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Abstract

First responders, a critical lifeline of any society, often find
themselves in precarious situations. The ability to track them
real-time in unknown indoor environments, would signifi-
cantly contributes to the success of their mission as well
as their safety. In this work, we present the design, imple-
mentation and evaluation of TracklO—a system capable of
accurately localizing and tracking mobile responders real-
time in large indoor environments. TrackIO leverages the
mobile virtual infrastructure offered by unmanned aerial vehi-
cles (UAVs), coupled with the balanced penetration-accuracy
tradeoff offered by ultra-wideband (UWB), to accomplish
this objective directly from outside, without relying on ac-
cess to any indoor infrastructure. Towards a practical system,
TrackIO incorporates four novel mechanisms in its design that
address key challenges to enable tracking responders (i) who
are mobile with potentially non-uniform velocities (e.g. dur-
ing turns), (ii) deep indoors with challenged reachability, (iii)
in real-time even for a large network, and (iv) with high accu-
racy even when impacted by UAV’s position error. TracklO’s
real-world performance reveals that it can track static nodes
with a median accuracy of about 1-1.5 m and mobile (even
running) nodes with a median accuracy of 2-2.5 m in large
buildings in real-time.

1 Introduction

Tracking first responders: First responders are integral to
the safety and security of any community and to the society
at large. However, they often find themselves in precarious
and unknown environments, which poses a threat to their own
safety (e.g. “entrapment"” [16] faced by fire-fighters). Being
able to accurately track first responders in indoor environ-
ments, allows a commander outside to better visualize and
direct his responders appropriately. This not only helps ad-
dress the situation efficiently but also ensures safety of the
responders themselves—the latter can now view and track
their own location with respect to the rest of the team.

Applicability of current solutions: The topic of indoor lo-
calization has seen many solutions in the past decade [4,9,53].
These can be broadly categorized under those that rely
on indoor infrastructure (e.g. multitude of access points,
RF/acoustic/infrared beacons, etc.) and those that do not (e.g.
leveraging cellular BSs, GPS satellites, IMUs, etc.). While
the latter can be applied to our target environment, they either
offer less-than-desirable accuracies (e.g. tens of meters with
cellular BSs), or are not functional indoors (e.g. GPS). Inertial
sensors carried by responders are a possibility, but suffer from

*The work was performed during an internship at NEC Labs America.

poor accuracy as well (= 10 — 50 m, due to drift over time),
without periodic calibration and resetting to known indoor ref-
erence points. Further, the lack of access to multiple stationary
APs/BSs, prevents these solutions from accurately tracking
mobile responders in real-time. Hence, notwithstanding the
plethora of prior solutions, our target environment requires
a new, robust, (indoor) infrastructure-free solution that can
accurately (=1-2 m) track mobile responders in unknown,
indoor environments from outside.

Figure 1: Left: The TracklIO setup with a DJI Phantom 4 UAV
carrying a master UWB node and the Raspberry Pi controller units,
Right: 4 UWB equipped helmets for first responders.

Key design choices: This motivates us to design a
localization-tracking system from scratch, paving the way
for two key design choices: (i) modality of localization, and
(ii) wireless technology for localization. The lack of indoor
infrastructure support, and the need to quickly deploy and
localize responders in 3D, across multiple floors of a build-
ing (from outside), makes UAV (unmanned aerial vehicle)
an ideal platform for the task. The UAV can serve as a vir-
tual mobile infrastructure that is deployed on-demand, out-
side the building to localize the responders inside. For the
choice of wireless technology, we summarize their pros-cons
in Table 1. We refer to only techniques that allow long dis-
tance localization that would be applicable in our application.
While lower frequencies (e.g. LTE) offer better indoor pen-
etration/coverage (e.g. 1 Km) from outside, they are limited
by available bandwidths (tens of MHz) and hence accuracy
(tens of meters [35]). Higher frequencies (e.g. mmWave, > 20
GHz) offer high accuracies (tens of cm) from large (GHz)
bandwidths, but suffer from high attenuation (does not work
with blockages, not accounted for in Table 1). Ultra-wideband
(UWB) operates in 3 — 10 GHz and offers a 1 GHz bandwidth,
thereby striking a good balance between accuracy (tens of
cm) and indoor penetration (tens of meters). Further, its low
power design accompanied by a standardized high-resolution,
ranging protocol between peer UWB nodes, makes it a syner-
gistic choice for deployment on the UAV. Thus, our objective
is to localize and track responders (carrying UWB nodes) in



LTE [35] | WiFi[25] | UWB [43] | mmW [36]
Accu > 20m Sm 10cm lem
Range | > lkm 100m 50m 40m

Table 1: UWB offers the best tradeoff between accuracy and pene-
trability among all RF localization technologies.

real-time even if they are deep indoors, with the help of a UAV
(also carrying a UWB node) flying outside.

Challenges: One might wonder if deploying multiple UAVs
to effectively serve as stationary BSs/APs outside can help
solve the indoor tracking problem. We argue in Section 2.1
that having multiple UAVs outside does not guarantee access
to multiple (three or more) of them by a given indoor respon-
der, not to mention the need for their synchronization. More
importantly, we show that when available, multiple UAVs
need to be efficiently deployed to cover (localize) responders
in different sections of the building simultaneously, rather
than to serve as stationary APs/BSs. Thus, at the core of
our problem, we must localize and track indoor responders
in real-time by a single UAV using its key degree of free-
dom, namely mobility. This in turn poses several non-trivial
challenges. (i) Mobility of responders: The mobility of the
UAV is used to create a synthetic aperture over time, which
serves to provide reference points for localizing an indoor
node' through multi-lateration. However, such temporal de-
pendency, makes multi-lateration approaches fail significantly
(accuracy of about 10m, Section 3), when the indoor node is
also mobile. (ii) Indoor coverage: While UWB’s penetration
capabilities are better than mmWave, they are still limited
to tens of meters and hence cannot guarantee reachability
to all nodes. While deploying multiple UAVs, outside dif-
ferent sections of the building can alleviate coverage issues,
it still cannot ensure reachability to those that are deep in-
side the building. (iii) Real-time tracking: The UWB proto-
col provides the basic two-way ranging primitive between
a UWB node-pair (UAV and responder in our case). How-
ever, employing its TDMA operational structure to collect
sufficient ranging measurements to all UWB nodes from the
UAV will not be scalable for real-time tracking in a large
network. (iv) Absolute location fix: Since the UAV localizes
the responders with respect to its own position, to get their ab-
solute location fix, we need to accurately estimate the UAV’s
position as well. Whereas high-end UAVs employ multiple
GPS receivers along with inertial sensor fusion to provide
position accuracy to under a meter, lower-end UAVs provide
accuracies of only around 2-3 m, thereby limiting the accuracy
of the overall system.

TrackIO: Towards addressing these challenges, we build
TrackIO — a UAV-UWB based system that is capable of local-
izing and tracking mobile responders to within 1-2 m accuracy
from a single UAV outside in real-time, even in deep indoor
environments. When multiple UAVs are available, TracklO

Responders are synonymously referred to as nodes.

deploys them on different sections of the building for wider, si-
multaneous coverage. In realizing this, TracklO incorporates
four novel elements in its design.

(i) Trajectory Tracking: TracklO adopts a first-principles ap-
proach to directly estimate the trajectory of the mobile node,
rather than just its location. TrackIO analytically instruments
multi-lateration formulation to not only estimate the location
but also the velocity of the responder. It incorporates intelli-
gent mechanisms for adaptively varying the size and choice
of the synthetic aperture (anchor points used for localization)
to address responders with non-uniform velocity (e.g. those
turning corners, etc.).

(ii) Multi-hop Localization Paradigm: TracklO enables a
multi-hop localization paradigm for extended indoor coverage,
where, responders directly reachable from the UAV (hop),
are localized first. Then, they serve as anchors for localizing
nodes (hop,) that are reachable by them but not by the UAV.
Nodes are able to dynamically estimate their own hop status
based on their reachability to the UAV and overheard rang-
ing messages from neighboring nodes. TrackIO alleviates the
deterioration in accuracy over hops (due to iterative localiza-
tion), by selecting only upstream nodes with accurate location
estimates as anchors for downstream localization.

(iii) Concurrent Ranging Protocol: To enable real-time
tracking even for a large, multi-hop network of nodes (e.g.
big buildings), TrackIO transforms UWB’s sequential rang-
ing protocol into an efficient, concurrent one. It leverages
the broadcast nature of the wireless medium to (a) par-
allelize the ranging measurements within each hop, and
(b) efficiently multiplexes ranging measurements between
hops,while also eliminating redundant message transmissions.
TrackIO achieves a 3x speed-up, resulting in a location up-
date frequency of 6 Hz that allows for real-time tracking.
(iv) Reverse Location Look-up: Instead of the UAV serving as
the anchor, TrackIO now estimates the location of the UAV
itself, by leveraging UWB again. It accomplishes this by using
four static UWB beacons, deployed on the roof corners of
a responder service vehicle, as anchors. One of these UWB
beacons is also fitted with a GPS receiver, whose stationary
estimates over time are highly accurate. This coupled with
known inter-beacon distances, allows for accurate localization
of the UAV to within a meter despite mobility.

TrackIO’s performance: We have built a complete version
of TracklIO using a DJI Phantom 4 [13] as the UAV, and
Decawave DW1000 [11] as the UWB node. The ranging
estimates collected at the UAV are transferred to a ground
service vehicle, where TracklO’s algorithms estimate the po-
sition and trajectory of all the responders in real-time. Our
real-world deployment and evaluation across multiple floors
of a mid-size office building (2500 sq.m.) reveal that TracklO
is able to track indoor static nodes with a median accuracy
of about 1-1.5m and mobile (even running) nodes with a
median accuracy of 2-2.5m. A demo of TracklO is available
athttp://www.nec-labs.com/trackio.


http://www.nec-labs.com/trackio

Broader applicability: While TrackIO leverages UAV and
UWSB as its modality for enabling real-time tracking of first
responders, we would like to note that TrackIO’s core mecha-
nisms of trajectory tracking and multi-hop localization can be
equally applicable to other localization modalities (e.g. WiFi)
as well. Hence, TrackIO’s contributions can also benefit other
potential indoor localization and tracking applications.

2 Challenges in Building a Practical System

The UAV flies outside to create a synthetic aperture of an-
chor points, from where it ranges with each of the indoor
nodes using UWB, thereby allowing for their subsequent lo-
calization through multi-lateration. Albeit straight-forward in
principle, realizing this in practice faces several challenges,
some fundamental, and others practical that we now outline.
Brief Primer on UWB Ranging: UWB nodes employ a
protocol known as two way ranging (TWR) to estimate the
distance between each other. This standard protocol [20], in-
volves exchanging a specific set of messages (Figure 2) that
cancels the effect of clock offsets between nodes. Performed
in hardware with precise clocks and coupled with a 1GHz
wireless bandwidth, TWR allows accurate time-of-flight esti-
mates (even in presence of multi-path), resulting in accurate
ranging (=10 cm). One TWR exchange takes around 16.7 ms
on a widely used UWB chip (DW1000 [10]).
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Figure 2: The original 802.15.4 TWR protocol is designed for
ranging between two devices.

2.1 Impact of Responder Mobility

Fig. 3(a) shows a typical synthetic aperture where three repre-
sentative < location,range > tuples are chosen to solve for
a stationary node’s location using trilateration. The solution
is reasonably accurate as all the three < location,range >
tuples are consistent with respect to a unique location of the
stationary node. Contrast this with figure 3(b), where the
node moves with an uniform velocity. In this case, the three
< location,range > tuples are no longer consistent with re-
spect to any particular node location. Different portions of the
synthetic aperture now correspond to different node locations.
In other words, the node has changed its position significantly
by the time the UAV started and completed building the aper-
ture. This can affect localization accuracy by as much as 10 m,
as shown in Fig. 9.

Can we alleviate the impact of mobility? A natural ap-
proach is to figure out if multiple < location,range > tu-
ples can be gathered from distinct UAV locations “simultane-
ously".
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Figure 3: (a) Localization of a static node through trilateration (b)
Naive trilateration fails for mobile nodes

Synthetic Aperture
Synthetic Aperture

Using multiple UAVs: Multiple UAVs form a spatial aperture
that can simultaneously collect range estimates in principle.
This is however, difficult to realize in practice for the follow-
ing reasons: (a) It is unlikely that a particular indoor node
is simultaneously reachable from multiple UAV locations,
(b) Synchronizing the different UAVs as well as their cor-
responding range estimates in real-time becomes extremely
challenging, and (c) Operating multiple UAVs in close vicin-
ity requires sophisticated path planning to be done apriori.
Multiple UAVs have a role to play in the broader system (for
improving building coverage, as we discuss later). However,
they are less useful to solve the problem of node mobility,
which motivates us to address the problem with a single UAV.
Increasing the UAV'’s speed relative to responders: Another
approach to counter node mobility can be to increase the
UAV’s velocity. Figure 4 shows the limited benefit of moving
the UAV faster. Even when the UAV is traveling at 10m/s it
cannot completely compensate for the node’s mobility. More-
over, moving the UAV too fast causes the channel to change
very rapidly, resulting in ranging errors.
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Figure 4: Localization accuracy improves with UAV speed, yet falls
short of the target accuracy.

2.2 Insufficient Building Coverage

The FCC power emission limit for UWB transmitters is —
41.3 dBm/MHz [20] that severely restricts the communication
range between two UWB nodes. With the UAV located out-
side the building and limited indoor penetrability, some nodes
that are relatively deep indoors are not directly reachable. We
perform elaborate measurement studies to characterize the
communication range in such indoor environments. Figure 5
shows the packet-loss percentage as the distance between the
nodes increases in a cluttered indoor space. Such ranges could
vary from about 30 m (50% loss) in very dense/cluttered in-
door environments (e.g., rooms with concrete walls) to about



60 m in relatively open indoor spaces (e.g., office, library,
shopping malls etc.).
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Figure 5: UWB packet-loss may not be able to cover nodes

over various distances in a clut- deep indoors. A multi-hop solu-
tered office environment. tion is necessary.

Multiple UAVs can improve but not solve the coverage
problem. With the UAV flying approximately 10m away
from the face of the building, nodes that are about 30 m inside
are directly reachable. This limits the indoor coverage area
to a great extent. Note that even flying multiple UAVs along
the four faces of a medium-sized building (floor area ~10000
sq.m) only improves coverage in the building’s periphery but
not in the deep interiors that account for about 20% of the
indoor space (see figure 6). Given the criticality of the appli-
cation, complete indoor coverage is of paramount importance.
This necessitates the design of a multi-hop localization net-
work, where range estimates and hence localization can be
achieved from nodes of a given hop to nodes belonging to the
next hop and so on.

Challenges with multi-hop localization. Realizing multi-
hop localization is challenging for several reasons: (i) iterative
localization leads to cascading errors and hence poor accu-
racy across hops; (ii) nodes need to identify their reachability
status (e.g hopy, hopy, etc.) to other nodes to help track a
dynamic, multi-hop topology; (iii) orchestration of ranging
measurements across hops becomes critical for ensuring real-
time tracking of the multi-hop network.

2.3 Inability to Track Real-time

In a large network of nodes spanning multiple hops, a time di-
vision (TDMA) scheme needs to be designed that runs TWR
across relevant pairs of nodes to estimate their range fast
enough to relatively localize all nodes in the network. Clearly,
executing a TWR across all pairs of nodes is not suitable:
unreachable links will waste time, and in a size N network,
one round of (range) data collection will require O(N?) time
slots. Hence, for a network consisting of several tens of nodes,
collecting a single set of range information might take several
hundreds of milliseconds. With several such sets needed to po-
sition the indoor nodes, the total delay can be several seconds.
Further, with the mobility of nodes resulting in highly dy-
namic topologies, it becomes very challenging to track nodes
in real-time with such an update rate of measurements.

2.4 Imprecise UAV Localization
Note that the UAV’s location measurements need to be as pre-

cise as possible in order to leverage the highly precise range
estimations offered by the UWB technology. Unfortunately,

UAV location estimates obtained out-of-the-box is at least an
order of magnitude less precise compared to UWB ranges.
For instance, consider the location estimates obtained from a
GPS device. In an open field, such locations have minimal er-
rors (= 2-3m). However, in scenarios, where the UAV moves
along the periphery of a building, the GPS signal reception
can be significantly hampered resulting in the error to escalate
to as high as 15-20m [50].

ESO
5 40
W30
=9.8

s 20 0=35 7
N 1 |
© 10 o=1.1
[s]
o
-0

Open Space Occlusions Urban Canopy

Figure 7: Effect of UAV’s GPS errors on localization accuracy

In figure 7 we show the impact on localization accuracy
of a static node using simple trilateration in three different
deployment settings; from a relatively open space to locations
having partial occlusions and urban canopies. Note that even
for a static outdoor node, slightly erroneous GPS locations
of the UAV can be detrimental for its eventual localization.
Assuming GPS corrections and inertial sensor fusion applied
by the UAV, the errors could be at best, 1 —2 m even when the
node is outside and static; localizing a mobile node indoors
would only lead to significantly degraded accuracies.

3 System Design

We now present TracklO — a UAV-UWB based system that
is capable of localizing and fracking mobile responders to
within 1-2 m accuracy from a single UAV outside in real-time,
even in deep indoor environments. TracklO accomplishes this
without the necessity or dependence of any infrastructure
deployed indoors. TrackIO can almost instantly be functional
from the time of launch (under a minute). This is achieved by
employing a host of algorithmic and architectural changes to
the underlying multilateration and ranging protocols.
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Figure 8: High level system design

3.0.1 Overview

Fig. 8 shows a snapshot of TrackIO in action along with its
various architectural components. The UAV flying outside the
building’s periphery is equipped with a UWB master node
that collects range information from the client nodes inside
the building. The nodes are possibly worn by personnels (e.g.,



firefighters, military troops, emergency responders etc.) who
are tracked through our system. Client nodes that are directly
reachable from the UAV’s master node are designated as hop;
nodes, additional nodes are referred to as hop, nodes, hops
nodes and so on based on subsequent reachability. In Fig. 8,
the UAV directly ranges the nodes in hopq, who in turn range
the nodes in hop, and relay information back to the UAV. The
UAV offloads range information to a ground control station
that solves for the locations of all client nodes. Additionally,
we develop a mobile application that can be used to visualize
the tracking information on a map with sub-second latency.

When multiple UAVs are available, they are deployed on
different sections of the building and/or at different altitudes
of the same section (for tall buildings) for wider, simultane-
ous coverage. Since each UAV would execute TrackIO in
parallel, we focus on a single UAV’s operation in the rest of
this section. Also, for easier exposition, we focus on the UAV
localizing responders in a single floor (horizontal plane) by
fixing its altitude appropriately. How the UAV scans floors
and identifies the appropriate altitude (z*) is covered in Sec-
tion 3.5. Some results presented in this section are obtained
from simulation studies, which are intended for highlight-
ing the intricate aspects of our system design. Nonetheless,
sections 4 and 5 present extensive evaluation results from
experiments carried out in real testbeds.

3.1 Tracking Trajectory of Mobile Nodes
3.1.1 Estimating Velocity through Synthetic Apertrure

Recall that when a node is mobile, the < location, range >
tuples measured by the UAV do not uniquely map to a sin-
gle location, resulting in poor localization accuracy of multi-
lateration solvers. Instead of alleviating the impact of mobility,
TrackIO adopts a first-principles approach to directly estimate
the trajectory (speed and heading) of the mobile node, rather
than just its position. To accomplish this, TrackIO analyti-
cally instruments the multilateration formulation to estimate
both the initial location (x,y) as well as the velocity vector
(Vi + Vy 7), where i and j are unit vectors along positive X
and Y axes respectively of the node. Using these, the node’s
traversed path can be traced. This assumes that human mo-
bility can be approximated with uniform velocity, which is
reasonable within the short time-scales (few seconds) of the
UAV’s synthetic aperture. This assumption is relaxed in Sec-
tion 3.1.2, where we show how non-uniform mobility (e.g.
turning corners, etc.) can also be addressed in this framework.

Suppose we have ranging measurements from n consec-
utive UAV locations — n is called the aperture size and is
essentially a moving window of n historical measurements.
For any time instant 7; (i = [1..n]), the UAV records the map-
ping < location;, range; >, where location; is the UAV’s 3D
location and range; is the distance estimate of the mobile
node from the UAV. The mobile node is located at an un-
known location (x;, y;, z;). We denote the UAV’s 3D-location

as (Cx;, Cy;, Cz;). The measured range is given by:

range; = \/(Cxi—xi)2+(Cyi—yi)2+(CZt—Zt)2 M

Assuming we know which building floor the responder is
currently occupying, we do not need to solve for z; (= z*).
Yet, this is a single equation with two unknowns—we can-
not directly solve for (x;, y;). Even if we obtain multiple
such ranges, each equation will add a new set of unknowns.
However, the new unknowns are not independent, but related
through the node’s velocity. Hence, assuming the node is
moving at a constant velocity, there are inherently only four
unknowns (x7, y7, V', V') that do not increase with addi-
tional ranges, thereby allowing us to solve for them.

We can reformulate this as an unconstrained minimization
problem that attempts to find the best fit, i.e. location and
velocity that minimize the following error function:

x5y, Ve, V) =ar min
(1 Y15 Vx )) g(xl,,\'l-Vx,Vy)f

F= Y (CximxiP + (Coi—y) + (Cai— ) — ranged? @)
i=1

The various (x;, y;) are obtained from the intial (x|, yi)
and velocity (V;,V,) based on kinematic equations:

1
Xi=Xi 1+ Vi AT =x; + Vi Y AT
j=1

1
Yi=Yio1+Vy- ATy =y1+V; ) AT; 3)
j=1

where AT; denotes the time between measurements. Since
(x;, yi) are generated based on the initial location (x;, y;)
and the velocity vectors (Vx, V,), by minimizing equation
2, we obtain the closest approximation of both, location and
velocity vectors for the node. The first output from this solver
is obtained only after n measurements (typically a few seconds
worth of data) have been recorded. Thereafter, a location
update is obtained for every round of range measurements.
Thus, the system’s steady state update rate depends only on
the duration of one range measurement round, and does not
depend on the aperture size.

We now analyze the improvement in localization achieved
by incorporating velocity vectors over simple multilatera-
tion. Our simulation framework mimics a UAV and a set of
indoor UWB nodes that follow predetermined trajectories
at any desired speed. We introduce an empirically derived
range estimation error to the ranges. Fig. 9 shows how sim-
ple multilateration results in higher localization errors with
increasing node velocities. The UAV is assumed to move at
a fixed 5 m/sec velocity. Note that even for human walking
speeds the error could be as high as 10 m. On the contrary, the
velocity-based solver is least impacted by increasing velocity
of the mobile node.

3.1.2 Adaptive Apertures for Non-uniform Velocity

The above approach assumes that the node does not change its
velocity (speed or direction) during the course of one aperture
window (say, 4 secs). However, this assumption is broken if
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the node turns, accelerates or halts. In principle, this could
be solved by adding higher order derivatives of the node’s lo-
cation (e.g., acceleration, jerk) into the kinematics equations
employed by our location solver. However, our analysis indi-
cates that such an approach is rather contrived. It makes the
solver prone to overfitting and extremely sensitive to range
errors. Further, given the short time scale of the aperture win-
dow, we find that the approximation of uniform velocity does
not hurt the performance much during acceleration and halt-
ing but does induce significant errors during furns, which we
now address. We propose to utilize the solver’s confidence
in the estimated location to infer non-uniform velocity and
when detected, trigger an aperture reset that eliminates mea-
surements prior to the turn.
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Figure 10: (a) Localization error is high during turns. Resetting the
aperture helps curtail the loss in localization accuracy. (b) The high
error-residual also indicates low solver confidence in the location
estimate providing a hint for turn detection.

Impact of turns. Fig. 10(a) shows the impact of sudden turns
on the localization error (green line). We simulated a node
moving in a straight line, then taking a 90° turn, and continu-
ing again in a straight line. An aperture of 4 seconds—UAV
locations and the corresponding ranges of the past 4 seconds—
are used to estimate the current node location. Observe how
the localization error (grey line) starts to increase from the
point where the aperture’s head crosses the turning position
(first dashed vertical line) and falls back to its pre-turn val-
ues after the aperture’s tail has crossed the turning position
(second dashed vertical line).

Adaptive aperture to address turns. If we have a mecha-

nism to detect turns, we could potentially eliminate historic
measurements till the turn and restart constructing the aper-
ture. To understand the benefit, we introduce the notion of
an adaptive aperture in the above simulation. At the time of
the turn, we remove all history and restart estimating location
after a short history has built up’. Just after resetting history,
the localization error is indeed high (dark blue line just after
the “turning instant” in Fig. 10(a)) but quickly recovers and
becomes acceptable once the aperture fills up with relevant
measurements after the turn. In comparison, if a fixed aperture
size is used, the effects of a turn last for the entire duration of
the aperture (green line).

Triggering an adaptive aperture. During turns, the solver is
unable to provide a reasonable answer since no single velocity
estimate can represent all the measurements. This results
in larger residual errors after solving Equation 2. Observe
in Fig. 10(b) that the solver’s residuals (in arbitrary units)
are highly correlated with localization error. Thus, a sudden
increase in the residuals helps identify non-uniform velocity
events such as turns. We use Gaussian Mixture Models on the
residuals to identify a changing trend in them and captures
such events.

In summary, localization of mobile nodes, even those with
non-uniform velocity is possible through a combination of
joint location-velocity solving and by adaptively resetting the
aperture size. At any given instant, our solver uses different
aperture sizes that are appropriate for each node.

3.2 Multi-hop Tracking for Coverage

TrackIO is designed to function even if some nodes are be-
yond the UAV’s direct range. TracklO allows such unreach-
able nodes to range with other nodes in the vicinity which
can in-turn reach the UAV and/or have already been local-
ized. Thus, a multi-hop topology is dynamically created with
nodes belonging to different hops based on their reachability
characteristics. The UAV’s synthetic aperture localizes first
hop (directly reachable) nodes. These hop; nodes then act
as anchors for localizing hop, nodes. This process iterates
across hops. TrackIO employs several mechanisms to ensure
that mobile nodes can be accurately localized even across
multiple hops.

Dynamic estimation of hop membership. Nodes that are
within the UAV’s UWB communication range, directly re-
ceive ranging messages initiated by the UAV, and classify
themselves as hop; nodes. Those that do not receive messages
from the UAV but receive some of the response messages sent
by hopj nodes, classify themselves as hop, nodes and so on.
Thus, nodes can determine their own hop membership in a
decentralized manner.

Anchor selection for iterative localization. Two compo-
nents contribute to the final localization error of hopy nodes:

During the short period that new history is being built, the system continues
to output results from the previous aperture.



1. relative localization error of hopy nodes with respect to
hopy-1 nodes, and 2. localization error of hopp_1 nodes cho-
sen as anchors. Without loss of generality, hop,,-; nodes can
be assumed to be spaced far apart compared to the synthetic
aperture formed by the UAV. This increased spacing between
anchors, improves hopy, localization, compared to that of hop;
nodes (w.r.t. the UAV). However, the localization error of the
hopy—1 nodes and recursively that of upstream hop nodes, will
cumulatively contribute to the error of hopy nodes. Thus, the
choice of anchors in hop;,_1, has a cascading impact on the
localization accuracy of downstream nodes (i.e. hops > m).

Nodes that are static or moving with a uniform velocity in
hop; inherently have better localization accuracy than those
with non-uniform velocity. Hence, by leveraging the solver’s
ability to identify such nodes (those with high residuals),
TrackIO avoids selecting them as anchors for localizing hopp,
nodes, curtailing the cascading effect across hops.

Instantaneous mobility tracking beyond hop;. In con-
trast to the first hop nodes which are localized through a fem-
poral aperture created by the UAV’s motion, hopp (m > 1)
nodes are localized through a spatial aperture formed from a
diverse placement of hop,_1 nodes. This decoupling (from
UAV’s mobility), allows for instantaneous localization of
hopp nodes from previously obtained hop,_1 locations. The
time scale of such localization is in milliseconds within which
the nodes move a negligible distance. As a result of the spatial
aperture employed, hopy (m > 1) nodes can use conventional
multilateration approaches (without need for velocity vectors)
even when they are mobile.

Localizing hop; nodes with non-uniform velocity using
downstream spatial apertures. Unlike hop; nodes, mobil-
ity is not a concern for hopy (m > 1) nodes as they are in-
stantaneously localized using a spatial aperture formed from
high-confidence (low residual) hop,,_1 nodes. Hence, hop,
nodes can in-turn, form a spatial aperture (serve as anchors)
and correct the location of hop; nodes, which are currently ex-
periencing non-uniform velocity (low confidence, high resid-
ual). Fig. 11 shows the localization accuracy of a turning
hop; node using ranges from hop, nodes. Observe how the
turn gets localized precisely using the spatial aperture from
hopy. Thus, TrackIO is able to eliminate most of the impact
of non-uniform velocity of hop; nodes.
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Figure 11: Re-fixing hop; nodes using hop, nodes improves local-
ization even during turns. But, it may not be always available.
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Note that this downstream spatial aperture technique is
opportunistic — it can be used when enough hop, nodes exist.

3

In contrast, the mechanism of adaptive (temporal) aperture
of the UAV described in Section 3.1, provides benefits even
when no other nodes exist in the topology. Therefore, TracklO
incorporates both these techniques to address non-uniform
velocity of hop; nodes.

Leveraging multiple UAVs vs. multiple hops. While multi-
hop localization allows for coverage of even large buildings
using a single UAV, the localization error of its downstream
hop nodes (i.e. m > 2) will increase and might not satisfy our
desired target of 1-2m. Hence, TrackIO leverages the multi-
hop paradigm to primarily reach deep interiors of buildings
(where even multiple UAVs cannot help), while employing
multiple UAVs to provide non-overlapping, peripheral cover-
age for large buildings. Thus, using a combination of multiple
UAVs and hops, TrackIO is able to cover large buildings with
just two hops from a single UAV.

Handling hop, disconnections. In rare circumstances, if a
node goes out of range from all hop-1 nodes, its localization
must rely on an IMU-based dead reckoning system. This ap-
proximate location estimate will then be communicated with
the UAV using alternative communication modes (such as
WiFi or cellular data). Adding support for such eventualities
is left to future work.

3.3 Concurrent Ranging

A fast and reliable ranging protocol is essential to create a
real-time localization system. Since the UWB ranging proto-
col is designed for ranging between a pair of nodes, it does
not broadcast messages. This leads to a sequential ranging
of every node in a hop, which is not scalable for real-time
operation, especially in a multi-hop network. The key idea in
TracklIO is to leverage the broadcast nature of wireless signals
to communicate and hence concurrently range with multiple
nodes using a single transmission. To this end, TrackIO makes
appropriate modifications to the underlying protocol (Fig. 2)
to create a concurrent ranging scheme (Fig. 12). We describe
the scheme for the first two hops; subsequent hops are similar.

UAV Hop 1 Nodes Hop 2 Nodes

UAV Node

! Hop 2 Nodes

Hop 1 Nodes

Overheard

<+«— Time

Figure 12: Progress of the protocol in a 2-hop example topology.
Concurrent ranging at hopy. The UAV simultaneously ini-



tiates ranging with all reachable hop; nodes by broadcasting
a single POLL. Each node that receives this message, takes
turns (based on its hard-coded NodelD) to send a RESP mes-
sage. After collecting the timings from all the RESPs, the
UAV broadcasts a single FINAL message containing infor-
mation for all hop; nodes. On receiving the FINAL, all hop;
nodes calculate their distance from the UAV and send it back
to the UAV (DIST_EST messages).

Concurrent ranging at hops. Identical to hop; nodes,
hop, nodes listen to the channel for messages. However,
being outside the direct communication range of the UAYV,
they cannot receive the POLL message. Instead, they only
overhear the messages sent by nearby hop; nodes in response
to the UAV’s POLL (point A in Fig. 12). After all hop; nodes
have completed sending their DIST_EST messages (point B
in Fig. 12), the first hop, node initiates a full sequence of
POLL-RESPs-FINAL simultaneously with all hop; nodes
in the vicinity. hopy nodes follow the same protocol as the
UAV with one subtle difference. hop; nodes do not send
DIST_ESTs back to hop, nodes. Instead, hop; nodes cal-
culate and locally store all the hopq-hop, ranges, which are
piggybacked on the subsequent DIST_EST message. This
saves unnecessary network overhead, speeding up the collec-
tion of range estimates. All hop, nodes take turns (point C in
Fig. 12), followed by the UAV starting the next round.

Efficient multiplexing of ranging between hops. Initially
the UAV is not aware of the topology. Hence, it waits for all
the nodes in the network to send a RESP. Once it has received
the last RESP (or, after a timeout), the UAV creates a bitmap
(Fig. 13) indicating which nodes are deemed to be in hop;
(setting the corresponding bit to one) based on the responses.
The UAV sends this bitmap in its FINAL message. When
hop; nodes send a DIST_EST message it also contains a
copy of this bitmap. A node that receives such a DIST_EST,
but not the POLL from the UAV, would see its bit cleared and
know that it belongs to hop2. Also, it would know how many
other hopq nodes are expected to send their DIST_ESTs, and
the order of all other hop, nodes. This allows hop, nodes
to efficiently take transmission turns without collision, even
when they are not in communication range of each other and
the UAV. The UAV generates the bitmap dynamically in every
round to track topology dynamics due to node mobility.

@) @ 1 Hop-2 node
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Figure 13: The bitmap constructed by the UAV and sent in the

FINAL message enables a collision free hop, communication.
Finally, the variable length DIST_EST sent by hop nodes

piggybacks their distance from all hop, nodes obtained in the

previous round, along with their own current range estimates
to the UAV. The UAV aggregates all the information received
in the DIST_ESTs and forwards to a ground control center
for further processing.

3.4 Reverse Lookup for UAV Location Fix

Obtaining the UAV’s precise GPS location is critical to
TrackIO’s end-end accuracy. This can be challenging since
off-the-shelf GPS receivers have multi-meter location er-
rors [24, 50]. High-End UAVs already employ GPS chips
with better precision and higher update rate [14], and improve
the precision further by incorporating IMU data as well. Some
UAVs [14] also support custom, albeit expensive RTK solu-
tions [39] that promise location accuracy within a few cm, but
require precise GPS transmitters in the vicinity.

In cases, where such precise UAV location estimates are
not possible, TrackIO leverages UWB to also localize the
UAV. It places four static UWB nodes as anchors at known
locations on the ground. One of these anchors is also fitted
with a GPS receiver. The known, exact, pairwise distances
between the anchors enables TrackIO to accurately determine
the GPS coordinates of all the static anchors. These static
anchors in turn allow for accurate localization of the UAV
itself. We envision that these anchors can be permanently
mounted at the four corners of a service vehicle (at different
heights to provide vertical diversity). The service vehicle can
use sophisticated GPS techniques [19,21,22,26, 38, 39] to
achieve better accuracy for the ground anchors.

3.5 TrackIO’s Operations in a Nutshell
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Re-fix Turning
Hop-1 Nodes

Hop-2 Locations

A\

Hop-1 l NL-LS | | Low Confidence
Ranges ‘ | Solver Hop-1 Nodes

:OD'Z High Confidence

£ Hop-1 Locations

Figure 14: TrackIO System Design

When a UAV is launched to cover a section of the building,
the static UWB anchors on the ground start localizing the
UAV to get its precise location estimate. The UAV performs
its flight trajectory to start creating a continuous, moving win-
dow of synthetic apertures (of 4 secs each). Within each of its
aperture window, it performs the following. It executes its con-
current ranging protocol to help classify nodes into various
hops based on their reachability. It then localizes the hop;
nodes first using its location-velocity solver that estimates
both the location and velocity. Using the error residuals of the
solver, it employs only high-confidence hop nodes (static or
uniform velocity) as anchors for localizing the hop, nodes.
For the latter, it employs a conventional multi-lateration solver
to obtain only the location of hop, nodes, which being in-
stantaneous, is sufficient. Finally, it uses a spatial aperture
of hop, nodes (anchors), along with an adaptive (temporal)



aperture from the UAV, to refine the location estimate of the
hop; nodes that have non-uniform velocity.

Altitude Considerations. So far, we have only focused on
the horizontal plane and assumed that TracklIO is aware of
the nodes’ altitude. However, in cases, when TrackIO is not
aware of the floor where the service personnel currently are,
the horizontal localization error can be significant (since the
algorithm will not take into account the additional vertical
offset the signals have to travel). We address such situations
by detecting the appropriate altitude (and hence floor) through
a special one-time maneuver of the UAV. We move the UAV
up and down through a short vertical distance that spans the
target floors. During this movement, as the UAV approaches
the horizontal plane of the nodes, its range estimates to the
nodes should start to decrease, reach a minimum when it is
on the plane, and increases when it moves away from the
plane. TracklIO records the altitude (z*) as that corresponding
to the minimum range estimates and hence determines the
floor of interest. TrackIO then uses this altitude to execute its
localization process for the target floor.

4 Implementation and Testbed Setup

We build a custom payload consisting of a Decawave DW1000
UWB module and a Raspberry Pi 3 used as the TrackIO con-
troller. The payload, weighting about 200 grams is mounted
onboard a DJI Phantom 4 UAV platform. A fully charged
UAV flight with our current prototype lasts for about 20 mins
(/25 mins without payload). In the following we describe the
key hardware/software components that form TrackIO.

4.1 TracklO Components

UWB Modules: The UWB module mounted on the UAV
acts as the master node and is responsible for collecting rang-
ing information from the client nodes. Alongside the DW 1000
RF chip, the UWB module houses an ARM based microcon-
troller that runs our multi-hop ranging protocol (implemented
in about 3000 lines of C code). The latter collects inter-node
ranging information (at about 6 Hz) which is read by the
controller Raspberry Pi and forwarded to the ground station
through a WiFi interface.

Ground Station: Ground station refers to the compute node
responsible for collecting ranging information obtained from
the UAV and running TrackIO’s localization algorithms. First,
it localizes the UAV using the four fixed client nodes on the
ground. These nodes are placed at different heights (vertical
diversity) on four vertices of a 5 mx5 m square to emulate
a service vehicle housing the ground station. One node is
equipped with a GPS receiver for an absolute location fix.
Second, the UAV’s location is fed along with the rest of the
range information that simultaneously solves all client node
locations. We implement the solver algorithms in Python that
run in real time on the ground station compute node (a Core
17 Lenovo laptop). We also implement an Android application
that shows client node locations on a map.

Flight Automation: Automating the flight offers flexibility
to programmatically control the flight’s trajectory as well as
its speed. We use the Android Mobile SDK [12] provided
by DIJI to program two candidate trajectories for our UAV to
follow: (a) STRAIGHT, a straight line path of length 30 m, and
(b) WAVY, a sinusoidal path of length 30 m with an amplitude
of 5m (see figure 17). Note that such automation also helps
us to re-run/repeat flights for controlled experiments, which
would have been otherwise impossible in case of manually
controlled flights.

Figure 15: Snapshots of trajectories marked with RFID tags. A
volunteer is shown walking along the track with the RFID reader
stick in her hand.

4.2 Testbed Setup

We deploy TrackIO with a single UAV in the third and fourth
floor of our department building spanning approximately 1250
sq. meters (half the building’s floor area). Nine client nodes
are placed indoors that mimic static or mobile first responders.
Out of these nine nodes, six are in hop-1 (3 static, 3 mobile)
and remaining three in the hop-2 (2 static, 1 mobile).

Obtaining location groundtruth: For static indoor nodes,
the node location is accurately estimated with the help of a
laser ranger. For tracking the mobile nodes’ groundtruth po-
sitions, we deploy fixed RFID tags on the ground, one every
meter, along predefined trajectories. We create portable RFID
reader sticks equipped with a ThingMagic M6E-Nano readers
(Fig. 15). We adjust the reader’s transmit power as well as the
antenna orientation to limit the reading range to about 50 cm.
The volunteers are instructed to move along the trajectories
while holding the stick vertically. The stick also hosts a Rasp-
berry Pi that controls the reader and logs timestamped entries
of RFID tags along with RSS/phase information (=10 Hz)
it reads along the trajectory. We post-process such logs to
obtain accurate estimations of position (within 20 cm) and
velocity of the mobile node at granular timescales.

Trajectories: We lay out the trajectories within our office
area spanning multiple rooms, cubicles, hallways and open
spaces. Specifically we construct four different trajectories,
three in the first hop and one in the second hop. We create
the trajectories with increasing number of turns in them. The
first three trajectories are (a)LINE, a linear trajectory of length
20 m, (b)TRIANGLE, a triangular trajectory with a perimeter
of 30 m and (C)RECT, a rectangular trajectory with a perimeter



of 40 m. The trajectory in the second hop is roughly a 30 m
long sinusoidal path (SINU).

S Evaluation

We present evaluation results from experiments conducted
in our real testbed discussed in §4.2. Recall that we use 6
nodes (3 static, 3 mobile) in hop; and 3 nodes (2 static, 1
mobile) in hop,. Four volunteers (mobile nodes) are simul-
taneously instructed to move along their designated trajec-
tories at different speeds. Combined, we accumulate over 2
hours worth of traces accounting for over 10+ Kms of total
trajectory length. Evaluating TracklO’s performance (w.r.t.
groundtruth) through controlled experiments requires us to do
trace-driven analysis of the ranging information logged by the
ground station compute node. However, our system receiving
range information at 6 Hz is capable of real time operations.
In §5.4, we highlight end-to-end latency of our system for var-
ious node distributions. Fig. 16 shows the median localization
error for both hop and hop, nodes, the latter localized using
static or mobile hop; nodes. While static nodes are localized
with an accuracy of 1 — —1.5m, note that even for mobile
nodes, the median localization error is a little less than 2m
(hop1) to around 2.5 m (hopy). In extreme cases, where the
hop, nodes are localized using all mobile hop; nodes and
the latter do not offer a good spatial diversity (e.g., all hop;
nodes are in close vicinity), TrackIO still offers a localization
accuracy of about 4 m (top 10 percentile). However such situ-
ations can be avoided by judiciously selecting nodes in hop;
that offer spatial diversity.
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Figure 16: Overall localization accu- Figure 17: Scatter plot of
racy for static and mobile hop; and estimated trajectories for all
hop nodes mobile nodes.

5.1 Hop; Localization Performance

We now evaluate the hop; localization error over the dimen-
sions of node speed, trajectory, and turns.

Effect of node speed. Since TrackIO jointly solves for both
location and velocity of each node, ideally, the localization
error should be independent of the velocity for nodes mov-
ing at a constant velocity. However, when moving at a brisk
pace, the human body performs a complex set of movements,
including bobbing of the head, which strains the constant
velocity assumption. To evaluate these practical limitations,
a volunteer moved along LINE at different speeds—a stroll,
walk, and a run. Fig. 18 shows the resulting localization accu-
racy. The reported speeds are the average speed obtained from
ground-truth. The median localization accuracy is around
1.5 m during the stroll, whereas it is around 2.8 m during the

run. The gains over simple multilateration are above 3x for
all the velocities.
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Figure 18: TrackIO gains signifi- Figure 19: The three trajec-
cantly over simple multilateration by tories have similar localiza-
solving for velocity vectors as well. tion error.

Effect of trajectory shapes. Fig. 19 shows the impact of
different trajectory shapes (LINE, TRIANGLE, RECT) on the
localization accuracy. While using naive multilateration, the
localization errors can spike upto 10 m, TracklO makes the
system resilient to turns (median ~2 m for all trajectories).
Minor differences do exist which can be explained by the in-
creasing number of turns present in the respective trajectories.

Effect of Turns. Human motion mostly comprises of straight
lines interspersed with turns of various degrees. Fig. 20 shows
the localization errors during turning events versus that during
traversal in straight line segments. Note that the errors can
significantly spike during such turning events (3 x at 80 %ile).

Localization Method
~Velocity Vectors (VV)
—Adaptive Aperture + VV|
—TracklO

—Straight Lines| Oracle Hop-2 locations

0
0 2 4 6 8 10 0 5 10 15 20
Localization Error (m) Localization Error (m)

Figure 20: Localization error Figure 21: Benefit of spatial
worsens during turns aperture vs. adaptive aperture

TrackIO tackle such cases through adaptively changing the
aperture and spatial aperture offered by hop, node positions
to fix the erring hop; nodes as described in §3. Fig. 21 shows
the effectiveness of these approaches in our testbed and will
be referred to in the following analysis.

Benefit of Adaptive Aperture. Fig. 22 shows a time series
of localization error when a turning event occurs. The local-
ization error increases sharply and remains large while the
aperture slowly moves over this point in time. Our adaptive
aperture dynamically resets historical measurements in case
it detects turning events. It improves localization accuracy by
a factor of 1.8x, and also reduces the time (early recovery ~
5 secs) it takes to stabilize the localization performance.

Benefit of spatial aperture from hops nodes. Opportunis-
tic re-fixing of a turning hop; node, T’ might be possible if
there are at least three hop, nodes that do not depend on T for
their localization. Fig. 21 shows the reduction in localization
error when a fast moving and turning node is subjected to
hop, guided re-fix. As an example, we use the entire 2 m/s
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Figure 23: TracklIO cor-
rectly detects more than
80% of turns.

Figure 22: Adaptive aperture recovers
from the effects of a turn earlier than
fixed aperture.

run shown in Fig. 18 including the turns at either ends. The
velocity-vector based localization performs poorly as seen
from Fig. 21. We use 3 other static hop; nodes to localize 3
static hop, nodes and then use their locations to solve for the
location of the running node, 7. We observe about 2.8 x im-
provement in the median localization accuracy after re-fixing.
This re-fixing accuracy is affected by two factors: (a) ranging
error, and, (b) imprecise location of the hop, nodes. We can
eliminate the effect of imprecise locations and hypothetically
study just the ranging error effect by assuming ground truth
hop, node locations are known—as if given by an Oracle.
Fig. 21 shows this error to be within 2m at the 75%ile. While
extremely promising, the re-fix approach may not always be
available depending on the current topology. In comparison,
the adaptive aperture technique is always available for any
hopj node. Fig. 21 puts both these approaches (adaptive aper-
ture and re-fix) into perspective.

Effect of drone trajectory and velocity. Fig. 24 shows the
localization precision of two different trajectories, STRAIGHT
and WAVY, at two different drone speeds. In general, geomet-
ric diversity of measurements helps obtain better localization.
Therefore, the faster the drone moves, the better is the localiza-
tion. Similarly, a WAVY pattern of drone movement also helps
in obtaining better localization even for lower speeds. We
therefore fly the drone in a WAVY pattern for this evaluation.
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Figure 24: A WAVY trajectory provides better localization accuracy
due to increase in spatial diversity.

5.2 Hop, Localization Performance

Effect of hop; mobility. We perform instantaneous local-
ization® of hop, nodes based on 3 hop; nodes. By selecting
which 3 nodes to use for this purpose, we obtain a combi-
nation of static and mobile hop; nodes—ranging from all
static to all mobile. Fig. 25 shows the impact on localization
errors as we allow an increasing number of hop; nodes to

3Instantaneous localization does not depend on UAV’s synthetic aperture
created in time.

be mobile. These results show the error-span between using
only static hop; nodes (1.83 m) to using only mobile hop;
nodes (2.84 m). If multiple hop; nodes are available, choice
of anchors influences hop, localization error (Fig. 26). Due
to instantaneous localization of hop, nodes, the accuracies for
both static and mobile hop,) nodes are similar (see Fig. 16).
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Figure 25: Localization error for Figure 26: Selection of an-

a mobile hop, node with increas- chors influences localization
ing number of mobile hop{ nodes. error.

Effect of hop; diversity. The relative locations of hop;
nodes also affect the localization accuracy. We consider ran-
dom static snapshots of hop; node locations moving on the
three trajectories (LINE, TRIANGLE, and RECT) and further lo-
calize hop, nodes. Figure 27 shows a long tail indicating that
some hop; position combinations perform poorly. A further
analysis of such failing combinations reveals that hop; nodes
are nearly collinear” in such cases, causing very high dilution
of precision [8,34,56] (Fig. 28). We expect such situations to
be minimal and short lived in real-life.
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Figure 27: hop, localization error as Figure 28: Most failure
a function of various hopq locations. cases are caused by highly
Localization fails about 10% times.  collinear hop; nodes.

5.3 UAV Localization

Note that the final localization accuracy of the mobile nodes
is tied to absolute location fixes for the UAV. We study the im-
pact of such accuracy as a function of the different modalities
we can localize the UAV through (viz, COTS GPS receiver [1],
UAV’s GPS with sensor fusion [13], UWB based). Fig. 29
shows the error in each of these modalities compared to laser
ranger based groundtruth (accurate to Imm). Fig. 30 shows
the improvement in localization error of a static indoor node
(1 m using UWB versus 2+ m using GPS) when UWB based
drone localization is used. Note that the UAV’s large trajec-
tory and the low vertical diversity in ground-UWB anchors
degrades the drone’s location accuracy. Yet, in GPS chal-

4We define collinearity as the ratio of the height and the base of the triangle
formed by the three hop{ nodes.



lenged situations, such as in a dense urban space, UWB based
drone localization will remain valuable.
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5.4 TracklO End-to-End Latency

We present TracklO’s end-to-end latency for different topolo-
gies in Figure 3 1. Each topology shown assumes an additional
4 hopq nodes on the ground for UAV localization. Thus, topol-
ogy A consists of 446 = 10 hopq, and 3 hop, nodes. With
even 20 nodes TrackIO leaves room for real-time operations.
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Figure 31: Protocol latency as a function of the network topology

5.5 Adding IMU: A What-If Analysis

Adding an IMU to our implementation might improve
TracklO’s performance due to availability of another esti-
mation for velocity and direction. We show in Fig. 32 and
Fig 33 that while improvement in performance are possible
when accurate direction and velocity information is available,
presence of small errors in those estimates substantially re-
duce the gain over TracklO. We leave more sophisticated
IMU-based implementation to future work.
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6 Related Work

Indoor localization. A significant amount of work exists in
indoor localization [5,33,42,51,54,55,57], but most of it relies
on indoor infrastructure and fingerprinting. Both of these are
not available in our target application. Techniques that use
commodity WiFi [28,31] rely on the difference in subcarrier
phases. However, subcarrier phase wraps after a short distance
(7.5 — 15m) rendering them unsuitable in our application.

Localizing from outside a building could be performed with
RF sensing [2,3], however, we require a system that would be
robust to changing multipath, fast human mobility, and would
penetrate deep into a building. Use of inertial sensors (IMU)
for tracking human motion [42,44,52] has been extensively
studied. However, most of these systems suffer from drifts
and saturation introduced by the IMU sensors [18, 30, 46].
In contrast to IMU-based tracking, the ranging approach we
take in TrackIO is not based on dead-reckoning and instead
provides instantaneous location.

UWB based localization. UWB radios are increasingly be-
ing used for localization solutions in a variety of applica-
tions from positioning [37, 40], to tracking industrial ob-
jects [17,47], to sports analytics [18]. UWB is particularly
resistant to indoor multipath [41,43,45] due to its 1ns time
resolution (1GHz bandwidth). This makes it suitable for use
in indoor spaces where multipath can be rampant. Different
UWRB platforms are commercially available today [7, 10, 48],
and we chose Decawave Trek1000 UWB platform for its
superior performance [27,43]. Most of these works assume
some static UWB anchors. In our application however, we
have no pre-deployed anchors, but create a synthetic aper-
ture over time by flying an anchor on a UAV. Some recent
works [32,49] have explored use of the multipath profile as
virtual anchors localize using a single UWB device. However,
they assume the location of all strong reflectors are known,
making it prone to issues when multipath could change, due
to moving people or objects. In contrast, our technique does
not depend on the knowledge of the floor-plan, and is robust
to changing multipath profile.

Localization of UAV. UAV localization has been extensively
studied and approaches range from using a single GPS [13,
14], to using differential GPS [19], to using complex motion
models based on the drone’s IMU data. UAV localization
using UWB has been proposed in [6,29]. We incorporate
UAV localization into TrackIO protocol. Authors of [15,23]
also consider UAVs as a vehicle for fire-fighting, though they
do not discuss the outdoor-indoor localization problem.

7 Conclusion

Indoor localization without any support from the building’s
infrastructure is a challenging yet important problem. Par-
ticularly of importance to first responders, continuous real-
time tracking can be a life saver in many everyday situations.
TrackIO uses a UAV to create the missing infrastructure out-
side the building and performs continuous ranging with indoor
nodes. Through numerous algorithmic, architectural, and en-
gineering modifications to trilateration and ranging protocols
we obtain promising results localizing mobile indoor nodes
accurate to about 2m from twenty meters outside the building.
We believe TrackIO is a promising first step in active localiza-
tion from outside the building. While TrackIO provides a fully
working system where none exists today, we plan to continue
to explore avenues to further improve accuracy, resilience,
and redundancy.
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