
Implementation and Evaluation of a TDMA MAC for
WiFi-based Rural Mesh Networks

Ashutosh Dhekne
Dept. of CSE,
IIT Bombay

ashudhekne@gmail.com

Nirav Uchat
Dept. of CSE,
IIT Bombay

nirav.uchat@gmail.com

Bhaskaran Raman
Dept. of CSE,
IIT Bombay

br@cse.iitb.ac.in

ABSTRACT

WiFi mesh networks with outdoor links have become an at-
tractive option to provide cost-effective broadband connec-
tivity to rural areas, especially in developing regions. It is
well understood that a TDMA-based approach is necessary
to provide good performance over such networks. While pre-
liminary prototypes of TDMA-based MAC protocols have
been developed, there is no implementation-based valida-
tion/evaluation in multi-hop settings. In this work, we de-
scribe the elements of a multi-hop MAC implementation
based on the open-source MADWIFI driver. We also present
an evaluation, with a detailed accounting of the various over-
heads, on a 4-hop (5-node) path. We show that our imple-
mentation has no system overheads, achieves good through-
put, and low delay/jitter.

1. INTRODUCTION
WiFi-based outdoor mesh networks have been demonstrated

to be a viable option for providing cost-effective broadband
connectivity to rural regions [1, 2, 3]. It is also well known
that a TDMA-based MAC is necessary for good performance
in such networks [1, 2, 4], with the default CSMA/CA oper-
ation being inefficient.

Although the significance of TDMA is recognized, its prac-
ticality has always been in question, especially in multi-
hop settings. Can effective time-synchronization really be
achieved? What would be the overheads in practice, with
multiple hops? Can an implementation work using low-cost
off-the-shelf hardware? Can system overheads be controlled
so that the wireless capacity can be maximized? These are
significant questions can only be answered through a pro-
totype. However, prototype-based evaluations of multi-hop
wireless TDMA systems have been few and far between.

In this paper, we demonstrate a TDMA implementation
that can be used over outdoor multi-hop networks using
off the shelf inexpensive hardware. Our implementation
is based on the open-source MADWIFI driver. It includes
multi-hop synchronization, and schedule dissemination from
a central node. We carefully account for the various over-
heads in our implementation, such as the synchronization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

error, guard time, header overheads, etc. We show through
evaluation that these overheads are noticeable but tolerable;
the multi-hop throughput is close to what we expect the-
oretically. And the delay/jitter values are small even over
multiple hops and good enough to support real time voice
and video-conferencing applications; as noted in [4], provid-
ing support for real-time video conferencing is important for
applications such as e-learning in rural regions.

2. RELATEDWORK
There has been considerable effort in the area of driver-

level radio configuration using open source drivers which fa-
cilitates implementing various protocols over inexpensive off-
the-shelf WiFi hardware. We present some of these which
have demonstrated TDMA implementations.

SoftMAC [5] explores the use of the MADWIFI driver for
Atheros-based WiFi radios to experiment with MAC proto-
cols. It disables RTS/CTS, MAC level ACKs, and facilitates
custom packet header formats by setting the card in moni-
tor mode. To demonstrate the utility of the platform, [5] has
implemented a TDMA system between two nodes. For our
work, we borrow from SoftMAC, insights about disabling
certain aspects of CSMA.

MadMAC [6] also implements an example TDMA sys-
tem between two machines with slot sizes of 20ms-60ms and
guard bands of 4ms-12ms. However, since we envision a mul-
tihop system, increased slot size has a detrimental effect on
the delay/jitter. We have used slot sizes and guard bands
much smaller than those in MadMAC.

Building over SoftMAC, FreeMAC [7] exposes many more
configurable parameters. It also demonstrates a TDMA sys-
tem, but it uses out-of-band ethernet for synchronization.
FreeMAC also implements channel switching in the TDMA
system but does not implement multiple hops. FreeMAC
uses the hardware beacon timer and indicates that the timer
works well under both low load and heavy load conditions.
However, we found that the hardware timer is very sloppy
with an increased number of RX interrupts as described in
Sec. 4.5. FreeMAC’s insights into various aspects of Mad-
Wifi, including the hardware timer, has served as a starting
point for our work.

Overlay MAC [8] uses the Click router system and imple-
ments a configurable module between the MAC layer and
the network layer. However, unlike our work it does not
have precise control over packet transmission times. And
it implements a distributed algorithm for allocating slots,
while we have centralized schedule computation and multi-
hop dissemination.

The 2P protocol [1] and its time-synchronized implemen-
tation [2] also involve TDMA prototypes. Unlike this paper,

[1, 2] are specific to directional long-distance links only, and
do not apply to generic mesh network links. Furthermore,
[1, 2] have only evaluated their prototypes on single-hop (one
central node with two other nodes on each side) settings.

The work in [9] implements a multi-hop TDM MAC pro-
tocol. However, the focus in [9] is on time synchronization,
and most of the measurements in [9] are on a single-hop
(Sec. 8.1, 8.2, 8.3.1). Our work includes a multi-hop sched-
ule dissemination mechanism, and we carefully account for
various throughput overheads. Another difference is that we
have used an off-the-shelf Atheros-based platform, while [9]
has used a custom-built platform for implementation.

To summarize, our contribution is the implementation and
performance characterization of a multi-hop TDMA-based
MAC for WiFi mesh networks. This implementation is set
in the context of the FRACTEL architecture [4], where we
have a mesh network with both long-distance as well as local-
access (medium-distance) links.

3. BACKGROUND: TDMA APPROACH
We have argued in [4] for a TDMA MAC which is connection-

oriented and centralized. We have designed such a MAC pro-
tocol. While it is beyond the scope of this paper to present
the protocol itself in detail, we now give a brief description
to set the context for the implementation (Sec. 4) and per-
formance evaluation (Sec. 5).

Time-slots, frame structure: A time-slot is a unit of
resource allocation. In our centralized scheme, a central node
decides who should transmit in what slot, to whom, and
using which channel. There are three kinds of time-slots. (1)
Control slots: used to convey information from the central
node toward the other nodes. (2) Contention slots: used
to convey information from other nodes toward the central
node. (3) Data slots: used for the actual data flows. A frame
is a repeating pattern of control, contention, and data slots.
The frame structure is shown in Fig. 1.

Figure 1: Components of a Frame

Tree topology: Control information (in the control slots)
always goes down along a tree rooted at the central node.
Contention slots are always used to convey information from
child-to-parent (toward root) in this tree. The tree topology
is used only for control and contention slots, and not for data
slots.

Control slots: The control slots convey three important
pieces of information: (a) time synchronization, (b) the tree
topology itself, and (c) the data schedule.

Time synchronization: To handle clock drift, synchroniza-
tion is done in every control packet using a hardware times-
tamp. The synchronization propagates down the tree, one
hop at a time, to all nodes in the network. Each schedule
packet contains its own offset from the global time and the
exact global time of the beginning of this slot. Together,
these three entities enable the receiving node to synchronize
to the current global time and also calculate the next slot
time.

The routing tree information is just an array of parent-
child relationships. Each non-root node must appear at least
once as a child node in this array. Figure 2 shows an example

Figure 2: Routing tree info in a control packet

topology and its routing tree. Such centralized routing gives
the root node complete control over bandwidth usage and
potential QoS guarantees.

The number of control slots in each frame is constant, but
they are repeatedly numbered from 0 (shown as R in Fig. 1)
to n − 1 where n is the number of nodes in the network.
This cyclic numbering can span over many frames: in Fig. 1,
given three control slots in each frame, and five nodes in the
topology, the first three nodes are allocated control slots in
the first frame and the remaining two are allocated control
slots in the consecutive frame. After the second slot in the
second frame, the schedule transmission opportunity rotates
again to the root node.

Control packets are constructed in the driver by the root
node. It consists of a control header, a (possibly zero) num-
ber of scheduling elements which constitute the data sched-
ule, and (possibly null) routing tree information. The con-
trol header has synchronization information, the number of
data scheduling elements, and the number of routing tree
elements contained in the packet. Each data scheduling ele-
ment contains the transmitter, receiver and flowid for a data
slot. All scheduling elements together describe the path of
all data flows in the network.

Contention slots: These have two important functions.
(a) New nodes join the network by first listening to the con-
trol slots, thus getting synchronized with the network, and
then sending a node-join request toward the root node using
contention slots. (b) Similarly, a node which wants to start
a new data flow conveys this request to the root using the
contention slots.

Data packets: These are attached a header that help in
routing the packets. In addition to the next hop and end-to-
end source and destination fields, it also has the flowid field,
to enable per-flow scheduling.

4. TDMAMAC IMPLEMENTATION
We have implemented many of the features of the above

TDMA MAC; we describe our implementation in this sec-
tion. We have used Mikrotik [10] single board computers
with Ubiquity SR2 cards with Atheros AR5212 chipset. The
boards run OpenWRT [11] Kamekazi 8.09 and we have mod-
ified the madwifi [12] driver extensively to match our require-
ments. We set the madwifi driver to run in monitor mode,
which allows us to receive all packets seen on air. It automat-
ically disables MAC level ACKs and RTS/CTS [5]. It also
allows sending RAW packets without attaching the 802.11
header. We now describe the implementation of a number
of other features required by our MAC protocol.

4.1 Generating RAW packets
We do not use the standard 802.11 [13] frame structure

while sending control or data packets. Data packets arrive to
the MAC layer from the network layer and are attached with
a custom data header. Control packets, on the other hand,
are generated in the madwifi driver itself. We have writ-
ten a function similar to ieee80211_send_qosnulldata()

that uses ieee80211_getmgtframe to allocate skb, fills in
the schedule data-structures and then sends the packet on
air by calling the ath_startraw() function. Both the con-
trol header and the data header contain 0xFF as the first
byte so that all receivers can distinguish valid IEEE802.11
packets from ours.

4.2 NAV and Sequence Number Fields
The 802.11 frame structure contains a NAV field that

causes other nodes to backoff while the current transmis-
sion is under way. We do not need this field since we have
assigned slots for each node’s packet transmissions. How-
ever, the value of the NAV field is used by the receiving
devices to perform virtual carrier sensing and backoff their
own transmissions in hardware. Since our headers replace
the standard 802.11 header, the value present in this field
must be zeroed to prevent other devices from unnecessary
backoff. Also, the hardware stamps a sequence number at
byte 22 and 23; the driver does not have control over what
value will be written in this field. Since our custom header
exceeds 23 bytes, stamping of the sequence number corrupts
the header. As a work-around, we set the RETRY flag to
suppress the stamping of the sequence number field by the
hardware, as suggested in [5].

4.3 Synchronization
Each control packet has a hardware timestamp, for hop-

by-hop synchronization of all nodes. This timestamping,
if done in software, is inaccurate, because we can not be
sure when the packet will leave the hardware. In regular
802.11, a similar requirement is present for beacon frames:
they are timestamped with a 64bit microsecond granular-
ity value by the hardware at bytes 24 to 31. The Atheros
hardware can be made to timestamp any packet by setting
the type flag to HAL_PKT_TYPE_BEACON in the call to the
ath_setup_txdesc() function. All control packets are sent
with this flag set and the hardware timestamp is used by
the receiving node to accurately synchronize with the global
time. In addition to the hardware timestamp (tx hw ts),
the schedule also contains the sender’s offset (tx offset) with
the global time and the global time when the current con-
trol slot ideally started (slot start). Using this information
along with the receive timestamp (rx ts) and the slot interval
(slot interval) each node calculates its offset from the global
time and the time of the next slot as per equation 1 and 2
respectively.

rx offset = rx ts − (tx hw ts − tx offset) (1)

next slot time = slot start+slot interval+rx offset (2)

4.4 TDMA queueing at MAC layer
All packets arriving at the madwifi driver enter through

the ath_hardstart() function. Depending on whether the
device is in the monitor mode or not, the ath_hardstart()

function sends the packet to the ath_tx_startraw() or ath_tx_start()
function respectively. Since we need precise control over
packet transmission times, we buffer all incoming packets
in a software queue instead of allowing them to flow through
the ath_hardstart() function. During the TDMA trans-
mission opportunity, packets are dequeued and handed over
to the ath_hardstart() function which attaches the data
header and sends the packet on air. The number of packets
sent during a transmission opportunity is equal to the lesser

of the number of packets that can be transmitted in the slot
interval and the number of packets present in the buffer.

On the receiver side, an arriving packet will have one of
the following three destinies. It may either be intended for
consumption by the receiving node, or may be required to
be forwarded to another node (this node is a relay) or may
have nothing to do with this node, in which case, it must be
dropped. Specifically, a packet is thought to be destined to a
node if its ID appears in the end_destination field or if both
the next_hop_dest and the end_destination fields have
broadcast address. In such a case, the packet is sent to the
network layer for its consumption. If the node’s ID appears
in the next_hop_dest field, but not in the end_destination

field, the packet must be forwarded to another node. Such
packets are enqueued in the TDMA buffer. All other packets
are dropped.

4.5 Timers
Timers are an integral part of our TDMA implementation

since they maintain the slotting structure at each node. The
Linux kernel provides software timers that allow a minimum
granularity of 1ms (we are not using a real-time kernel).
The Atheros chipset AR5212 uses a one-shot hardware timer
and another periodic hardware timer for sending out periodic
beacons [14]. The one-shot timer has a granularity of 128µs
and the periodic timer has a granularity of 1ms.

Our decision of whether to use the hardware or the soft-
ware timer depends on which timer provides us the best pre-
cision and accuracy at both low and high load conditions. In
order to characterize the timers, we subjected a node to low-
load conditions and then to high-load (load in terms of the
number of RX interrupts). Fig. 3 plots the CDF of the mea-
sured timer accuracy. The x-axis shows difference between
when the timer should ideally trigger and when it actually
triggered; i.e., the accuracy of the timer. The closer this
value is to zero, the better. We see that the hardware timer
is very precise with RX interrupts disabled, but performs
poorly when RX interrupts are enabled.

The software timer on the other hand performs well in
both high load and low load cases. The variation of the
software timer is under 5µs. Also, the accuracy of these
timers is better than the hardware timer. Hence we chose
the 1ms software timer for our implementation, and not the
hardware timer.

In our implementation, we do not require a node to cause
an interrupt at each slot. The interrupt is necessary only
when it is the node’s transmission slot. This optimization
radically reduces the load on the timer system and improves
the robustness of our implementation.

4.6 Clock Drift
Another important aspect in time synchronization is clock

drift. We have observed clock drift to vary between different
pairs of hardware from a few microseconds to about 25µs
per second as shown in Table 1. The clock drift must be
accommodated in the guard band in addition to the timer
inaccuracies.

5. EXPERIMENTATION
Through various experiments, we seek to answer the fol-

lowing questions. (1) What is the impact of changing the
number of hops on UDP and TCP throughput? (2) What
is the impact of changing the slot size on UDP and TCP
throughput? (3) What is the impact of the number of hops
and the slot size on the delay/jitter of packets?

 0

 20

 40

 60

 80

 100

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000

P
e

rc
e

n
ti
le

Microsecond

SW-Timer
HW-Timer-No-Load
HW-Timer-High-Load

Figure 3: Performance of software and hardware
timer.

Table 1: Clock drift for different pairs of cards in
µs/s. Negative values indicate that the difference
between the offsets keeps decreasing.

Card Pair 1-5 1-6 1-3 6-3 5-3
Average -2.78 9.72 4.07 -1.41 13.24
Std Dev 0.42 0.47 1.03 0.5 1.51

All the experiments done here are in an interference free
802.11a frequency (channel 160). These experiments were
conducted in an indoor setting. We believe that the results
would extend to interference free outdoor links too, although
only actual experiments can confirm this. For long distance
links, the large propagation delay (e.g. ∼83µs in a 25km
link) also has to be accounted for in the guard time; but we
have not included this overhead in our current experimenta-
tion.

5.1 Experimental Setup
In order to answer the above questions, we conducted a

number of experiments on a linear topology consisting of up
to five wireless nodes as shown in Fig. 4. Admittedly, this is
a simplified setup as compared to a full fledged mesh. But
this setup helps us understand various performance aspects
and gain confidence in the TDMA implementation.

Figure 4: Linear topology used in our experiments.

One node is designated as the root node and generates con-
trol packets. The routing tree contains information about
the linear topology. Each node is numbered starting at 0
from the root node downwards in the topology. Each node
sends packets when (slot number) modulo (number of nodes)
matches its own node id. The contention slots are unused.
All data packets are destined either to the root node or the
leaf node, and static routing entries facilitate routing of data.
The number of control, contention, and data slots, and the
slot interval are all configurable in the user space through a
/proc entry. We have used a 100-slot frame: 3 control, 5 con-
tention and 92 data slots in this setup and the slot interval is
varied as described in individual experiments. There is a PC

at either end of the 4-hop wireless topology, and UDP/TCP
throughput are calculated by using the iperf tool between
the two PCs.

5.2 Expected Throughput
All nodes are set to transmit at 54Mbps and can transmit

only in their own transmission slots. With the configuration
described in Sec. 5.1, with five nodes transmitting, we use
87 of the 92 available data slots1 in a round-robin fashion, so
that each node gets 87/5 = 17.4 slots per frame. The number
of packets sent in each slot depends on the slot size and the
size of the packet. Table 2 shows the transmit time for the
various parts of a packet at 54Mbps. Equation 3 calculates
the theoretical throughput for the 4-hop case with the slot
size of 2ms and a 100µs guard band giving 87 slots per second
to each node. Similar calculations can be performed to derive
the theoretical maximum throughput for any number of hops
and for any slot size.

Table 2: Time taken to transmit various portions of
the packet at 54Mbps

Description Bytes Time (µs)
UDP Payload 1470 217.77
UDP Header 8 1.185
IP Header 20 2.962
Ethernet Header 14 2.074
CRC Trailer 4 0.592
Fractel Data Header 32 4.740
PLCP Header - 20.444
Total - 249.767

Slot tx time = 1900µs (2000 − 100µs guard time)

Packets/slot = ⌊1900/249.767⌋ = ⌊7.607⌋ = 7

Packets/sec = (#ofslots/sec) ∗ (packets/slot)

= 87 ∗ 7 = 609

Throughput = 609 ∗ 1470 ∗ 8/106 = 7.16 Mbps

(3)

5.3 Number of Hops and Throughput
We conducted experiments for TCP and UDP through-

put on linear topology with varying number of hops from 1
to 4 and slot size 2ms. The results are shown in Figure 5.
The variability across different measurements was small, and
hence we do not report it in the plot. We can see that UDP
throughput decreases with increasing number of hops, since
the number of slots per node per frame decreases with in-
creasing number of nodes. TCP throughput decreases much
faster than UDP throughput because an increase in number
of hops means an increase in end-to-end error probability
and also an increase in the round trip delay. Moreover, since
we have disabled per link retransmissions, TCP throughput
suffers drastically. When we use multiple TCP connections,
depicted in the graph as TCP-2 and TCP-4, for two and four
TCP connections respectively, the total available bandwidth
is shared between them. Thus the cumulative throughput
approaches that shown by UDP.

5.4 Slot size and Throughput

1The last x data slots in a frame are not used so that the
control slot timer for the next frame is triggered precisely. x
is equal to the number of nodes in the network.

 0

 5

 10

 15

 20

1 Hop 2 Hops 3 Hops 4 Hops

M
b

p
s

Theoretical
UDP
TCP

TCP-2
TCP-4

Figure 5: UDP throughput decreases with increas-
ing number of hops. TCP throughput decreases
much faster due to no link-link retransmissions.

The slot size variations should ideally have no impact on
the UDP throughput. However, since we do not fragment
packets at the MAC layer, an increase in slot size causes
lesser overhead. Also, we implement a small guard band
of 100µs for every slot. Thus UDP performs better with
increasing slot size as seen in Figure 6. However, TCP
throughput is adversely affected by a large slot size since
it experiences a higher delay in receiving ACKs; and this ef-
fect is magnified due to the absence of link-level retransmis-
sions. Since TCP never fully uses the available bandwidth
even in smaller slot sizes, the reduced overheads in larger
slot sizes do not benefit TCP throughput much. Since a
single TCP connection does not fully utilize the available
bandwidth, we experimented with multiple connections. We
found an increase in the cumulative throughput, as shown
by 4-TCPs-4-Hops readings in Figure 6.

 0

 5

 10

 15

 20

1 ms 2 ms 3 ms 4 ms 5 ms 10 ms

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Slot Size

UDP-1-Hop
Theo-4-Hops
UDP-4-Hops
TCP-1-Hop
TCP-4-Hops
4-TCPs-4-Hops

Figure 6: UDP throughput increases with increasing
the slot size and decreases with increasing number
of hops.

5.5 Delay Characteristics
In our experimental setup described in the Sec. 5.1, a

packet sent by the root node, will be transmitted over con-
secutive data slots to reach the leaf node. Since the data
slots are numbered from 0 to 4 and then the numbering is
restarted from 0, a packet sent from the leaf node to the
root node, will be transmitted by the intermediate nodes
only when their transmission turn occurs. The round trip of

a ping packet is depicted in the Figure 7 and formalized in
Equation 4, where x is the number of hops. We note that
the equation shown here is a function of the way we have
numbered the slots (i.e. the scheduling).

Best case RTT = x + ((x − 1) ∗ (x − 2)) (4)

Figure 7: The best case round trip of a ping packet.

The best case round trip time for the 4-hop network is
85ms as calculated from Equation 4; we also observed the
same value in our experiments.

In addition to the delay, the packet delay variation (jitter)
is also an important metric for good quality of service for
audio and video communication. A jitter below 100ms is
generally believed to be good enough for such applications.
In our experimental setup, we observed the jitter to be very
low: about 2.5ms over the 4-hop path, with a slot size of 2ms
(the jitter was more or less independent of the slot size).

5.6 Implications of Results
We have observed UDP throughput to be very close to the

theoretically predicted value. Even though TCP throughput
is quite low for multiple hops, multiple TCP connections to-
gether can provide good performance as evident from Fig-
ure 6. What these mean is that the implementation of the
TDMA MAC does not have any system bottlenecks, even
when the radio is operating at 54Mbps. The low delay and
jitter are encouraging for real-time applications. During the
testing of our prototype, we also played videos from one PC
to another in the topology shown in Figure 4 and also made
voice calls using Ekiga between the two machines. We em-
pirically observed that both these applications showed good
performance.

6. DISCUSSION AND CONCLUSION
We have shown that a multihop TDMA protocol can be

built on top of commodity hardware by modifying the mad-
wifi driver. We have also designed a complete multihop
TDMA system to support multiple flows, allow new nodes
to join and leave dynamically. We have experimented with
a linear topology with statically allocated transmission op-
portunities. Nevertheless, the implementation is very close
to what we expect from the full-fledged protocol since we
have built place-holders for almost all aspects of the MAC
design – we have control slots, contention slots, data slots
and perform multihop synchronization and data transfer be-
tween nodes. In a real deployment with long distance links,
channel switching and spatial reuse is possible. In our indoor
setting, spatial reuse was not possible but avenues exist for
channel switching. We have deferred this to future work.

Our experiments have revealed that there is no system
bottleneck in the implementation: the throughput matches
what we expect after accounting for the various overheads,
and the delay/jitter values are very low. The TDMA MAC
implementation thus holds promise for a rich set of appli-
cations on outdoor mesh networks. The high throughput

and low delay/jitter means that we could also enable a long-
distance WiFi mesh network to be used a back-haul, for
providing cellular connectivity with a base-station in a rural
region.

7. REFERENCES
[1] Bhaskaran Raman and Kameswari Chebrolu. Design

and evaluation of a new mac protocol for long-distance
802.11 mesh networks. In MobiCom ’05: Proceedings
of the 11th annual international conference on Mobile
computing and networking, pages 156–169, New York,
NY, USA, 2005. ACM.

[2] Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol
Sheth, Lakshminarayanan Subramanian, and Eric
Brewer. Wildnet: Design and implementation of high
performance wifi based long distance networks. In
NSDI, 2007. ACM, SIGCOMM, 2007.

[3] Bhaskaran Raman, Kameswari Chebrolu, Dattatraya
Gokhale, and Sayandeep Sen. On the Feasibility of the
Link Abstraction in Wireless Mesh Networks. IEEE
Transactions on Networking, 17(2):528–541, Apr 2009.

[4] Kameswari Chebrolu and Bhaskaran Raman.
FRACTEL: A Fresh Perspective on (Rural) Mesh
Networks. In NSDR, Sep 2007. A Workshop in
SIGCOMM 2007.

[5] Michael Neufeld, Jeff Fifield, Christian Doerr, Anmol
Sheth, and Dirk Grunwald. Softmac - flexible wireless
research platform. In Fourth Workshop on Hot Topics
in Networks (HotNets-IV), November 2005.

[6] Ashish Sharma, Mohit Tiwari, and Haitao Zheng.
MadMAC: Building a Reconfiguration Radio Testbed
using Commodity 802.11 Hardware. In 1st IEEE
Workshop on Networking Technologies for Software
Defined Radio Networks, SDR’06, pages 78–83, Sep
2006.

[7] Ashish Sharma and Elizabeth M. Belding. Freemac:
framework for multi-channel mac development on
802.11 hardware. In PRESTO ’08: Proceedings of the
ACM workshop on Programmable routers for
extensible services of tomorrow, pages 69–74, New
York, NY, USA, 2008. ACM.

[8] Ananth Rao and Ion Stoica. An overlay mac layer for
802.11 networks. In MobiSys ’05: Proceedings of the
3rd international conference on Mobile systems,
applications, and services, pages 135–148, New York,
NY, USA, 2005. ACM.

[9] Dimitrios Koutsonikolas, Theodoros Salonidis, Henrik
Lundgren, Pascal LeGuyadec, Y. Charlie Hu, and
Irfan Sheriff. TDM MAC Protocol Design and
Implementation for Wireless Mesh Networks. In
CoNEXT, Dec 2008.

[10] Mikrotik Website. http://www.mikrotik.com.

[11] OpenWRT Website. http://openwrt.org/.

[12] The MadWifi project Website.
http://madwifi-project.org/.

[13] IEEE P802.11, The Working Group for Wireless
LANs. http://grouper.ieee.org/groups/802/11/.

[14] HAL source code released.
http://madwifi-project.org/wiki/news/20080929/

hal-source-code-released.

