
ITrackU: Tracking a Pen-like Instrument via UWB-IMU Fusion
Yifeng Cao

ycao361@gatech.edu
Georgia Institute of Technology

Ashutosh Dhekne
dhekne@gatech.edu

Georgia Institute of Technology

Mostafa Ammar
ammar@cc.gatech.edu

Georgia Institute of Technology

ABSTRACT
High-precision tracking of a pen-like instrument’s movements is
desirable in a wide range of fields spanning education, robotics, and
art, to name a few. The key challenge in doing so stems from the im-
practicality of embedding electronics in the tip of such instruments
(a pen, marker, scalpel, etc.) as well as the difficulties in instrument-
ing the surface that it works on. In this paper, we present ITrackU,
a movement digitization system that does not require modifications
to the surface or the tracked instrument’s tip. ITrackU fuses loca-
tions obtained using ultra-wideband radios (UWB), with an inertial
and magnetic unit (IMU) and a pressure sensor, yielding multi-
dimensional improvements in accuracy, range, cost, and robustness,
over existing works. ITrackU embeds a micro-transmitter at the
base of a pen which creates a trackable beacon, that is localized
from the corners of a writing surface. Fused with inertial motion
sensor and a pressure sensor, ITrackU enables accurate tracking.
Our prototype of ITrackU covers a large 2.5𝑚 × 2𝑚 area, while
obtaining around 2.9𝑚𝑚 median error. We demonstrate the accu-
racy of our system by drawing numerous shapes and characters
on a whiteboard, and compare them against a touchscreen and a
camera-based ground-truthing system. Finally, the produced stream
of digitized data is minuscule in volume, when compared with a
video of the whiteboard, which saves both network bandwidth and
storage space.

CCS CONCEPTS
• Computer systems organization → Sensors and actuators;
• Human-centered computing → Ubiquitous and mobile de-
vices.
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1 INTRODUCTION
This paper presents ITrackU, a system that enables accuratemovement-
tracking of a pen-like instrument across a large surface. Our goal is
to continuously capture the instrument’s location in order to allow
replication, replay, or digitization of the actions performed. We aim
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Figure 1: Example ITrackU use for online education.

to do this without embedding electronics into the work-surface or
in the tip of the pen-like instrument, thereby resulting in a system
that costs a fraction of the current smart-surfaces. Such technology
has widespread applications, for example, in education (enabling
an instructor to write on a large whiteboard while automatically
digitizing the writing in real-time), in industrial IoT and robotics
(monitoring the actions of miniature robotic arms assembling elec-
tronics), in artistic works (capturing the strokes in calligraphy), and
so on. A common thread binds these rather diverse applications—it
is impractical to embed electronics into the work-surface (because
that modifies the surface), or the tip of the work-instrument. This
paper reports on our efforts to design, prototype, and test a system
that captures vital data about the instrument’s location, its tilt, and
the exact moments when it touches the surface. To achieve this, we
design and deploy a novel sensor fusion approach that combines
precise ultra-wideband wireless localization, inertial sensors, and
pressure sensors. ITrackU generates a stream of touch locations
similar to what a touch-screen would produce. By recording just
the relative locations, ITrackU stores a minimal set of data about
the actions on the surface. ITrackU represents a cost-effective, low-
bandwidth solution to the problem of tracking a pen-like instrument.

As an example to demonstrate the capabilities of our system, we
have chosen the educational context as a representative case of the
many applications mentioned above. Whereas this paper’s evalua-
tion compares the data produced by ITrackU with the writings and
drawings of shapes on a whiteboard, ITrackU’s design is generic,
and in principle, can be applied to other contexts as well. To this
end, we have instrumented a whiteboard marker pen (see Fig. 1)
and treat the writings on the whiteboard as ground-truth.

The key capability we are seeking to develop is low-cost local-
ization of a pen-like instrument’s tip on a work surface. However,
obtaining the tip’s location without deterring from the instrument’s
functionality, and without altering the work-surface, needs a novel
approach. The primary challenges in accomplishing this goal are:
(1) How to perform millimeter scale localization over a surface

larger than 2 meters in length?
(2) Since the tip should not be altered, how to infer the tip’s location

if a different part of the pen is localized?
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(3) How can we detect if the pen’s tip is actually touching without
modifying either the surface or the tip?

(4) Can the hardware requirements be kept low to develop a low-
cost solution (low deployment costs)?

(5) How to minimize data capture thereby reducing compute, stor-
age, and transmission requirements (low operational costs)?
The core technique in ITrackU is to localize the pen’s base (in-

stead of the tip), and estimate the tilt angle and instances when the
pen touches the surface to approximate the locations of the tip as it
moves on the surface. Of course, fine-grained localization is, in it-
self, an open problem, irrespective of whether we localize the pen’s
tip or the base. A significant part of ITrackU’s design is focused on
exploring such fine-grained wireless localization. Our approach in
this work is to perform active localization of a tiny ultra-wideband
(UWB) transmitter module on the pen’s base. This transmitter con-
tinuously emits UWB wireless packets that are captured by a single
multi-antenna UWB receiver (keeping the hardware cost low) situ-
ated outside the work-surface. The antennas are located far apart,
at different corners of the work surface (see Fig. 1). The time and
phase differences between the signal received by each of the corner
antennas are analyzed to track even minute changes in the pen’s
location. Now, to translate the pen-base’s location to the tip’s loca-
tion, we embed an inertial and magnetic unit (IMU) that determines
the pen’s tilt angle. The IMU data, when fused with UWB localiza-
tion also helps in improving localization accuracy during instances
when UWB signals are obstructed. Finally, to detect the instances
when the pen touches the surface, a pressure sensor is attached to
the side of the pen, which helps measure the pressure exerted by the
user’s grip that inadvertently increases due to the friction between
the pen and the surface—this force is markedly significant when
the pen touches the surface. The IMU and pressure sensor data is
aggregated at the pen’s transmitter module and encoded into suc-
cessive UWB packets. Thus, the multi-antenna receiver module can
simultaneously analyze the UWB signal’s time-difference-of-arrival
at the corner antennas (to localize the base of the pen), and, the
tilt angle and touch instances. The final output from the receiver
module is just a stream of touch locations; a rather minimal amount
of information which can be easily stored or transmitted over the
Internet to client devices where the user’s writings can be recreated
in real-time.

Whereas we are not the first to show the possibility of digitizing
a writing surface through localization, existing solutions [53, 55, 63]
have focused only on small surfaces. Our choice of UWB allows
much larger surfaces (our evaluation is over a 2.5𝑚×2𝑚 area) to be
digitized in a variety of different environments. We do require the
pen (or other similar instruments) to be embedded with a wireless
transmitter module and this can be viewed as a shortcoming. How-
ever, we argue that the accuracy requirements of our applications
demands precise localization of the pen’s tip without much room
for error, which is extremely difficult using passive techniques.
Therefore, we report 90%𝑡𝑖𝑙𝑒 errors in most of our evaluation. Our
main contributions are as follows:
(1) A precise ultra-wideband localization system using a single

muti-antenna UWB receiver outside the work surface to capture
the pen-like instrument’s location.

(2) A UWB-IMU fusion algorithm to improve localization accuracy
and compensate for the pen’s tilt to accurately localize the
pen-tip’s location.

(3) A grasp pressure sensor based method to accurately detect
instances when the pen touches the surface.
In our evaluation, accurate ground truth is obtained using a

camera-based system for visual inspection as well as a touch-screen
based system for instantaneous comparisons of the produced loca-
tion streams. We show that the median location error is 2.9𝑚𝑚 and
the 90%𝑡𝑖𝑙𝑒 error is 7𝑚𝑚. Fig. 1 shows a sample of characters drawn
using ITrackU overlayed on photos of the actual trace. Our micro-
benchmarks show the utility and importance of IMU in correcting
UWB errors, and the effectiveness of using the pressure sensor.
Finally, the minuscule volume of data produced is compared with a
video of the writing showing almost 200× reduction in storage and
transmission bandwidth requirements.

2 RELATEDWORK
Radio front-end: High-precision RF-based tracking has been ex-
tensively explored. Position can be inferred from wireless signature
like received signal strength (RSS) [26, 32, 50] and phase [9, 10, 39,
53, 54, 57, 58]. However, pure RSS-based approaches have poor ac-
curacy as large as 1𝑚 [32]. RF solutions to high-precision tracking
include [29, 51, 53, 55, 58]. RF-IDraw [51] tracks motion with the
interferometry property of multiple RFIDs and achieves 3.7cm me-
dian error within 5m range. However, the high cost of a RF reader
and its numerous antennas makes this solution less desirable for
users. PolarDraw [43] reduces the required number of antennas
for RFID tracking by inferring the orientation and position of the
RFID-tagged pen through electromagnetic polarization features; in-
deed an intriguing approach. mTrack [53] is the first sub-centimeter
solution, which tracks the phase change of reflected signal from
the object using 60GHz mmwave radios. MilliBack [55] embeds
a backscatter tag in the pen and tracks its position with phase
differential iterative schemes, achieving a median error of 4.9𝑚𝑚.

UWB strikes a good trade-off between precision and propagation
range, resulting in abundant applications in localization [13, 16, 20,
30]. Two way ranging (TWR) is the most widely used method for
UWB to achieve centemeter level accuracy [1]. ITrackU takes a
different approach than TWR. We fuse IMU with UWB, resulting
in a robust𝑚𝑚 level accuracy.

Acoustic: Acoustic signal has been emerging as a rising tech-
nique for tracking [8, 12, 28, 35, 37, 52, 60–62]. Strata [63] achieves
8𝑚𝑚 error by tracking the position from the phase shift of the audio
signal. However, the limited propagation range, an inherent weak-
ness of audio signals, limits the widespread use of acoustic-based
tracking [11].

IMU: IMU sensors can be used for tracking by double integrat-
ing the measured acceleration. However, because of the drifting
nature of double integration [49], IMU sensing is typically applied
in scenarios allowing frequent recalibration. For example, Arm-
Trak [44] and ArmTroi [33] tracks the motion of arms, which can
be recalibrated by the fixed structure of the human skeleton.

Heterogeneous approaches: Jointly using multiple streams of
data, such as the audio-vision signal [45, 64] or RF-IMU data [18, 19],
in one application provides the flexibility of synthesizing benefits
from different sensors. For instance, iBall [18] combines UWB and
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Approach Type Error Cost Range (m)
RF-IDraw [51] RFID 37mm High ∼ 5 × 6
mTrack [53] 60GHz 8mm High 1 × 1

PolarDraw [43] RFID 103mm Middle ∼ 0.56 × 0.865
Strata [63] Acoustic 8mm Low 0.5 × 0.5

MilliBack [55] Backscatter 4.9mm High 0.5 × 0.8
ITrackU UWB+IMU 7mm Low 2.5 × 2

Table 1: High-precision tracking approaches.

IMU data to track the motion of a cricket ball, in which UWB is
used for localization and IMU estimates spin.

Commercial products: Current mainstream products on the
market [5–7] are mostly surface assisted and based on capacitive
sensing or resistive sensing of a stylus. The main drawback of these
solutions is that they need support from specialized screen or sur-
face hardware—the cost increases dramatically with the size of the
screen and these mechanisms cannot provide a generic solution for
use-cases where the interaction surface cannot be modified. Mimio-
Capture ink recorder [14] is an interesting product that recognizes
these shortcomings of existing approaches. It offers a solution very
close to ours without relying on smart-screens. Instead, it uses in-
frared and ultrasound to localize a pen. MimioCapture provides a
pen-sleeve1 which can be loaded with standard dry-erase markers.
However, the MimioCapture kit is quite expensive, with $696 for
the main capturing device and $285 for the pen-sleeve (discounted
academic price). Additionally, the ultrasound transmitter in the
sleeve generates audible frequency noise due to ultrasound hard-
ware non-linearities. This property degrades user experience; (i)
the teacher can clearly hear the emitted sound since the pen is
relatively close to the teacher’s ears when writing, (ii) these audible
fallouts can be captured and amplified by nearby microphones or
hearing aids [41, 42], (iii) prolonged exposure to ultrasound is un-
desirable [27]. In contrast, ITrackU uses UWB radio transmissions
and IMU for user-imperceptible localization at a lower cost.

Some closely related research works are compared in Table 1.
ITrackU provides benefits in multiple dimensions, including pre-
cision, range, cost, on tracking through fusion of UWB and IMU.
Such fusion takes the advantages of both UWB and IMU, achieving
a median error of 2.9𝑚𝑚 (7𝑚𝑚 at 90%) in a range of 2.5𝑚 × 2𝑚
meanwhile retaining robustness even in some extreme cases.

3 SYSTEM OVERVIEW
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Figure 2: Processing pipeline of ITrackU.

1Mimio also provides an inkless product with a special stylus, but we focus on its
inked version since it comes close to ITrackU’s functionality.

The core idea of ITrackU is the fusion of wireless localization,
inertial sensor based orientation and tracking, and touch detection
using a pressure sensor, to create a system that produces an accurate
stream of coordinates capturing the locations where a pen touches
the surface. Our fusion approach compensates for each individual
sensor’s shortcomings. This carves out a unique place for ITrackU
in the multi-dimensional trade-off of accuracy, range, and cost.
Fig. 2 shows the various modules that make up the ITrackU system.
Here, we give an overview of the modules’ interactions, and in
Section 4 we delve deeper into each module’s functioning.

We refer the reader to Fig. 1 for clarity of the following expla-
nation. A custom-made electronic cap is attached to the base of a
pen-like instrument to be tracked. In our case-study specifically,
we attach the cap to the base of a marker pen. This cap houses a
micro-controller that records data from an on-board inertial sensor
and a pressure sensor. A pressure sensitive strip runs down the
pen’s side to a point where the user holds the pen. It captures the
force exerted by the user to detect touch events. The cap also houses
a UWB wireless transmitter which periodically sends UWB packets
containing this IMU and pressure sensor data. These packets are
received by a UWB receiver with 3 antennas. The UWB packets
here perform double-duty; they carry sensor data from the pen to
the UWB receiver, and also inherently expose timing information
which the receiver uses to localize the pen.

The core innovation that allows ITrackU to localize the pen from
this unidirectional stream of UWB packets, is a 3-antenna setup,
with each antenna placed at a different corner around the work
surface. All antennas are connected to a single UWB receiver using
different lengths of RF cable (observe the periphery of the white-
board in Fig. 1). This results in multiple copies of the transmitted
signal arriving at the UWB-receiver delayed by a few nanoseconds.
Given UWB’s large bandwidth (1𝐺𝐻𝑧), it is possible to identify
subtle timing differences between signal copies by studying the
channel’s impulse response (CIR). The radio’s physical layer (PHY)
obtains the CIR by correlating the received preamble with known
golden sequences. Analyzing reception timings and signal phases
in the CIR allows localization of the pen’s transmitter.

However, just obtaining UWB CIR is insufficient to localize the
pen on the surface. There are 2 issues unresolved: (1) the UWB-
transmitter is actually attached at the base of the pen, while we
need the tip’s location, and (2) UWBCIRmay not be always pristine;
it might occasionally get polluted by occlusions or multipath. To
solve the first issue, we need to know additionally the posture of
the pen (assuming we know its length). The IMU information inside
every UWBpacket provides 9-degrees of freedom (DoF) information
about the pen’s inertial frame of reference which allow computation
of the pen’s orientation. The second issue—occasional UWB signal
blockage—intermittently causes poor localization accuracy. Phase
based tracking can amplify such intermittent errors due to sudden
phase wraps, ITrackU depends on the IMU to provide a second
stream of location estimates derived from integrating the pen’s
movements. Erroneous changes in signal phase occurring due to
UWB blockage can be corrected by independent information from
IMU sensors.

Fusing information from the UWB sensor and the IMU sensor
can offer precise localization of the pen’s tip. However, the position
difference between the tip touching the surface or hovering just
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above it, is too subtle for localization to distinguish. Given the
limitation that neither the touched surface, nor the pen’s tip can be
instrumented, we have crafted a novel way to detect touch—detect
the force exerted by the user’s grip on the pen, instead. When a
pen’s tip touches a surface, the friction between the surface and the
pen increases the reaction force exerted by the pen on the user’s grip
(and vice-versa).Wemeasure this using a pressure sensor and report
precise timings when it crosses a threshold. Thus, the location
information is filtered based on the touch information produced
by the pressure sensor. Finally, a stream of (𝑥,𝑦) coordinates are
produced by the corner UWB-receiver. These coordinates can be
stored or transmitted over the Internet for rendering the user’s
drawings on remote computers.
4 SYSTEM DESIGN
We now describe the system design in detail, starting with the UWB
tracking module, followed by IMU fusion, and finally by the touch
detection module.
4.1 Tracking with UWB
Ultra-wideband radios are frequently used for localization and rang-
ing. Typically UWB localization protocols require a two-way mes-
sage exchange between a device pair [4, 22] for appropriate clock
offset and clock drift compensation. However, each message ex-
change consumes time, therefore a multi-message protocol reduces
the distance computation update rate. We break away from this
multi-message requirement, to improve update rate, and instead
rely only on a unidirectional flow of messages from the pen’s base
to a UWB-receiver. Using a unidirectional flow for localization is
only possible when multiple receivers are time-synchronized. In
such cases, a (reverse) time-difference-of-arrival (TDoA) protocol
computes the difference in the times at which a mobile transmitter’s
signals arrive at three synchronized receivers (at a minimum) [24].
One of the core innovation of this work is in capturing UWB mes-
sages sent by a transmitter, using a single UWB receiver. This is
feasible in our use-case since the pen is expected to move within
a rather confined space, and we can place three antennas at three
different corners of the work-surface, while being connected to
a single UWB-receiver. Fig. 3 shows the processing at the UWB
receiver, where the TDoA between every antenna-pair produces a
hyperbolic locus of the pen’s potential locations. Intersection of the
three hyperbolas, each obtained from the time-difference between
a unique pair of antennas, solves for the pen’s exact location. Note
that simply solving the equation will lead to ambiguity with two po-
sition candidates. However, since UWB can provide high-resolution
CIR, we can uniquely determinewhich of the air-paths is longer, and
solve for locations within the expected whiteboard space, thereby
removing ambiguity. Each antenna is connected to the receiver us-
ing a different RF cable length and power attenuators—this ensures
each antenna’s signal copy is time-separated on the obtained CIR,

Pen’s Location
𝑡𝑡2 𝑡𝑡1

𝑡𝑡3

UWB Rx

TDoA
Hyperbolas

Figure 3: TDoA based solving of intersecting hyperbolas.
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Figure 4: The CIR received by 3 antennas of the receiver.

and yet has sufficient power to be observable. The longer the RF
cable, more is the attenuation, which we compensate for, by adding
extra attenuators on the shorter RF cables.

The above foundational discussion about solving hyperbolas for
localization still ignores certain details. For example, the time UWB
signals spend on the long RF cables connecting the antennas is
coupled with that spent in air. We are interested in the time spent
on the air paths only, which we call air path differential (APD),
which we discuss next.

■ Calculating Air Path Differential (APD)
Our goal is to extract air path time differentials from the CIRs
obtained at the UWB receiver. Mathematically, the baseband de-
modulated received signal 𝑦 (𝑡) comprises of multiple attenuated
(𝑎𝑘 ) and delayed (𝜏𝑘 ) copies of the transmitted signal 𝑥 (𝑡) [48].

𝑦 (𝑡 ) =
∑
𝑘

𝑎𝑘 (𝑡 )𝑥 (𝑡 − 𝜏𝑘 )𝑒−𝑗2𝜋 𝑓𝑐𝜏𝑘 . (1)

In ITrackU, we have purposefully created a 3-antenna setup that
adds a per-antenna delay on received signals. For the 𝑖𝑡ℎ antenna,
the total delay observed by the receiver, 𝜏𝑖 has two components:
the propagation delay in the RF cable (𝜏𝑐,𝑖 ), and that in air (𝜏𝑎,𝑖 ):

𝑦 (𝑡 ) = 𝑥 (𝑡 )𝑒−𝑗 (2𝜋 𝑓𝑐 (𝑡−𝜏𝑎,𝑖−𝜏𝑐,𝑖 )+𝜙0 ) (2)

where, 𝜙0 is the receiver’s arbitrary phase offset at the time of
packet reception. A delay implies that the wireless signal traveled
an extra distance corresponding to that delay. For a signal with
wavelength 𝜆, a delay 𝜏𝑖 corresponds to 𝑛𝑖 integer wavelengths and
a residual 𝜙𝑖/2𝜋 fraction of 𝜆. Since the reported CIR is a complex
number the phase is extractable, and quite stable (more about the
stability later). Therefore, expanding eq. (2) to include phase and
integer wavelengths, in the cable (subscript 𝑐), and the air (𝑎) we
obtain the following expression:

𝑦𝑖 (𝑡 ) = 𝑥 (𝑡 )𝑒−𝑗2𝜋 𝑓𝑐

(
𝑡−(𝑛𝑐,𝑖+

𝜙𝑐,𝑖
2𝜋 ) 𝜆𝑐 −(𝑛𝑎,𝑖+

𝜙𝑎,𝑖
2𝜋 ) 𝜆𝑐 +𝜙0

)
, (3)

where, 𝑐 is the speed of light. This shows the two hindrances to
extracting the APD: (i) every packet has an arbitrary phase 𝜙0, and
(ii) signal travelling through the cable’s length pollutes the air path.

To solve the above two hindrances we introduce a double dif-
ferential approach. First, observe that eq. (3) written out for all
antennas share identical phase offset 𝜙0, we subtract the various
antenna equations from each other, and eliminate the 𝜙0 term. Writ-
ing just the relative delay 𝐷𝑟,𝑖 equations for antenna 𝑖 and antenna
1 we get:

𝐷𝑟,𝑖 =
𝜆

𝑐

(
(𝑛𝑐,𝑖 +

𝜙𝑐,𝑖

2𝜋 ) + (𝑛𝑎,𝑖 +
𝜙𝑎,𝑖

2𝜋 )
)

−𝜆

𝑐

(
(𝑛𝑐,1 +

𝜙𝑐,1
2𝜋 ) + (𝑛𝑎,1 +

𝜙𝑎,1
2𝜋 )

)
.

(4)
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Second, observe that the cable-delay remains constant over time for
any antenna. Therefore, differencing consecutive packets received
over the same antenna cancels out the cable delay. Performing this
difference over the relative delays from eq. (4), we obtain:

Δ𝐷
𝑗

𝑟 ,𝑖
=

𝜆

𝑐

[(
𝑛
𝑗+1
𝑎,𝑖

+
𝜙
𝑗+1
𝑎,𝑖

2𝜋 ) − (𝑛 𝑗+1
𝑎,1 +

𝜙
𝑗+1
𝑎,1
2𝜋

)]
−𝜆

𝑐

[(
𝑛
𝑗

𝑎,𝑖
+
𝜙
𝑗

𝑎,𝑖

2𝜋 ) − (𝑛 𝑗

𝑎,1 +
𝜙
𝑗

𝑎,1
2𝜋

)]
.

(5)

This difference in phases over time has only air-path terms which
maps to the change in location of the pen (APD). Suppose the
distance of the transmitter from the 𝑖𝑡ℎ antenna during UWB packet
𝑗 is 𝑑 𝑗

𝑖
. Then change in the APD can be written as:

Δ𝐴𝑃𝐷 = (𝑑 𝑗+1
𝑖

− 𝑑
𝑗+1
1 ) − (𝑑 𝑗

𝑖
− 𝑑

𝑗

1 ) =Δ 𝐷
𝑗

𝑟 ,𝑖
. (6)

Additional simplification of Δ𝐷 𝑗
𝑟,𝑖

is possible if the relative move-
ment between consecutive packets is within half a wavelength.
Then, 𝑛 𝑗+1

𝑎,𝑖
= 𝑛

𝑗
𝑎,𝑖

and the relative APD is calculable just using
phases:

Δ𝜙
𝑗

𝑟 ,𝑖
= 𝜙

𝑗+1
𝑟,𝑖

− 𝜙
𝑗

𝑟 ,𝑖
, (7)

where 𝜙 𝑗
𝑟,𝑖

is the relative phase between antenna 1 and antenna
𝑖 for the 𝑗𝑡ℎ UWB packet. Of course, if during consecutive UWB
packets the transmitter has moved more than one wavelength, then
𝑛
𝑗+1
𝑎,𝑖

≠ 𝑛
𝑗
𝑎,𝑖

and eq. (5) will produce a phase-wrap error. We will
discuss these later in the context of inertial sensor fusion.

Equation (7) is used as a foundational mechanism to localize the
pen in ITrackU. One aspect that we alluded to earlier still needs to be
inspected: if we are relying heavily on phases, we must first ensure
that phase is indeed reliable. To this end, we obtain empirical data
by keeping the pen stationary and recording the changes in relative
phase difference between two antennas. Fig. 5 shows the change in
relative phase over 937 independent UWB packets. We observe that
the 90%𝑡𝑖𝑙𝑒 range of phase2 is about 4.6°. For UWB center frequency
of 3.993GHz, the distance precision is 4.6

360 · 3×108
3.993×109 ≈ 0.96𝑚𝑚,

giving the practical limit of ITrackU. Note that phase precision
exceeds time precision by a couple of orders of magnitude—compare
the 1𝑚𝑚 phase precision with about 15 𝑐𝑚 time precision in Fig. 8.

To verify that eq. (7) produces results close to ground truth mea-
surements, we setup a simple experiment with two fixed receiving
antennas placed 3𝑚 apart. We move a transmitter along a marked
path for a distance of ≈ 50𝑐𝑚. The path has 20 marked points with
known positions. A camera records timestamps when the transmit-
ter passes over the markers. Fig. 6 shows that the estimated APD
from the phase measurements of eq. (7) matches ground truth well.
2This includes the hardware phase noise.
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Figure 7: Inter-antenna interference and intra-antenna interference
mislead the tap selection process.
■ Extracting phase from CIR
We obtain a raw CIR with samples every 1𝑛𝑠 (1𝐺𝐻𝑧 sampling rate)
from the UWB hardware. Each sample in a CIR is also called a
tap. Fig. 4 shows the raw CIR taps obtained at the receiver with
three prominent pulses, corresponding to received signal over each
antenna. However, even with nanosecond resolution in time, the
exact moment when the signal peaks can be missed as the true peak
frequently lies between two sampled taps (e.g., the peak tap in the
first impulse in Fig. 4). To address this problem, we upsample the
raw CIR to 64GHz (15.625 𝑝𝑠 duration between taps). This sampling
frequency is sufficient to capture the “missing” peak between two
CIR taps, as shown in Fig. 4. ITrackU then finds the peak taps in
each CIR and tracks the phase, followed by APD calculations.

■ Tap selection despite multipath
Tap selection issues: The accuracy of tracking depends on ac-

curate peak-detection in each impulse. Rich multipath in an indoor
environment breaks the simplicity of picking the peak with the
highest amplitude. Fig. 7 shows examples of how multipath can
influence the tap selection. There are 2 primary problems:
(1) Inter-antenna inference: The delayed environmental reflections

of a prior antenna’s signal can confuse the selection of the
subsequent antenna’s signal.

(2) Intra-antenna inference: The peak in an impulse is polluted by
nearby multipath received by the same antenna (an object close
to the antenna).

These problems cause significant errors in phase measurements.
Existing works, such as Strata [63], reduce the search-space by
filtering out the taps whose corresponding physical position lies
outside the field; however, this works only for small fields. In our
2.5𝑚 × 2𝑚 area, many locations can have ambiguous tap selections
even after search space reduction. Furthermore, in a multipath-rich
indoor environment, multipath taps can occur anywhere in the CIR.
Reducing search space cannot filter out multipath.
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Solution: We take an architectural and an algorithmic approach
for accurate tap selection. First, to mitigate confusion caused by
inter-antenna interference, a careful choice of delaying cables and
RF attenuators is important. The insight is that if a multipath ar-
rives later than a certain time threshold 𝑇𝑚𝑎𝑥 after the direct path,
it is likely to have much lower RSS. With this assumption, we use
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Figure 10: The effect of (a) phase wrapping, (b) blockage.

delaying cables to ensure the direct-path impulses in different an-
tennas are separated by at least 𝑇𝑚𝑎𝑥 . Then we fine-tune the value
of RF attenuators placed at each antenna to limit the signal power
received by earlier antennas ensuring the signal from a posterior
antenna has larger amplitude. Thus, the multipath from the first
antenna will always be weaker compared to the peak of the direct
impulse of the second antenna, and so on. The true peak can be
discriminated from a multipath tap by simple amplitude check.

Intra-antenna interference, however, cannot be solved as above
because the interfered signals are received by the same antenna.
Instead, we exploit the observation that the relative time (RT)
of peak taps change little in two adjacent UWB packets (If the
peak tap of the first impulse is 𝑡1 and the peak tap of the second
impulse is 𝑡2, their relative time is 𝑡2−𝑡1). To ground this hypothesis
in empirical results, we moved a transmitter at a normal writing
speed and recorded the RT differential between adjacent packets.
We observe from Fig. 8 that the RT differentials are limited in±0.5𝑛𝑠 .
In contrast, the multipath tap is typically separated from the direct
path tap by at least 2𝑛𝑠 . Therefore, if we already know the RT in a
CIR packet is 𝜏 , and we have detected that the first peak tap of the
next CIR is 𝑡1, then we need to only search taps lying in the range of
(𝑡1 +𝜏 − 0.5, 𝑡1 +𝜏 + 0.5)𝑛𝑠 . As a procedure, we first extract all peaks
in the CIR and filter out low-amplitude peaks. From the remaining
peaks, we compare the RT of each peak in this CIR with the RT of
peak taps cached from previous packets. We choose the 3-tuple that
satisfies the above timing requirement, keeping only the one with
a largest amplitude and smaller timestamp. Of course, if we keep
using RT differential for tap selection we may propagate errors,
whereby the error in the peak tap selection in one CIR will also
influence the peak tap determination of next CIR. To avoid it, we
constantly recalibrate the RT when we encounter high-confidence
CIR in which peak taps are clean and prominent. Fig. 9 shows this
complete tap selection pipeline.

■ Limitations of using only UWB localization
The above phase-based tracking scheme seemingly gives a complete
solution to a low-error tracking system. However, there are two
unsolved fundamental problems, which exist widely in phase-based
wireless tracking system. We specify these two problems in this
section and explain how they erode tracking accuracy.

Wrapping error: As mentioned before, the receiver needs to
extract the peak tap’s phase in the CIR. Since the phase value is
bounded in [−𝜋, 𝜋], there is no way to detect phase wraps, just
from the phase. This problem is known as integer ambiguity. Our
system, as well as several other existing works, track the phase
change between every successive packet to counteract the effect
of integer ambiguity. This works so long as the phase change be-
tween two packets never exceeds half a cycle (𝜋 in phase), which
sets an upper bound on the object’s moving speed. Quantitatively,

given the average time gap between packets 𝑡𝑔𝑎𝑝 , the allowed max-
imum moving speed is 𝜆

2𝑡𝑔𝑎𝑝 . For UWB with center frequency
3.993GHz, with a 50Hz packet transmission rate, the maximum
speed is 0.0751

2×0.01 = 1.875𝑚/𝑠 . However, human writing can reach an
instantaneous velocity as high as 3𝑚/𝑠 , which means that wrapping
errors are feasible. Fig. 10(a) shows the effect of just one wrapping
error—the APD suddenly deviates by at least one wavelength, lead-
ing to centimeter or even decimeter errors.

Low-quality CIR: Wireless signals are vulnerable to environ-
mental factors such as human motion and blockage, both of which
can produce low-quality CIR. The receiver cannot extract the ef-
fective phase from these CIR and therefore, leaves a void period
during which tracking is infeasible. Note that the effect of the void
period is cumulative, meaning all the subsequent errors add to ex-
isting errors. This effect can be seen from an experiment where
we fixed the transmitter and receivers and the researchers walked
through the experimental area. The receiver tracks the motion of
the transmitter (should be 0 since the transmitter is stationary).
Fig. 10(b) shows the correlation of the variations in the received
signal strength and the absolute position error.

Given these UWB tracking issues, we ask: Can we have a com-
plementary scheme which assists UWB retain robustness, mitigating
effects of both phase-wrapping errors and occasional low-quality CIR?
4.2 Augmenting Location Tracking with IMU
To maintain robustness of localization accuracy even when UWB
wireless signals face the problems of wrapping and occlusions,
we require a fundamentally different technology which will per-
form tracking without emitting signals. An inertial sensor presents
promising possibilities. It measures acceleration, angular velocity,
and magnetic field experienced by the pen, which helps create a
deadreckoning system based on the pen’s motion vectors. Despite
wide use of IMUs in localization [17, 25, 38, 56], applying IMU
in high-precision tracking tasks is not sufficiently explored—the
drifting nature of IMU makes it extremely hard to provide stable
low-error positionmeasurement over a long period. Therefore, to ef-
fectively use IMU, we must first understand the merits and demerits
of IMU, and then explore how it can assist in our case.
■ Background of IMU and tradeoffs vs UWB
In contrast to UWB’s phase-based tracking, IMU captures the effects
of movements on its inertial frame of reference. At a high level,
one can obtain linear acceleration in the global frame of reference
(GRF) from a 9-degrees of freedom3 inertial and magnetic sensor
and perform double integration to obtain the distance an object
has moved. It might then seem that IMUs can provide us exactly
what we need. However, there are pitfalls in relying on IMU alone.
Table 2 lists the major differences between UWB and IMU in a
tracking task. Unlike UWB, IMU is a standalone sensor—it does not
need a transmitter-receiver pair to work. This property provides
independence from wireless interference and blocking, and is an
advantage over any wireless-based localization. Furthermore, due
to the time required to extract CIR, the IMU sensor typically has
a higher sampling rate (> 200𝐻𝑧) compared to UWB (< 100𝐻𝑧),
particularly when compared with UWB’s CIR processing. That
means the IMU sensor can capture an object’s motion over a period
as short as 5𝑚𝑠 , yielding the potential for tracking with low error.
3Accelerometer, Gyroscope, Magnetometer (3-axis each).
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Attribute UWB IMU
Sensors Needed TX-RX pair (2) 1
RF Occlusion High impact Almost no effect
Sample rate 20𝐻𝑧 ∼ 100𝐻𝑧 ∼ 200𝐻𝑧

Precision < 1𝑐𝑚 (ITrackU) 𝑡 < 1𝑠 : 90% 0 ∼ 3𝑐𝑚
𝑡 ≥ 1𝑠 : Drifting error

Table 2: The comparison of properties of UWB and IMU.
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Despite the independence from wireless blocking and the high
sampling rate, a major problem with IMUs is that they drift over
time. This drifting is fundamental, and results from double inte-
gration of acceleration. To understand how this drifting behavior
would affect ITrackU, we tie an IMU sensor on the marker pen
and fix the marker pen on the ground. We collect IMU data for 30
seconds and observe how it drifts with time (see Fig. 11(a)). It is a
stark contrast, when compared with UWB’s lack of drifting (dot-
ted red line which almost coincides with the zero-line). We make
two key observations: First, IMU drifts significantly (meter-scale)
even over a few seconds. Hence, using IMU alone in high-precision
tracking for long time is not realistic4. The second observation we
make is IMU retains good accuracy over sub-second durations,
if well-calibrated. This property stems from the motion equation
𝑑 = 𝑣0𝑡 + 𝑎 ·𝑡2

2 . When the moving duration 𝑡 < 1𝑠 , the square oper-
ation weakens the effect of drifting, yielding high precision over
a short time, while the same squaring operation amplifies drift
over longer durations. Fortunately, the problems in UWB tracking—
wrapping errors, and signal blocking—are short-lived. This makes
the IMU a potentially well-suited complementary sensor in robust
high-precision tracking, details of which are presented next.

■ Fusion algorithm
Fig. 12 presents a high-level view of ITrackU’s fusion approach. We
first perform a one-shot initial calibration on the IMU sensor to
remove various offsets and biases within the IMU chip. Since the
acceleration data after calibration is measured in the local frame
of reference (LRF), we apply a Kalman filter to infer the rotation
from LRF to GRF with 9DoF sensor data. To avoid the gimbal lock
problem [23], we use rotation matrix 𝑅𝑙→𝑔 instead of Euler angles
to represent the mapping from LRF to GRF. In addition to obtaining
the acceleration vector in GRF 𝑎𝑔 , 𝑅𝑙→𝑔 also provides the tilt angle
4High-precision IMUs cost thousands of dollars each [47].

which serves to compensate the projection offset of the sensor.
Of course, at this time, directly using 𝑎𝑔 to calculate the moving
distances is still prone to significant drift. To address this problem,
we perform a twofold recalibration scheme on motion data where
we look for two type of events: (i) when the object is static, and (ii)
the movements generated from UWB tracking. After recalibration,
we can solve the position from IMU data, and then fuse it into
UWB tracking to improve the overall performance. Details of each
module in the fusion design are presented next.

Initial calibration: Initial calibration involves the independent
calibration of acceleration 𝑎𝑟𝑎𝑤 , gyroscope data 𝜔𝑟𝑎𝑤 and magne-
tometer data𝑚𝑟𝑎𝑤 . For accelerometer and gyroscope, biases are
introduced by sensor imperfections, while for magnetometers, ex-
ternal magnetic objects cause hard iron and soft iron distortion [21].
We apply linear fitting and zero-mean to remove the initial offset,
and store these values for future use. We employ a standard 10-
parameter calibration on the magnetometer [2]. The calibration
outputs, 𝑎𝑙 , 𝜔𝑙 ,𝑚𝑙 , serve as our fusion algorithm’s initial inputs.

Rotation calculation (Kalman-filter): With a 9DoF calibrated
IMU data in LRF, there are two independent streams to calculate
the rotation matrix 𝑅𝑙→𝑔 . The first stream uses the global gravity
vector and magnetic vector as anchors. For a static object at time 𝑡 :

𝑎𝑔 = 𝑅𝑙→𝑔𝑎𝑙 (𝑡 ) = 𝑔0,𝑚𝑔 = 𝑅𝑙→𝑔𝑚𝑙 (𝑡 ) =𝑚0, (8)

where 𝑔0 and 𝑚0 are known as the global gravity vector (point-
ing downwards) and geomagnetic vector (approximately pointing
north and downwards). This stream has no drift but is prone to
pollution from movements and indoor magnetic noise. Another
stream directly accumulates 𝜔𝑙 to obtain the rotation. While it
is not polluted by linear acceleration (movements) and magnetic
noise, it drifts over time. A Kalman filter strikes a good trade-off
between these two streams [31, 59]. The idea is to smooth the er-
ror through weighted average of the outputs from the above two
streams, and adaptively tune the weight based on the error feedback
of each sensor. For instance, if the error of gravity 𝑒𝑔 =

��|𝑎𝑙 | − |𝑔0 |
��

increases, the weight of accelerometer will decrease correspond-
ingly. The tuning repeats in every measurement to improve the
rotation calculation consistently. In addition to being fed into the
module of acceleration calculation, 𝑅𝑙→𝑔 also generates the pen’s
tilt angle, which removes the tracking offset caused by the distance
gap between the RF transmitter and the pen’s tip.

Acceleration in GRF: The rotation matrix 𝑅𝑙→𝑔 maps the local
acceleration back to GRF and then we remove the gravity vector to
obtain clean linear acceleration in GRF 𝑎𝑙𝑖𝑛𝑔 = 𝑅𝑙→𝑔 (𝑡)𝑎𝑙 (𝑡) − 𝑔0.

Position in GRF: While the IMU data has already been cali-
brated at this time, integrating 𝑎𝑙𝑖𝑛𝑔 to obtain position directly still
incurs drift resulting from double integration. To remove it, we
apply a sliding window where the time spans less than 1𝑠 . Pick-
ing 𝑡 < 1𝑠 , mitigates the drift of the second term (squared) in
𝑑 = 𝑣0𝑡 + 𝑎 ·𝑡2

2 , though the drift in the first term 𝑣0𝑡 remains un-
solved. The difficulty lies in that the initial velocity 𝑣0 in every
new calculation of the distance depends on the end velocity in the
previous calculation; causing lasting effects beyond 1𝑠 . To address
this, we correct 𝑣0 through a 2-phase scheme that we call filter-
and-reset. In the filter phase, we apply a high pass filter [34] on
𝑎𝑙𝑖𝑛𝑔 to remove drift. The cutoff frequency is set to 0.2𝑓𝑠 , where 𝑓𝑠
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Figure 13: Surface touch detected through change in user’s grip-
pressure correlates well with ground truth.

is the IMU sampling rate. However, finding a general cutoff fre-
quency is challenging, causing slight drifts to remain. We eliminate
such drift completely in the reset phase. Specifically, we employ
the following two simple rules for reset: (i) When the object is
stationary, the velocity vector is (0, 0, 0), (ii) When we have a high-
confidence UWB CIR, the velocity vector should conform with the
displacements obtained by UWB tracking. Based on the first rule,
we make stationary-state inference by monitoring ( |𝑎𝑙 | − |𝑔0 |) and
|𝜔𝑙 |, which should be 0 when the object is stationary (or moving at
a constant speed, but that rarely occurs in our use-cases). Reset is
triggered when the UWB signal has high confidence. Based on the
position provided by high-confidence UWB signal, we can obtain
a reference initial velocity: 𝑣 ′0 (𝑡) =

𝑑
𝑑𝑡

(𝑝𝑜𝑠 (𝑡 +Δ 𝑡) − 𝑝𝑜𝑠 (𝑡)). Since
the reference velocity 𝑣 ′0 (𝑡) is not polluted by IMU drift, our initial
velocity remains accurate for movement calculation. We jointly use
the above two rules for sample-wise velocity correction. Fig. 11(b)
shows the velocity before and after drift removal. By applying the
filter-and-reset scheme, the position error in a 𝑡 = 1 𝑠 slidingwindow
can be reduced from 1𝑚 to < 3 𝑐𝑚, and reduces to sub-centimeter
when 𝑡 < 0.3 𝑠 .

Fusion Benefits: Fusion with IMU benefits overall tracking in
a couple of ways, which answer the question posed at the end of
Section 4.1. First, fusion addresses the wrapping error by estimating
the APD between two packets with IMU data. Recall that wrapping
error occurs when the APD between two successive packets exceeds
𝜆
2 . UWB CIR is just incorrect about the count of integer wraps
while still providing accurate phase measurement. IMU data fills
the gap. For instance, if we find the APD calculated from IMU data
lies in [ 𝜆2 ,

3𝜆
2 ], the count of wrapping cycles should increase by 1.

Such wrapping check happens for every UWB packet. With the
correct wrapping cycle estimation, together with high precision
tracking using phase, we can retain accuracy similar to the no
integer ambiguity case.

Second, fusion provides a “safety net” on the tracking system,
especially for short-lived low quality CIR caused by temporary
occlusion events. A UWB-only tracking scheme will experience
significant accuracy degradation during this time, andmight sustain
even after the event. ITrackU fills the gap by using IMU data instead.
By positioning with IMU, we can achieve < 3𝑐𝑚 errors for about
1 𝑠 . Once the UWB signal quality recovers, it takes over, without
any error propagation.
4.3 Touch Detection
The last leg that completes the tracking is the touch event detection.
The fundamental question we are asking here is: when is the pen
touching the surface? Without modifying the tip of the pen, and
keeping the surface as it is (no modifications are made to the sur-
face for touch detection), this is a difficult question to answer. One
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Figure 14: The ITrackU testbed and UWB pen-cap

approach towards touch detection is to extract signal features as
the input of a decision model, like [46, 53], or to detect the z-axis
location of the pen. However, the performance of signal-feature
based inference is tightly correlated with the quality of received sig-
nal, yielding high false-positive or negatives in low-SNR conditions.
Likewise, we would need sub-mm precision in the z-axis to detect
such subtle movements of the pen. Instead, viewing this problem
from the sensor fusion angle we try to achieve touch screen-like
accuracy. The core intuition in solving the touch detection problem
is that users have to hold the pen more firmly when writing. If
we embed a pressure sensor on the side of the pen, the real-time
pressure change, accompanied by the tilt angle relative to the ref-
erence frame of the writing plane, can solve this problem more
generically by a simple pressure-threshold check. To verify this, we
attach a force sensitive resistor on the side of a pen and track the
pressure when writing. A resistive touch-screen is used to detect
the exact ground-truth instant when the surface is touched and the
detected touch events are compared. Fig. 13 shows the high correla-
tion between the pressure data and the touch-screen’s output. This
correlation is generic since additional pressure is always required
to overcome the friction of the surface when writing. Pressure is
automatically relieved when the friction is absent (when the user
lifts the pen).

5 IMPLEMENTATION
Fig. 14 shows our prototype and experimental setup with three
antennas at 2.5𝑚 and 2𝑚, describing our large work area.

Prototype: The pen’s cap-setup, which transmits UWB packets,
includes a DW1000 chip ($18), the Adafruit Feather M0 ($20), a
9DoF IMU ($18), and a Sparkfun force sensitive resistor ($21) serv-
ing as the pressure sensor. The IMU consists of an iNEMO 6DoF
inertial sensor (accelerometer and gyroscope) and a LIS3MDL 3-axis
magnetometer. These components are assembled on a PCB board of
4.5 𝑐𝑚×2 𝑐𝑚. The whole transmitter prototype, created using COTS
components and costing less than $80, weighs about 34 grams—
lightweight enough that the pen is still usable. The cap collects
data from the IMU and the pressure sensor with 200𝐻𝑧 data rate. A
group of IMU measurements are radioed out as a batch using UWB
packets. The UWB signal is at 3.993𝐺𝐻𝑧 center frequency and has
a 1𝐺𝐻𝑧 bandwidth. The UWB packet rate is bottlenecked by the
per-packet CIR extraction at the receiver. Since IMU has a much
higher data rate than UWB, we embed 5 sets of IMU and pressure
readings into one UWB packet for rate matching. On reception of
the signal, the receiver triggers internal signal processing pipeline
to generate CIR. Thus UWB packets function as both, a sensing
mechanism to track the position, and a communication mechanism
for packet transmission.
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Figure 16: Examples of tracking a moving robot (blue trajectory)
on a given track (white). Larger area covered.
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Description Product Number Size
Microcontroller ATSAMD21G18A 7𝑚𝑚 × 7𝑚𝑚

UWB Chip DW1000 6𝑚𝑚 × 6𝑚𝑚

Accelerometer + Gyro ISM330DHCX 2.5 × 3𝑚𝑚

Magentometer LIS3MDL 2𝑚𝑚 × 2𝑚𝑚

UWB Antenna UWB 06 6𝑚𝑚 × 8𝑚𝑚

Table 3: Size of the main ICs used in ITrackU’s pen attachment.

At the receiver end, three antennas are at three corners of a
2.5𝑚× 2𝑚 tracking region. They are wired to a Decawave Trek1000
development board through a 3-way RF splitter with different length
of delaying cables. Cost of the receiver can be well within $100
when manufactured using integrated circuit components. In this
prototype, the Decawave Trek1000 extracts a 100-tap CIR (0.4KB)
and then relays the CIR and other received data over a USB-serial
port to a laptop, which runs the pipeline in Matlab R2019a.

From prototype to product: One may wonder how far re-
moved ITrackU is from a real-world pen-attachment product housed
in an appropriate form-factor. Note that the main components on
the pen include functional electronic components and a battery.
The electronic components are a few𝑚𝑚2 each (see Table 3), which
makes it feasible to miniaturize the prototype into pen caps with
inexpensive manufacturing technology. The size bottleneck lies in
the size of the battery. Since the volume of the battery largely deter-
mines the battery’s charge cycle, we perform a battery draining test
with Lipo battery LP503035 (3.7V, 500mAh) and a trade-off analysis
among other common Lipo batteries in Section 6.
6 EVALUATION
We evaluate the performance of ITrackU in an indoor home envi-
ronment. We take a two-pronged approach to obtain the accurate
ground truth. First, a 37.6𝑐𝑚 × 30.3𝑐𝑚 resistive touch screen [3]
is placed within the region on which we perform various writing
tasks for evaluation—this provides a ground truth trace with a res-
olution of 2𝑚𝑚. Second, for some evaluations, we use a camera
based ground-truth for better accuracy. We clamp the pen-cap-setup
on the back of a marker pen and assume the user is holding the
pen as shown in Fig. 14 with the right hand. Different pen holding

patterns are supported so long as the signal emitted from the UWB
antenna (on the pen’s base) is not shielded. We also assume the user
is in front of the whiteboard and that the receiver antennas are in
the plane of the whiteboard, thus avoiding blocking the signal. For
evaluation, we write or draw shapes on the whiteboard at normal
handwriting speed, demonstrating freeform writing capability.

6.1 Overall Performance Evaluation
Visual performance: Fig. 15 visually demonstrates the accuracy
of writing text or drawing a shape on a 52.1𝑐𝑚×36.8𝑐𝑚 whiteboard
with a maximum error of 15𝑚𝑚 approximately. Demonstrating
ITrackU’s performance in large areas, due to difficulty in obtaining
the movements’ ground-truth, needs a novel approach; instead of
writing, we fix the ITrackU pen on a mobile robot and let the robot
move along a long toy-train track built in advance. Fig. 16 shows
the performance of ITrackU in this large area.

Performance of tracking: We first evaluate ITrackU’s accu-
racy. To measure the error quantitatively, we place the touch-screen
in the experimental region providing the ground truth. Then we
draw a rectangle with the marker pen equipped with all the sen-
sors on the touch screen. We compare the performance of ITrackU
in three different cases: (i) All CIRs are high-quality, and we only
use UWB for tracking; (ii) Some CIRs are low-quality (possibly
obstructed), and we only use UWB for tracking; (iii) Some CIRs are
low quality, and we jointly use UWB and IMU for tracking. The
low quality CIRs are generated by imposing Gaussian noise on the
received signal. Fig. 17 shows that for high quality CIRs, using only
UWB achieves a 90𝑡ℎ percentile error of 8.9𝑚𝑚. The error increases
drastically after we introduce some low quality CIRs (maximum
error exceeds 60𝑚𝑚). Such performance degradation results from
phase tracking error propagation due to low-quality CIRs. However,
𝑚𝑚-level accuracy is restored after we fuse UWB and IMU readings.
Once the receiver detects a low-confidence CIR, the IMU performs
the tracking for a short time. Benefiting from the IMU’s promise of
high accuracy for a short duration, ITrackU computes position with
IMU, and then translates the position back to phase change. This
ensures consistency of UWB phase tracking even in the presence
of low-quality CIRs.

Touch Detection: Next, we evaluate the performance of touch
detection with the pressure sensor. We write 5 patterns with differ-
ent pen-lift and touch sequences, on the touch screen: (i) one-stroke
(1-S) characters, like “C”; (ii) two-stroke (2-S) character (2-S, like
“B”); (iii) three-stroke character (3-S, like “A”); (iv) free-form curve
(Free); and a (v) dashed line (Dash). The touch screen records the
ground-truth touch duration. Our goal is to examine the robustness
of ITrackU’s touch detection over increasing complexity of written
artifacts. These patterns are drawn using three types of pens with
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received signal strength.
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no drift observed.
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Figure 26: ITrackU’s perfor-
mance on different surfaces.

different tip hardness: marker-pen, pencil, and ink-pen. We detect
touching event using a single pre-trained pressure threshold, and
align it with the ground-truth touching event. The ground truth
and ITrackU’s time overlap (intersection of union) is reported as
accuracy in Fig. 18. In most cases, pressure-based touch detection
achieves over 90% accuracy, when there are no breaks or only a few
breaks in the writing (1-S, 2-S, 3-S, or free-form). The dashed line
tests our limits where the accuracy drops to 72%, most of which
are false positives. We suspect this occurs since the fast and pre-
cise lifting and touching action in a dashed line leads the pressure
exerted on the pen to not change enough for detection. We leave
further improvements to future work.

Accuracy under different SNR: As with most wireless sys-
tems, ITrackU’s accuracy will depend on the signal strength. We
perform the tracking task across a wide range of signal strengths
to obtain its working range We use a stencil when writing to make
sure that exactly the same movement is compared under different
SNRs. The power is adjusted by changing the transmitter’s power
gain. At the receiver, we collect CIR for every packet transmis-
sion and translate the amplitude of CIR into RSS [4]. Fig. 19 shows
the median, the 5%𝑡𝑖𝑙𝑒 and the 95%𝑡𝑖𝑙𝑒 error under different RSS.
ITrackU works stably with no visible impact for signal strength in
excess of −98𝑑𝐵𝑚. Errors increase when the RSS drops to −101𝑑𝐵𝑚.
By analyzing the CIR in low-SNR scenarios, we find that at least
one of the three antenna’s reception is too weak leading to frequent
peak locating error. Further, long-term poor CIR cannot be com-
pensated by IMU. ITrackU’s tracking accuracy remains acceptable
only over −98𝑑𝐵𝑚 received signal strength.
6.2 Micro Benchmarks: UWB Tracking
In this part, we focus on performance evaluation when only UWB
is used. We expose the temporal and spatial properties of UWB
tracking, thereby showing the importance of incorporating IMU.

Temporal property: Will ITrackU’s accuracy degrade as time
passes? To evaluate ITrackU’s performance over time, we repeatedly
trace a stencilled rectangular pattern (37𝑐𝑚 × 30𝑐𝑚) on the touch
screen for 5 minutes. Fig. 20 shows that over this period, the error is
uniformly distributed with no visible drift. The actual trace is shown

as an inset. As expected, ITrackU’s accuracy does not degrade with
time, indicating that ITrackU is potentially capable of long-term
tracking in the real-world.

Spatial property: Are there pockets of poor performance over
the experimental area? ITrackU’s accuracy is influenced by many
real-world problems faced by wireless signals, such as attenuation
and multipath. Spatial interference is possible, which leads to lo-
cation dependent performance. To answer this question, we split
the experimental region into 10 𝑐𝑚 × 10 𝑐𝑚 grids and measure the
errors incurred in each grid. Fig. 21 shows a matrix of positional
variation in accuracy. We note that accuracy does vary over the
whole region. While most of grids have less than 10𝑚𝑚 error, there
are also high-error grids (> 2𝑐𝑚) distributed sporadically. CIR anal-
ysis reveals two causes for increased errors. First, in some corner
areas, one of the antennas receives disproportionately high signal
strength, which causes errors in CIR peak-finding. Second, at cer-
tain spots, the true CIR first-peak merges with a close multipath,
polluting the phase readings. This positional variation highlights
the insufficiency of a UWB-only approach. Combining UWB and
IMU benefits from taking advantage of each other’s strengths to
improve accuracy. When the tracked object passes through high-
error locations, the IMU dominates the tracking for a short duration,
thereby mitigating the effect of such locations.
6.3 Micro Benchmarks: Fusion
In this part, we focus on the performance evaluation of the fusion
algorithm under various scenarios.

Effect of writing speed: How does writing speed affect perfor-
mance? On one hand, UWB tracking experiences wrapping error
if the user writes too fast, where the IMU helps correct the wrong
phase by estimating number of wraps from the motion data. On
the other hand, due to the high-pass filter applied on IMU, IMU is
more accurate when the user is writing fast. These two conflicting
properties seemingly form a writing speed trade-off. To quantify
performance at different speeds, we draw a rectangle on the touch
screen at different speeds. We place RF absorbers in the field to
remove the effect of potential multipath. The touch screen provides
a stream of ground truth trace and the writing speed. Fig. 22 shows
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Figure 27: Time consumption of each function in ITrackU.

the 90𝑡ℎ percentile error when using ITrackU’s fusion approach
and contrasts it with the UWB-only approach. The x-axis denotes
the maximum instantaneous speed during writing. Among these
speeds, 0.6𝑚/𝑠−2.1𝑚/𝑠 are usual writing speeds. When the writing
speed is 1𝑚/𝑠 or smaller, the two approaches achieve comparable
and low error, where the IMU does not give much benefit because
no wrapping error occurs in this range. Wrapping occurs when
we increase the writing speed to 2.1𝑚/𝑠 , which leads to a dramatic
jump to 44𝑚𝑚 90𝑡ℎ percentile error with the UWB-only approach.
This error further jumps to 138𝑚𝑚 at 3𝑚/𝑠 speed. Compared to the
UWB-only approach, ITrackU achieves sub-centimeter level error
(4.4𝑚𝑚 and 3.6𝑚𝑚) after IMU-based compensation. This demon-
strates ITrackU capability to sustain high accuracy even when a
user writes extremely fast. Fig. 23 demonstrates the output when
writing is very fast, with just UWB and with UWB-IMU fusion.

Tracking different sizes of characters:We evaluate the per-
formance of ITrackU with varying sizes of tracking patterns, which
matters in many applications. In the remote class example, the
tracked characters or patterns can have a size ranging from 10𝑐𝑚 to
1𝑚. We choose four sizes for evaluation: squares with edge length
of 10𝑐𝑚, 30𝑐𝑚, 60𝑐𝑚 and 1𝑚. Since these sizes exceed the touch
screen size, we take a picture of the drawn pattern and then remove
the projection effect and affine transformation caused by camera.
This picture functions as the ground truth. The tracking results
are then fit onto the picture, and the distance from every sample
to the ground truth square is reported as error. Fig. 24 shows the
error across different fontsizes. All the three sizes achieve a𝑚𝑚-
level median error, which are 1.7𝑚𝑚, 3.1𝑚𝑚, 2.5𝑚𝑚 and 2.7𝑚𝑚,
respectively. There is no significant increase in error as the fontsize
increases to 1𝑚 showing ITrackU’s ability to track a wide range of
fontsizes without error accumulation.

Continuous working time of IMU: How long can IMU com-
pensate loss of UWB? ITrackU allows IMU to take over tracking
during low-confidence CIR (LC-CIR) durations. Given that IMU
drifts, we must understand the limits of how long we can rely on
the IMU when we keep suffering from poor UWB CIR quality. We
use a trace-driven emulation to evaluate this. All the received CIRs
and IMU data are stored offline. In the emulation, we artificially
mark successive 𝑘 UWB packets as LC-CIR forcing only IMU data
to be used during this time. After the low confidence duration
ends, we go back to track with UWB for a certain time, and then
again enter the LC-CIR state. By varying the value of 𝑘 , we obtain
an emulated tracking error under different continuous IMU-only
durations. Fig. 25 shows error increases with increasing lengths
of LC-CIR durations. When the LC-CIR remains under 0.5𝑠 , the
overall error is less than 10𝑚𝑚. When the duration lies in 0.5-1.5𝑠 ,
the error increases to 1𝑐𝑚-3𝑐𝑚. While 3𝑐𝑚 errors distort drawn
pattern, ITrackU can still recover when high quality UWB packets
are received, so long the APD error is within 𝜆/2 = 3.75𝑐𝑚. Beyond

that, irrecoverable tracking loss will result and UWB tracking must
be reset using time-gaps between CIR peaks.

Effect of surfaces: Does ITrackU perform equally well on differ-
ent surfaces? We evaluate ITrackU on different surfaces representing
a variety of smoothness and textures: whiteboard, cardboard, wood,
and blanket. Since the touch screen is unavailable for this, we take
a picture as the ground truth as we do in the character-size micro-
benchmark. Tomake sure that IMU takes effect, wemanually induce
LC-CIR durations by quickly sliding an aluminium shield across
the direct signal path. Fig. 26 compares the 90𝑡ℎ percentile error
of the UWB-only approach with ITrackU on all four surface-types.
Results show that our fusion approach is a significant improvement
over the UWB-only solution on the white board, card board, and the
wooden board. The 90𝑡ℎ percentile error improves by about 4× on
these surfaces. However, when writing on a blanket, ITrackU fails
to correct the error during LC-CIR exposing the limits of ITrackU
on a very rough surface. Deeper analysis shows that the constant
high frequency wobbles on the rough blanket surface produces
high frequency noise which makes IMU data erroneous. The IMU
thus fails to aid in this case.

Time consumption: The overall ITrackU pipeline involves var-
ious components whose timing requirements and parallelism pos-
sibilities are now explored. We divide the processing pipeline into
7 functions: CIR upsampling, peak determination, UWB tracking,
orientation calculation, IMU tracking, fusion, and touch detection.
Data collection and transmission are not included since they are
concurrent functions running much faster at a different end. Fig. 27
shows the time consumption in each function. Of all the functions,
CIR peak determination and UWB tracking demand most time re-
sources, which are 15𝑚𝑠 and 22.4𝑚𝑠 respectively. In contrast, the
summation of time consumed by all other functions is less than
10𝑚𝑠 . The whole pipeline takes about 43.7𝑚𝑠 , yielding 22Hz sam-
pling rate. We leave further pipeline optimizations to future work.

Signal blocking test: While signal blocking is an important
problem in wireless signal propagation in general, blocking rarely
happens when one writes holding the pen normally, given that the
ITrackU transmitter is fixed on the pen’s base (Fig. 28(a)). Yet a sig-
nal blocking study is still important to comprehensively understand
the performance of ITrackU in harsh environments, and potentially
in other use-cases for ITrackU. We tested two different holding
styles which will block the signal shown in Fig. 28(b) and (c). We
observe that complete blocking (c) degrades ITrackU into complete
failure with no packets received at the receiver; there is nothing
to study in that case. When partially blocking (like Fig. 28(b)), the
signal is still detectable albeit with attenuated amplitude, which
makes for an interesting case-study. To study the effects of par-
tially blocking the signals, we split the whole experimental region
into four sub-regions (labeled R1–R4 in Fig. 29). In each region,
we perform 3 experiments—in each experiment, the transmitter’s
signal to a certain antenna (labeled AT1–AT3) is blocked by the
palm of the hand. The transmitter power gain is set at 18.5dB5.
The per-sub-region per-antenna tracking error is measured and
compared in Fig. 30. When ITrackU fails to localize, we label it with
“×”. We observe that each sub-region has a “bottleneck” antenna
blocking which causes tracking to fail (AT1 in regions R2, R3 and
5Refer to the Transmit Power Calibration and Management application note [15].
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System Technology Error (50%) Cost Weight Noise
ITrackU UWB+IMU 2-3mm $200 34g No
Mimio IR+Ultrasound <1mm $950 60g Yes

Table 4: Comparison between Mimio and ITrackU.

Methodology Unit size Compression rate Data size (1h)
ITrackU 10 None 1.03MB

480p video 848 × 480 200:1 213.6MB
720p video 1280 × 720 200:1 474.6MB
Table 5: Comparison between video streaming and ITrackU.

AT2 in regions R1, R4). This fundamentally results from the fact
that blocking the signal with longer propagation distance atten-
uates it more significantly. However, an interesting observation
is that blocking AT3 has almost no effect in any region; though
it should have failed in R1. Recall that we attenuate the earlier
antenna’s signals, hence the signal corresponding to AT3 has the
largest relative gain which counteracts the effect of blockage and
attenuation in the air. This observation leads to a revelation: if in a
particular use-case, a certain location is more likely to be blocked,
it is beneficial to place AT3 in that location.

Charge cycle: How often would we need to recharge ITrackU?
The receiver of ITrackU is connected to a continuous power source,
hence we only consider the charge cycle at the transmitter (pen’s
attachment). We power the transmitter with LiPo battery LP503035
(3.7V, 500mAh) and allow it to run continuously (collecting sensor
data and sending packets) until the battery is drained out. We
observe a 10.8 hours life before the battery drains completely. This
battery is 35 × 30 × 6mm; an acceptable size for a thick pen. Of
course, we can choose smaller batteries to fit into slimmer pens, by
trading off charging cycle. For instance, LP401230 (32× 12× 4.2mm)
can run for 2.2-hours, and is small enough to fit into most pens.

Comparison with a commercial product: We compare our
work with the commercial product MimioCapture Ink Recorder [14]
(abbreviated as Mimio below). Mimio uses ultrasound and infrared
signals jointly to track themovement of a pen.We affix the ITrackU’s
transmitter on the Mimio pen-sleeve (see Fig. 31) and draw different
shapes on the whiteboard to test the performance of both systems.
Points of major differences are listed in Table. 4. We find that Mimio
is more accurate in tracking the pen’s movements, but performs

poorly in other aspects. ITrackU provides a lightweight and cheaper
solution. Further, Mimio’s ultrasound transmitter produces audible
noise in the frequency range of 5K-20KHz—Fig. 32 shows the noise
recorded by a regular microphone when Mimio is in use.

Storage and bandwidth efficiency:We use an online lecture
example to show ITrackU’s efficiency. Instead of video streaming a
whiteboard’s contents, ITrackU streams only the locations of the
pen’s tip. We use 10 bytes to encode a trace (4B for X/Y location,
4B for the time, 2B reserved for color/thickness). For one hour of
writing, Table 5 compares the data size and streaming rate using
ITrackU with different video qualities, with a 30Hz update rate.
Low and standard resolution video requires about 213.6MB and
474.6MB data, respectively, over the whole lecture. In contrast,
ITrackU consumes only 1.03MB to transmit the data, resulting in
a much more efficient streaming process. The above computation
projects ITrackU as a potential educational delivery mechanism
even in communities with severely limited Internet access.

7 CONCLUDING REMARKS
ITrackU addresses fundamental problems in fine-grained wireless
tracking, presenting a sensor-fusion approach in digitizing an in-
strument’s movements on an unmodified surface. There are a num-
ber of potential extensions of this work. First, tracking can be en-
hanced by smoothing the output trajectory (such as using [40]) and
by interpreting the written text or shapes drawn (such as in [36]).
Second, the magnetometer readings can be corrupted by external
magnetic fields which need to be compensated for through calibra-
tion. The use of the IMU is central to orientation and tilt tracking;
its effectiveness is influenced by the quality of the sensor data. The
problem of resolving the effect of dynamic magnetic field variation
using other approaches should, therefore, be addressed in future
work. Third, wireless signals can inherently leak information.While
UWB packets can be encrypted (IMU and pressure sensor informa-
tion), the CIR, which is derived from the preamble process, cannot
be encrypted. By installing a multi-antenna UWB receiver nearby,
listening on the same channel, one can potentially snoop on the
pen’s movements from outside a closed room. Protecting CIR data
is an open research problem, which we leave to future work.

In summary, ITrackU presents an approach of combining UWB,
as the fundamental tracking technique, with IMU, to bring multi-
facet benefits in accuracy, range, robustness, and cost, to the prob-
lem of tracking a pen-like instrument.
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