticks between this alphabet and any adja-
cent alphabet. This gap is also maintained between
an alphabet and a regular packet whose frequency ex-
ceeds the threshold percentage of frequency. The ac-
tual value of the margin is determined by 802.15.4
hardware characterization.

So, not all run length in the complement set get cho-
sen, only a subset. Once we determine the alphabet
set, we map the run length to appropriate packet size
considering the lowest data rate of operation possible
in that setting (since we have stipulated that Esense
packets are always sent at the lowest data rate).

3. Handling false positives and negatives: Problems 3 and
4 have a common solution. To reduce the occurrence
of false positives and negatives, we consider the use
of repetitions. We essentially send the Esense alpha-
bet (packet) multiple times in a small time-window.
And at the receiver, we deem that an Esense alpha-
bet (packet) has been received only if it detects some
threshold number of instances of the Esense alphabet
within the chosen time window.

To summarize our design, a WiFi node wishing to send
an Esense packet does so, by selecting a run length (and
therefore a corresponding packet size at the lowest rate of
operation) in the alphabet that corresponds to the message
it wishes to communicate. It then sends this packet multiple
times at the lowest possible data rate. The 802.15.4 receiver
concludes it as an Esense packet if it observes a channel
occupancy run length corresponding to an alphabet. This
should further occur a specified number of times within a
given time window.

4. EVALUATION
We first present our experimental setup, in Sec. 4.1. We

then describe the accuracy characterization of the 802.15.4
platform in Sec. 4.2. This then leads us to experimentally
determining the Esense alphabet set for 802.11 to 802.15.4
communication in Sec. 4.3. We finally validate the chosen
Esense alphabet set and evaluate the effectiveness of Esense
communication in Sec. 4.4.

4.1 Experimental Methodology
In all of our experiments, we use a WiFi radio setup as the

sender and an 802.15.4 radio (on the Tmote Sky platform)
as the 802.15.4 receiver. For the 802.11 sender, we use a
laptop equipped with a 802.11b/g WiFi card (with the Linux
open-source madwifi driver) as the transmitter. We term
the 802.15.4 receiver platform as a “mote”, since this is the
platform commonly used in many Wireless Sensor Network
(WSN) applications.

The 802.15.4 receiver mote is connected to another laptop,
which is used to log experimental data via the mote’s serial

90

interface. To reduce the memory requirement at the mote
(mote has a limited memory of only 10 KB of RAM), we just
log the time (clock tick) at which the channel state changed.
This log can then be used to calculate the run length in clock
ticks of the channel busy time.

For our experiments to characterize the accuracy of the
mote in detecting channel busy time, we need very fine
grained control over the spacing between adjacent packets.
We achieve this control by modifying the madwifi driver.
Specifically, we disable backoff and set cwmin, cwmax (con-
tention window) to zero. We then use the AIFS feature
(part of the 802.11e standard) to control the spacing be-
tween packets. For a given AIFS, the spacing between two
packets is given by the formula (10 + AIFS × 20)µs, where
AIFS can take on values starting from 0. Hence we can
achieve as low as 10µs spacing between the packets. We
verified that this mechanism works correctly by connecting
the WiFi card to a spectrum analyzer. We observed values
as given by the formula with an error under 2µs.

For our other experiments, we need to emulate WiFi ac-
tivity as specified by the different traces. Now, the timing
interval between packets as captured by the traces is not a
reflection of what actually happens on the channel since the
timers are software based and not very accurate 5.

So, we just use the packet size distribution from the traces
and consider that all these packets are backlogged at the sin-
gle WiFi sender. The spacing between the packets is then
dictated by the random backoff employed by the 802.11 stan-
dard. This is a worst case assumption as far as our setting is
considered: in reality the spacing between the packets will
be more than what we consider, and any extra inter-packet
spacing can only help the mote detect the packets better.

We implement this feature of backlogged queue in the
madwifi driver taking care that no packets are actually dropped
due to buffer overflow. We however do these experiments as
batches of 500 backlogged packets since the mote’s memory
runs out if we continuously send packets.

4.2 Mote Accuracy Characterization
In order to characterize the accuracy of the mote, we per-

form two experiments. In the first experiment, we try to
capture what the mote reports when the channel is busy for
a specified duration. For this experiment, we send a given
sized packet 5000 times, with inter-packet spacing set to a
sufficiently large value of 50ms. We measure the channel
occupancy as reported by the mote and compare it with the
actual value. The actual value is measured using a spectrum
analyzer.

Busy Time Value1 Value2 Value3
123 µs 122 ; 8.84% 152.5 ; 74.5% 183 ; 16.62%
785 µs 762.5 ; 1.7% 793 ; 63.84% 823.5 ; 34.46%
4710 µs 4697 ; 26.6% 4727.5 ; 67.38% 4758 ; 5.94%

Table 2: Mote characterization: margin of error

Table. 2 shows the findings of the mote when the actual
channel occupancy duration was set to 123, 785 and 4710µs.
The columns represent the first, second and third highest

5While some trace files do provide high accuracy timing, not
all of our traces do. To be consistent, we do not consider
the timing information provided by the traces

 0

 5

 10

 15

 20

 25

 0 2000 4000 6000 8000 10000 12000

F
re

qu
en

cy
 (

%
)

Channel Occupancy in us

Inter Packet Gap 50us

Figure 5: Channel occupancy as reported by the
mote at 50µs inter-packet gap (actual channel occu-
pancy: 785µs)

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000

F
re

qu
en

cy
 (

%
)

Channel Occupancy in us

Inter Packet Gap 90us

Figure 6: Channel occupancy as reported by the
mote at 90µs inter-packet gap (actual channel occu-
pancy: 785µs)

frequency components of the mote measurements. Note that
the mote reports its findings in clock ticks. We multiple this
with 30.5µs to arrive at the numbers in the table.

As can be seen from the table, the mote often reports
a value higher than the actual channel occupancy. And the
margin of error is a maximum of about 2 clock ticks i.e. 61µs.
We attribute the inaccuracies to the coarse time granularity
as well as the system delays involved in polling the CCA
pin.

The goal of the second experiment in the mote charac-
terization is to determine the spacing between packets at
which a mote can successfully distinguish one packet from
the other. For this experiment, we send a periodic stream of
packets, all of the same size, separated by a given interval.
We choose a packet size that results in channel occupancy
time of 785µs. We consider different spacings: 10, 30, 50, 70
and 90 µs by appropriately varying the AIFS value. Fig. 5
and Fig. 6 present the results for the 50µs and 90µs cases
respectively. Note that x-axis are different in the two cases.

At 50µs inter-packet gap, the mote does not clearly dis-
tinguish between the packets. In a good number of cases, it
tends to merge packets and reports them as one big packet.
This is evident from the periodic spikes seen in the figure.
These spikes occur at multiples of the packet transmission
time. The largest run length that we observe in this ex-

91

periment corresponds to one where 15 packets got merged,
though this occurs very rarely at 0.1%. At 70µs (not shown
in the figure), the largest run length we observe corresponds
to one where 5 packets got merged and this happens at a fre-
quency of 0.5%. At 90µs the mote is able to clearly separate
out the individual packet as is evident from the figure.

According to the 802.11b standard, the minimum separa-
tion between the packets is at least 50µs. With backlogged
queues, the average separation would be about 50+16×20 =
370µs (assuming a CWMin of 32). So, in most cases the
mote can separate out the packets. With respect to 802.11g
mode, if it has to support legacy 802.11b nodes, the same
parameters as above apply. However it can also operate with
a smaller slot time of 9µs (as opposed to 20µs in 802.11b).
This then gives a minimum separation of 28µs and average
separation of 172µs. So, the mote can still perform well in
this setting.

In summary, the mote reports channel occupancy time
with a margin of error which is ±2 clock ticks (i.e. ±61µs).
And it can separate out the packets clearly only when they
are separated by at least 90µs.

4.3 Alphabet Extraction
We now focus our attention on extracting the alphabet

based on detailed measurements carried out with the traces.
We consider snapshots of the traces, each snapshot consist-
ing of 500 packets in the trace. For the CSE-PSU, Library,
and Cafeteria traces (which were shorter), we took 20 dif-
ferent 500-packet snapshots from different positions in the
trace, resulting in a total of 10,000 packets. And for the
CSE-Stanford and OSDI traces (which were larger), we took
50 different snapshots, resulting in a total of 25,000 packets.
We verified that the distribution of the extracted trace is
similar to the original trace.

For a given extracted trace, the 802.11 sender generates
packets of size as specified in the trace and sends them back-
to-back. On air, these packets get separated out by a gap
as dictated by the random backoff of 802.11 standard. Now,
there is the question of what 802.11 data rate to use to
send these packets. The traces unfortunately do not provide
this information. Hence we consider a variety of data rates
including random rates to emulate nodes that employ auto-
rate adaptation.

Fig. 7 shows the findings of the mote for the Cafeteria
trace at 4 different rates. Note that the y-axis is log scale
and the x-axis range is different for the different rates.

We make three observations from the figure. One, the bi-
modal distribution which we saw in the packet lengths, is
preserved in the run-length distributions, upto 18 Mbps and
after that it starts becoming unimodal. This is because at
high data rates, the shorter length packets (corresponding
to beacons, acks, management frames etc) are often not de-
tected by the mote. Two, one can observe peaks at positions
corresponding to multiples of the predominant run-lengths.
This is due to the mote merging adjacent packets. This may
not be as predominant in reality since we assume backlogged
packets in our emulation.

Third, if we were to consider only run lengths with fre-
quency greater than 1% for elimination, prior to alphabet
extraction, we can see one chunk of run lengths available
between the two predominant modes. This chunk starts to
become smaller beyond 18 Mbps and disappears altogether
at 54 Mbps. For the various data rates, there is another

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400

F
re

qu
en

cy
 (

%
)

Run Length in Clock Ticks

1 Mbps

 0.01

 0.1

 1

 10

 100

 0 50 100 150 200 250 300

F
re

qu
en

cy
 (

%
)

Run Length in Clock Ticks

6 Mbps

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120

F
re

qu
en

cy
 (

%
)

Run Length in Clock Ticks

18 Mbps

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140

F
re

qu
en

cy
 (

%
)

Run Length in Clock Ticks

54 Mbps

Figure 7: Cafeteria trace: Run Lengths at 1, 6, 18,
54 Mbps

chunk of run lengths available to the right of the second
highest frequency component. This chunk starts at 410 ticks
@ 1 Mbps, 70 ticks @ 6 Mbps, 28 ticks @ 18 Mbps, and 19
ticks @ 54 Mbps. If we assume that all Esense alphabets
are sent at 1 Mbps, the maximum packet size corresponds

92

to a run length of about 610 ticks. So, there is considerable
space available in all cases to construct alphabets in spite of
the mote’s limitations.

While we have presented Fig. 7 only for the Cafeteria
trace, we plotted similar graphs for the other traces too,
and observed similar findings.

Now, for the actual alphabet extraction, for each of the
five traces, we considered six different data rates at which
the packets were sent: 1, 11, 6, 18, 36, 54 Mbps. This gives
a total of 30 run-length logs. For each log, we extract the
alphabet based on the algorithm explained in Sec. 3. The al-
gorithm uses a margin of 2 ticks, obtained in our mote char-
acterization experiments in Sec. 4.2. We use the value of 1%
for the threshold frequency of occurrence, beyond which we
eliminate a run-length from consideration for the Esense al-
phabet set. This threshold provides a good tradeoff between
alphabet size and false-positive rate. From Fig. 7, most run
lengths below 1% occur at a very low frequency.

The algorithm takes as input another parameter: the mode
of operation (b or g). This specifies the rate at which the
Esense alphabet is sent. For the b and g mode, the alphabet
is sent at 1 Mbps and 6 Mbps respectively. Note that the b
mode should not be interpreted to mean that the data rates
are restricted to under 11 Mbps. It just means that it uses a
data rate for alphabets that is available only in that mode.

Table. 3 shows the size of the extracted alphabet set from
the above-mentioned 30 logs: 5 traces along rows, 6 data
rates along columns. For the 6, 18, 36, and 54 Mbps columns,
the values without brackets correspond to the b mode of
operation and values within correspond to the g mode of
operation.

In the table, we have a last row labeled “All traces”, and a
last column labeled “All rates”. The last row corresponds to
alphabet extraction for the case where we eliminated run-
lengths which exceeded the threshold percentage of 1% in
any of the traces (i.e. in at least one of the traces). Similarly,
the last column corresponds to alphabet extraction where
we eliminated run-lengths which exceeded the 1% frequency
threshold in any of the six considered rates of operation. The
last row and the last column thus correspond to conservative
choices of the alphabet set; the last entry in the table thus
represents the most conservative choice. (Conservative with
respect to data rate implies: if we do not know the rate
at which a high frequency regular packet size would be sent,
eliminate all the run lengths corresponding to all the possible
data rates).

We observe that the “All traces” row is only slightly dif-
ferent from the rows for the 5 traces. This implies that the
run length distributions are more or less the same across
the five traces. In fact, we observed in our algorithm output
that the alphabet set itself is not very different across the
various traces.

Similarly, we observe that the “All rates” column is only
slightly different from the columns for the 6 different rates.
This means that there are only a few run-lengths, which
show a low frequency of occurrence at one rate, but show
a high frequency of occurrence at another rate. This then
means that rate adaptation will not significantly affect the
size of the extracted alphabet set.

We observe in the table that across the six rates, as the
data rate increases, the size of the alphabet set shows a
slight increase. This is because at higher data rates, packet
transmission times are much smaller and get clustered to-

wards the shorter run length, leaving more empty space from
which to extract alphabets.

As can be seen from the table, we get about 100 alpha-
bets when alphabets are sent at 1 Mbps and about 10 when
alphabets sent at 6 Mbps. This difference due to change of
mode is because in g mode, the maximum run length that we
can consider is only 100 ticks (corresponding to 2304 bytes
sent at 6 Mbps), while in b mode this turns out to be 610
ticks.

We have performed the above experiments for different
threshold percentages. At 10%, the resulting alphabet set
was 108 for b mode and 13 for the g mode (corresponding
to the “All traces” row and “All rates” column). At 0.1%,
the alphabet set falls sharply to 60 and 3 respectively. This
sharp decline is mainly due to the conservative operation
across the traces. This is because quite a few run lengths
in all the traces exceed the small threshold of 0.1%. And
further very few of these “frequent” run lengths are common
across the traces. This results in lot of elimination resulting
in smaller alphabet set. The conservative operation across
data rates (the “All rates” column) for any trace still yields
high alphabet set: around 90 and 6 for b and g respectively.

In the above experiments, we have considered only a sub-
set of the data rates supported by 802.11 b and g. For a
given trace, there is not that much difference in the alpha-
bet sets across the different rates. But for completeness we
consider all data rates for the Cafeteria trace. Table. 4 shows
the results of this experiment. The results are very similar
to what we obtained earlier. The conservative “All rates”
entry now reduces the alphabet set size to 105 (6) since we
are considering intersection across a much larger set.

802.11b Data Rates
1mbps 2Mbps 5.5Mbps 11Mbps
115 115 115 115

802.11g Data Rates
6mbps 9Mbps 12Mbps 18Mbps
118(18) 118(15) 118(15) 118(14)

802.11g Data Rates
24mbps 36Mbps 48Mbps 54Mbps
116(13) 117(15) 118(16) 118 (15)

All rates
105 (6)

Table 4: Cafeteria trace: all data rates

The above results in terms of alphabet size could improve
considerably if we worked with an 802.15.4 hardware that is
more accurate6.

4.4 Validation
We now validate our communication framework using the

above extracted alphabet. We consider the alphabet set
corresponding to the conservative calculation since this is
the most situation independent; i.e. the set corresponding
to the “All traces” row and “All rates” column. We consider
both modes of operation i.e. the b and g compatible modes.
For the b mode of operation, we consider two fixed data rates
of 11 Mbps and 18 Mbps and one variable data rate. For
the fixed data rates, all regular packets with the exception

6Note that in the process of building more accurate hard-
ware, one should not lose the original low-cost and low-power
advantages of 802.15.4.

93

Trace 1Mbps 11Mbps 6Mbps 18Mbps 36Mbps 54Mbps All Rates
CSE-PSU 109 115 116 (15) 118 (16) 119 (15) 118 (13) 107 (12)
Library 112 116 117 (15) 118 (14) 117 (15) 117 (14) 110 (12)

Cafeteria 115 115 118 (15) 118 (14) 117 (15) 118 (15) 110 (11)
CSE-Stanford 112 115 117 (14) 116 (14) 117 (15) 118 (14) 109 (12)

OSDI 110 117 113 (15) 118 (16) 119 (17) 119 (11) 110 (11)
All traces 104 113 112 (10) 115 (13) 116 (14) 117 (15) 100 (10)

Table 3: Alphabet size

of management packets are sent at the respective rates. The
management and the Esense packets are sent at 1 Mbps. The
variable data rate is supposed to model nodes that employ
rate adaptation. For this case, the regular packets (with
the exception of management packets) gets sent at a rate
randomly chosen from the set (1, 11, 6, 18, 36 and 54 Mbps).
For the g mode of operation, we consider one fixed rate
of 18 Mbps and one variable rate. The management and
Esense packets in this mode are sent at 6 Mbps. The other
regular packets are sent at 18 Mbps for the fixed rate case
and randomly chosen from the set (6, 18, 36 and 54) for the
variable data rate case.

We perform our validation on two traces: Cafeteria and
CSE-PSU. For each trace, we take 60 500-packet snapshots
of the trace at different trace positions to generate an overall
count of 30,000 packets. We ensure that these snapshots do
not overlap with the snapshots we used to extract the alpha-
bet i.e our validation trace is not the same as the training
trace. We then insert 250 random alphabets into this trace.
Recollect that to reduce the instances of false positives and
negatives in our setting, it is desirable to send an alphabet
multiple times within a time window. We consider four pos-
sible values for this: 1, 3, 5, and 10 i.e. each alphabet gets
sent this many number of times. We refer to this as the
sender repetition count, SRC. It is possible in reality that
some regular packets get in between these alphabet packets
due to other WiFi node transmission. We model this by
inserting a random number of regular packets (maximum of
5) between the alphabets.

At the receiver, we measure the number of distinct al-
phabets detected. Since a given alphabet gets sent multiple
times within a window, the receiver concludes that an al-
phabet is detected successfully if it observes the alphabet a
specified number of times within the window. We term this
expected repetition count as the receiver detection count,
RDC.

Table. 5 shows the number of false positives and false neg-
atives that occur in the various cases. False positives cor-
respond to the case where no alphabet was sent but the re-
ceiver detected one. False negatives correspond to the case
where an alphabet was sent but was not detected. The first
column in the table corresponds to the pair (SRC, RDC).
We make the following observations from the table.

• For a given SRC, increasing RDC results in lesser num-
ber of false positives but higher number of false nega-
tives. Higher the RDC, lesser the chance of a regular
packet being mistaken for an Esense packet. A regular
packet has to repeat in a small time window as many
times as the RDC to be mistaken for an Esense packet.
But this also means that we cannot properly detect al-
phabets since the mote can merge packets. Hence there
is a fundamental trade-off in choosing RDC.

• The overall false positives as well as negatives are quite
small especially for values beyond (5,3) considering
that there are 250 alphabets sent amidst 30,000 pack-
ets. Note that the false negatives should be compared
relative to the alphabets sent and the false positives
relative to the total packet count. The parameter set
(10,5) or (10,4) seems to be a good operation point. It
results in no false negatives and very small false posi-
tives.

• The fact that there are false positives even at (10,6)
seems to indicate that some regular packets (which oc-
cur less than 1% of the time) repeat at least 6 times
in a small window. We looked at the individual traces
and confirmed that it is indeed the case. However a
point to note in this context is that we have not used
timing information from the traces. In reality if a reg-
ular packet repeats multiple times but the interval be-
tween repetitions is large say above 100 ms, then it
will never result in a false positive. In our evaluation,
it will result in a false positive.

• A value of RDC below 2 can generate quite a few false
positives. However false positives can easily be tack-
led with a small change at the sender. Whenever the
sender sees a regular packet that corresponds to an
alphabet, it can either pad or truncate it to make it
a non-alphabet. The false positive number can also
be reduced if we choose a smaller threshold percent-
age when extracting the alphabet. This will however
reduce the alphabet size.

• The g mode alphabet seems to be slightly more robust
to false positives and negatives, at least for the PSC-
CSE trace. Within a mode, the higher data rates seem
to be more robust. This is to be expected since higher
data rates and g mode operation gives a relatively un-
cluttered run length space from which to extract the
alphabet.

In summary, the above results look encouraging. We are
able to extract a sufficiently large sized alphabet set for com-
munication. Our validation shows that communication can
work effectively in practice with very few false positives and
false negatives.

5. DISCUSSION

5.1 Architectural Aspects
The architecture and implementation details of the vari-

ous scenarios of Esense usage, are context specific and be-
yond the scope of this paper. However, we touch upon two
important aspects. First, at what layer does Esense belong?

94

Cafeteria Trace

Param
b Compatible Mode g Compatible Mode

11Mbps 18Mbps R-Adapt 18Mbps R-Adapt
FN FP FN FP FN FP FN FP FN FP

(1,1) 24 268 11 142 13 413 8 73 2 63
(3,1) 3 332 3 185 0 419 0 242 0 162
(3,2) 17 67 22 22 10 26 13 23 9 10
(5,2) 0 24 1 14 1 19 0 20 1 16
(5,3) 5 4 3 0 5 2 1 2 3 4
(10,4) 0 6 0 1 0 2 0 0 0 2
(10,5) 0 0 0 0 0 0 0 0 0 0
(10,6) 1 0 6 0 1 0 1 0 0 0

CSE-PSU Trace
(1,1) 17 545 18 340 21 787 20 92 13 262
(3,1) 2 626 0 414 1 808 0 100 1 290
(3,2) 24 130 20 80 14 97 17 14 10 48
(5,2) 1 126 0 67 1 109 1 14 0 50
(5,3) 5 40 7 29 7 32 4 3 2 15
(10,4) 0 24 0 20 0 21 0 2 0 8
(10,5) 0 12 0 9 0 15 0 0 0 6
(10,6) 0 8 2 5 2 8 1 0 3 1

Table 5: False positives and negatives: 250 Alphabets, 30,000 Regular Packets

We view Esense mainly as a MAC layer functionality. At the
sender side, driver level changes are adequate. Essentially
the sender needs to assemble the right sized Esense packet
based on the alphabet to convey, and if necessary to pad
regular packets to avoid generating false positives. At the
receiver side, we need appropriate interrupts to the MAC
layer from the physical layer indicating channel occupancy
information. 802.15.4 radios expose a pin (CCA) which can
be interfaced with a micro-controller (that implements the
MAC) for this purpose. However, 802.11 drivers do not have
access to such an interface from the radio in current off-the-
shelf platforms.

The second important aspect is to do with alphabet ne-
gotiation (what alphabet set to use?) and meaning attribu-
tion (what does an alphabet convey?). These are again very
scenario specific. For some scenarios (such as co-existence,
interference map), the alphabet set/meaning has to be de-
cided apriori and configured (software level) into the various
nodes that are part of the Esense framework. An online up-
date procedure is possible, provided there is a secondary
channel (say Ethernet) and the update frequency is small.
For the energy saving scenarios, the alphabet update in-
formation can be conveyed over the regular 802.11 network
(e.g. during association or before a node powers downs its
wifi interface).

5.2 Applicability in Other Contexts
We have evaluated our ideas in the context of 802.11b/g

and 802.15.4 standards and considered only unidirectional
communication. We wish to emphasize that these ideas are
general enough that they can be used with other standards,
for bi-directional communications and possibly in other sce-
narios (including wired networks). For example, one could
use this framework to achieve energy savings in 802.11a net-
works, construct interference maps of Wimax networks, ex-
plore coexistence between Bluetooth and 802.11. All that
is needed is the capability of sensing energy at good accu-
racy in a specific frequency band 7. One could make do

7For frequency hopping systems, the receiver needs to pause
on a specific channel for Esense communication. For its own

with current implementations if they export such sensing
functionality or design new hardware that does the job with
adequate accuracy.

5.3 Building Vocabulary
We have not looked at building vocabulary on top of the

base alphabet. Such an approach may be necessary when
the message space exceeds the base alphabet. For example
if one were considering energy savings in 802.11g infrastruc-
ture mode, with the use of only the base alphabet set, it
would be quite constraining. The alphabet size of 10 means
that Esense-based wake-up via the secondary radio is possi-
bly for only 10 clients at a time. Further, the false positive
(negative) rate can be reduced significantly by considering
an extended vocabulary: a specific pattern of alphabets will
be more difficult to generate (miss) than a single alphabet.
However, delineating word boundaries in presence of inser-
tions/deletions of alphabets on the channel is not a straight-
forward task. The insertions on the channel correspond to
regular packets being misinterpreted as Esense packets. The
deletions on the channel correspond to the case where the
hardware is unable to detect the alphabet due to merging
of packets. Such insertion/deletions on channels have been
looked in the context of error correction codes (see [19]). We
believe this is an interesting avenue for future exploration.

5.4 Packet size distribution
The size of the alphabet has a strong correlation with

the packet size distribution. Supposing the packet size dis-
tribution is no longer bi-modal, which could be the case if
the traffic is dominated by video traffic. This can then po-
tentially result in a very small alphabet set. This can be
overcome by a couple of approaches. One approach would
be to go for a higher accuracy hardware. A second approach
would be to build a vocabulary on top of the limited alpha-
bet. The third approach would be to still stick to a larger
alphabet set but manipulate the size of the regular packets.
For example, if a WiFi node sees a regular packet that has a
size that corresponds to the alphabet, it can either fragment

internal network data communication, it can however hop.

95

the packet or pad the packet to make it a non-alphabet.
Note that this procedure would have to be followed by all
the WiFi-nodes that are part of the system.

5.5 Possible consideration for Esense in future
standards

We believe that there is a strong case for having native
support for Esense in future wireless standards. A wireless
standard, when it is designed, cannot predict what other
future standard is going to operate in the same spectrum
space. It could incorporate support for Esense, for instance,
by means of reserving certain packet lengths or certain en-
ergy run-lengths. This could then be used for any intelligent
Esense-based coordination with any future wireless technol-
ogy in the same spectrum. Further, the kind of scenarios we
envision for Esense communication are very low data rate,
hence this coordination should have minimal effect on ca-
pacity of individual networks.

And we believe that such coordination is often very low
data rate (as evident in the three scenarious listed) that its
affect on the capacity of the individual standards will be
very minimal.

6. CONCLUSIONS
In this paper, we consider a new method of communication

between devices that cannot interpret the individual bits of
the packet. However, we facilitate their communication by
sensing and interpreting energy patterns on the air. We de-
scribe how this framework opens up new approaches to solv-
ing problems in at least three distinct research domains. We
validate our mode of communication on a hardware platform
using realistic traces from WiFi deployments. Our evalua-
tion shows that our approach can lead to sufficiently large
alphabet set that can facilitate effective communication. We
believe that this framework has implications in other areas
beyond the three example scenarios we have presented.

7. REFERENCES
[1] A Community Resource for Archiving Wireless Data

At Dartmouth. http://crawdad.cs.dartmouth.edu/.

[2] Bluetooth Special Interest Group.
http://www.bluetooth.org/.

[3] IEEE 802.15 WPAN Task Group 4 (TG4).
http://www.ieee802.org/15/pub/TG4.html.

[4] IEEE P802.11, The Working Group for Wireless
LANs. http://grouper.ieee.org/groups/802/11/.

[5] Traces of the Stanford CS department’s wireless
network.
http://crawdad.cs.dartmouth.edu/stanford/gates,
2003.

[6] Traces of network activity at OSDI 2006. http:
//crawdad.cs.dartmouth.edu/microsoft/osdi2006,
2006.

[7] Dataset of wireless LAN traffic around Portland,
Oregon using a commercial sniffer VWave.
http://crawdad.cs.dartmouth.edu/pdx/vwave, 2007.

[8] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl,
K. Chin, and R. Gupta. Wireless Wakeups Revisited:
Energy Management for VoIP over Wi-Fi
Smartphones. In MobiSys, 2007.

[9] Y. Agarwal, C. Schurgers, and R. Gupta. Dynamic
Power Management Using On Demand Paging for
Networked Embedded Systems. In ASP-DAC, 2005.

[10] S. M. Das, D. Koutsonikolas, Y. C. Hu, and
D. Peroulis. Characterizing multi-way interference in
wireless mesh networks. In WINTECH, 2006.

[11] S. Han, S. L. S. Lee, and Y. Kim. Channel Allocation
Algorithms for Coexistence of LR-WPAN with
WLAN. IEICE Transactions on communications, May
2008.

[12] T. G. Handel and M. T. Sandford. Hiding data in the
OSI network model. In First International Workshop
on Information Hiding, 1996.

[13] R. Krashinsky and H. Balakrishnan. Minimizing
Energy for Wireless Web Access with Bounded
Slowdown. In MobiCom, 2002.

[14] N. Mishra, K. Chebrolu, B. Raman, and A. Pathak.
Wake-on-WLAN. In WWW’06, May 2006.

[15] D. Niculescu. Interference Map for 802.11 Networks.
In IMC, 2007.

[16] J. Padhye, S. Agarwal, V. N. Padmanabhan, and
L. Qiu. Estimation of link interference in static
multi-hop wireless networks. In IMC, 2005.

[17] S. Pollin, M. Ergen, A. Dejonghe, L. V. Perre,
F. Catthoor, I. Moerman, and A. Bahai. Distributed
cognitive coexistence of 802.15.4 with 802.11. In
CROWNCOM, 2006.

[18] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and
J. Zahorjan. Measurement-based models of delivery
and interference in static wireless networks. In
SIGCOMM, 2006.

[19] L. J. Schulman and D. Zuckerman. Asymptotically
good codes correcting insertions, deletions and
transpositions. IEEE Transactions on Information
Theory, 1999.

[20] E. Shih, P. Bahl, and M. J. Sinclair. Wake on
Wireless: An Event Driven Energy Saving Strategy for
Battery Operated Devices. In MobiCom, 2002.

[21] A. Sikora. Compatibility of IEEE802.15.4 (Zigbee)
with IEEE802.11 (WLAN), Bluetooth, and Microwave
Ovens in 2.4 GHz ISM-Band. Technical report,
Steibeis-Transfer Centre, Sep 2004.
http://www.ba-loerrach.de.

[22] C. Won, J. H. Youn, H. A. Sharif, and J. Deogun.
Adaptive Radio Channel Allocation for Supporting
Coexistence of 802.15.4 and 802.11b. In VTC, 2005.

96

