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Abstract—This paper explores the potential use of ultra-wideband (UWB) wireless sensors in detecting the transition of
food items from a frozen state to thawed state (or vice-versa), marking a significant advancement in monitoring the thawing
process. By exploiting the drastic change in complex permittivity at microwave frequencies (we use frequencies close to
4GHz) during the solid-liquid state transition, this paper introduces a novel approach in ensuring frozen food safety, and
in enhancing the efficiency of the frozen food industry and cold chain transportation. The developed system, capable of
operating through food packaging, offers a non-invasive, cost-effective solution for real-time monitoring, addressing the
limitations of conventional temperature-based and timing-based methods widely used today in household and professional
cooking and in the food industry. Our findings from the raw UWB channel impulse responses (CIR) and computed
similarity scores indeed show significant promise and validate the feasibility of the proposed system with various real-
world applications.

Index Terms—Wireless Sensing, Ultra-Wideband (UWB), Solid-Liquid State Transitions, Food Safety Monitoring, Complex Permittivity,
Channel Impulse Response (CIR), IoT Sensor Systems

I. INTRODUCTION

At microwave frequencies, solid-liquid state transition of water
causes a drastic change in its complex permittivity, and therefore a
corresponding drastic change is also observed in its refractive index
(RI). While water has a refractive index of about 8.9, ice has a
refractive index of merely 1.8 at these frequencies [1]. In contrast,
for visible light, refractive index does not drastically change when
ice (𝑅𝐼 = 1.31) transitions into water (𝑅𝐼 = 1.33). Because most
food has substantial amounts of water, this change in permittivity
is also observed when food freezes or thaws. In an enclosed space,
as in a microwave oven or freezer, where influence of the external
environment is minimal, the changing refractive index dramatically
changes wireless signal’s reflection and absorption patterns. The core
premise of this paper is that wireless reflections show a stable albeit
different pattern for both frozen and fully thawed foodstuff, but show
a changing reflection pattern while thawing or freezing is underway.

Developing a wireless sensor that detects the solid-liquid transition
can have significant impact on the frozen food industry and the
transportation industry that uses refrigerated trucks to transport
them (called the cold chain). Today, freezers are monitored using
thermometers which are only a proxy for ensuring that food
remains frozen. Temperature differentials, blocking of cold-air vents,
different additives in foodstuff that change the melting point, external
heat sources, or other variable factors can significantly affect the
temperature in different zones, meaning that thermometers alone
are not enough to ensure that the food remains frozen. Reversing
the context, when cooking food, ensuring that the food was fully
thawed is important for maintaining both food taste and texture.
Further, consuming food within a certain time after it has thawed
is important for food safety as it brings a significant health risk if
not properly consumed in time. Microwave ovens are particularly
inefficient (due to the lower complex permittivity) when heating
frozen foods, while convection heaters would be more efficient. In a
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completely different application, both microwaves and freezers have
a defrost mode. Understanding when food has fully thawed in a
microwave and when the surface frost has been removed from the
freezer would be particularly useful for next generation smart freezers
and microwaves. Overall, there is significant utility in developing a
solid-liquid state transition sensor.

To the best of our knowledge, there does not exist a state transition
detector that would work through food packaging. Opportunities of
determining state are few. Density changes, changes in form, or
changes in conformance of food would all require direct access to
the food. However, most food is inside some form of packaging
which itself could be rigid and provide enough space within itself
for expanding food as it freezes, meaning, merely observing the
packaging for changes is not enough. Further, infrared thermometers,
which can detect differences in temperature over a certain area, would
still only provide information about the external temperature of the
packaging. Thus inaccessible food makes the state transition detection
a difficult problem. In contrast, microwave-range frequencies easily
penetrate through most packaging materials such as paper, cardboard,
plastics, and glass. They can therefore directly interact with the food
through the packaging. Additionally, since the complex permittivity
dramatically varies between ice and water, the signal reflection also
dramatically changes as the food undergoes state transition.

This paper extends our preliminary report [2] to now include a
similarity score based state-transition detection methodology without
touching the food, and even when the food is placed in an unstructured
manner inside an enclosed space. Note that we have not developed
an ice or water detector, but rather only a state-change detector.

II. BACKGROUND

A. Propagation of Wireless Signals

When wireless signals are emitted by a transmitter, they spread
in all directions, with some fraction arriving directly at a nearby
receiver, while most bouncing off various obstacles and reflectors
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in the vicinity, before subsequently arriving at the receiver. If the
wireless signal was an impulse, the time-domain representation of
the delayed arrival of these signals would describe the response of
the wireless channel to the transmitted impulses. This power-delay
profile is called the channel impulse response (CIR). We use ultra-
wideband (UWB) radios that transmit raised cosine pulses specified
by the IEEE 802.15.4z [3] standard and compute the CIR from the
received signal. The wireless reflections experienced by the UWB
signals is subject to the placement or location of various materials in
the vicinity and the signal’s physical interactions with the material.
During solid-liquid state-transition, the physical properties of the
material undergo changes, that affect the reflection and absorption of
signals. As a result, the obtained CIR also changes; detecting these
changes forms the basis of our wireless sensor.

B. Primer on Complex Permittivity

The complex permittivity of a material 𝜖∗ = 𝜖 ′ − 𝑗𝜖 ′′ describes
the interaction of electromagnetic signals with materials. The real
part 𝜖 ′, representing the material’s ability to store electrical energy,
and the imaginary part 𝜖 ′′, indicating energy dissipation, are both
crucial in understanding how electromagnetic waves are affected
by materials [1], [4]. During the thawing process, the ice-water
transition results in notable changes to 𝜖 ′, significantly affecting
signal propagation.

C. Interaction of Wireless Signals with Materials

When a traveling wave encounters a material, only a fraction of
its energy penetrates into the material, called the transmittance of
the substance. This fraction, 𝑡𝐸 relates to the intrinsic impedance
of the abutting materials as follows: 𝑡𝐸 =

2𝑍2
𝑍1+𝑍2

, where 𝑍1 and 𝑍2

are the intrinsic impedances of the leaving and entering in materials
respectively. The intrinsic impedance is dependent on the material’s
complex permittivity (𝜖∗), given by: 𝑍∗ =

𝑍0√
𝜖 ∗ , where 𝑍0 is the

impedance of free space.
If the complex permittivity of a substance changes, so does the

signal’s ability to penetrate into and reflect from the substance.
Solid-liquid state transition of water causes a substantial change in
its complex permittivity which also affects water-based beverages,
and substances that contain substantial amounts of water, covering
a vast majority of food items. This causes wireless signals to reflect
differently providing us with a novel ability to detect thawing and
freezing and the transition in-between.

III. RELATED WORK

Identification of materials using wireless sensing has recently
gained significant attention, leading to several innovative solutions
in this area. Perhaps closest to our work is the work by [5] which
uses chipless RFID time-temperature sensors to perform cold-chain
integrity monitoring for cooking oils. Their technique relies on phase
shifts due to melting of cooking oils. Similarly, RF-EATS [6] is
a system capable of sensing food and liquids in closed containers
without direct contact, using passive backscatter tags to non-invasively
identify container contents in diverse indoor environments. In a
completely different context, [7] explores use of millimeter wave
radiometry for characterizing water freezing and ice melting dynamics
for environmental monitoring, especially pertinent in the context

of global warming. In contrast, we have developed an IoT sensor
system, which employs ultra-wideband (UWB) wireless signals to
non-invasively detect the solid-liquid state transitions of food items
by leveraging the large shift in complex permittivity during ice-water
phase transition.

Further contributions to this domain include leveraging wireless
signals for material identification [8]. In a similar vein, TagTag [9]
employs RFID signals for fine-grained material identification,
based on material-specific RF-phase changes. Further, TagScan [10]
explores simultaneous target imaging and material identification
using RFID. Similarly, LiquID [4] uses UWB signals for liquid
identification. IntruSense [11] relies on CIR stability, in a manner
similar to ours, however, it does so in the context of physical intrusions.
However, none of these prior arts have explored solid-liquid transition
which uThaw specializes in.

Our paper extends these innovations by harnessing ultra-wideband
(UWB) wireless signals for detecting solid-liquid transitions in food,
addressing the limitations of scalability and direct applicability in
diverse conditions. By leveraging significant permittivity changes
during state-transitions, our system offers a non-invasive, cost-
effective, and broadly applicable solution for monitoring thaw
processes, even through packaging, contributing to food safety within
cold chains.

IV. SYSTEM DESIGN AND CHALLENGES

Our system, called uThaw, comprises a UWB transmitter and
receiver placed within a small enclosed space. Figure 1 shows the
overview of the uThaw algorithm. The transmitter sends UWB packets
which are received by the receiver and analyzed in terms of the
obtained signal reflections (as obtained from the CIR). The receiver
builds a history of the obtained CIRs computing a long-term average.
If the enclosed space remains undisturbed and the materials continue
to remain in their original state, either frozen or thawed, every
newly obtained CIR closely matches the long-term average. We
have developed a simple similarity metric that first aligns the newly
obtained CIR with the long-term average CIR using the first direct
path between the transmitter and the receiver, represented by the first
peak in the CIR. We then compute the L1 norm of the difference in
the two CIRs. A low L1 norm is indicative of high similarity, while
a high L1 norm is indicative of low similarity between the current
CIR and the long-term average.

A low similarity indicates something has changed from the previous
average. We assume we have an independent switch that triggers
whenever the enclosure was opened, which would indicate new food
being added or removed from the enclosure. Such an event triggers
elimination of the previous long-term average and re-computation of
a new average CIR. If the similarity drops without a trigger from the
door-open event, a state transition is identified. It is then expected
that subsequent CIRs will also mismatch with the long term average,
but will also mismatch with each other as state-transition progresses.
Finally, when the entire material has transitioned into a new state,
consecutive CIRs start to match with one another once again and
form a new long-term average. The time over which the long-term
history is calculated is a tunable parameter, depending on the exact
application space.
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Fig. 1. Overview of uThaw algorithm: raises an alarm when thawing
occurs.

A. Adapting uThaw for Diverse Applications

To generalize uThaw’s applicability to different freezer enclosures
and material configurations, the following considerations are key:

1) Variations in Freezer Volume and Internal Configuration:
Larger enclosures may introduce additional signal reflections and
multipath effects, requiring recalibration of the similarity metric to
handle more complex CIR profiles. The placement of objects (e.g.,
shelves, containers) can also affect reflections. Adaptive filtering
or dynamic modeling techniques could mitigate such challenges in
future implementations.

2) Enclosure Material and Properties: The material of the freezer
(e.g., metal, plastic, or cardboard) influences UWB signal propagation.
Metal enhances signal confinement (and is therefore preferred),
while plastic and cardboard may permit signal leakage and external
influence. We expect future work to deal with external influence via
careful truncation of the obtained CIR.

3) Distribution of Water/Ice Within Food: Foods with uneven
water distribution (e.g., mixed vegetables) exhibit variable thawing
patterns. While our results indicate detectability even for such cases,
future work will refine the system for highly heterogeneous foods.
Addressing these variations will further improve generalization.

V. EXPERIMENTAL SETUP AND IMPLEMENTATION
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Fig. 2. uThaw data collection platform: a UWB transmitter, UWB
receiver, a phone for capturing video, and an LED light, inside a small
freezer.

Our data collection platform is low-cost (sensors cost less than $50)
and requires minimal processing power. Figure 2 shows our uThaw
platform placed inside a small fridge. Two UWB devices—each
using a DWM1000 UWB module [12], [13] controlled by Cortex
M0 processor [14]—are installed in the fridge, with the receiver’s
data sent via USB cable to a Dell Laptop for processing in Python
(not shown in the figure). We are able to observe the thawing of the
food placed inside the fridge using a phone camera and the food is
lit-up by a dedicated, always-on light.

VI. EVALUATION

We evaluate uThaw by recording (i) the thawing of a block of ice,
and (ii) the thawing of food in glass containers and a bag of corn all
kept in the fridge simultaneously. First, we investigate the feasibility
of detecting state transitions by checking the stability of the CIRs
for fully frozen and fully liquid states, followed by the results from
our similarity metric.

A. Stability of CIR inside the enclosed space

An important premise of this work is that the channel impulse
response (CIR) as observed by UWB devices inside the closed
container, say a refrigerator or a microwave oven, will be quite
stable over time, so long as there are no changes to the contents of
the enclosed space.
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Fig. 3. CIR of water (blue) and ice (red) from receiver one.

We show in Figure 3 the CIRs collected by our setup for ice and for
water after the ice has completely thawed. Observe that all the CIRs
obtained during any one state overlap well with each other, meaning
that the UWB signals are experiencing very similar reflection and
refraction patterns for both states. We observe similar stability when
food is introduced in the refrigerator (experiment (ii)), but do not
include the graph for brevity. The freezer being an enclosed metal box,
various external movements, for example of the researcher moving
around in the lab, has no influence on the observed CIR inside the
enclosed container.

B. Unpacking Similarity Indices: Insights and Require-
ments

The Cumulative Distribution Function (CDF) quantifies the
distribution of similarity scores across different experimental
states—frozen, thawed, and transitioning. The similarity score is
computed as the L1 norm of the difference between the newly
observed CIR and the long-term average CIR, normalized and max-
subtracted.

Each plot in Figure 4 is built from similarity scores calculated for
multiple CIR samples collected during the experiments. Specifically:

• For the frozen state, we compute the similarity score of all
frozen-state CIRs against their respective frozen-state long-term
average.

• Similarly, for the thawed state, we compare all thawed-state
CIRs against the thawed-state long-term average.

• For the transition state, we calculate similarity scores against
both frozen and thawed long-term averages, leading to lower
similarity values.
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To ensure accurate similarity analysis, sufficient data is required
for computing stable long-term averages. In our experiments:

• Frozen State: A minimum of 100 CIR samples, collected over
10 minutes, were used to establish the frozen-state long-term
average.

• Thawed State: An equivalent number of CIR samples were
collected post-transition to compute the thawed-state average.

• Transition State: Continuous CIR sampling (over 20–30
minutes) was performed to detect deviations from the initial
frozen-state average.

Providing these thresholds ensures accuracy in similarity analysis
while minimizing false positives caused by environmental distur-
bances. However, the rate of CIR collection and the stable CIR
collection duration can be tuned based on application needs.

C. Observing state transition as a similarity score
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Fig. 4. CDF of similarity scores comparing CIRs to respective long-
term averages. (Left) Ice-water transition. (Right) Frozen-thawed food
transition. Each plot uses similarity scores from CIR samples normal-
ized against their respective long-term averages.

We use an L1 norm of the difference of the CIR and the long
term average to detect state transition. We overlap the long term
average CIR with the current CIR and compute a per-tap difference.
Summation of this difference is expected to be very small for CIRs
that are similar to each other, while quite large when the CIRs have
a significant mismatch. A normalized max-subtracted score is then
computed. This work differs from our one-page poster [2] where
the promise of this approach was showcased. In this work, we focus
on state transition, and as such are most interested in determining
when recently obtained CIR data starts to diverge from the long-term
average observed previously. We have therefore, devised a simplistic
similarity metric to aid this comparison. Figure 4 shows the CDF of
the similarity scores. We observe in Figure 4 (left), that all CIRs during
the ice-state produce a high similarity score with the ice long term
average. Similar consistency is observed for water as well. During
the transition, however, similarity score drops drastically differing
from both the ice average as well as the water average. Depending
on the kind of food and homogeneity, some temporal stability may
be observed where the CIR remains similar during transition, most
likely when only a small amount of ice remains stuck to the container
as thawing occurs from the sides.

D. Observing state transition for food

Frozen food shows similar behavior to what we observed for pure
ice-water transition. Figure 4 (right) shows the similarity CDF for
the frozen and fully thawed food and also shows the lower similarity
score when the thawing process is underway.

VII. CONCLUSION

The paper demonstrates the application of UWB wireless signals in
detecting the ice-water transition in food items without direct contact.
The experimental setup and implementation, employing low-cost off-
the-shelf devices, validate the feasibility of the proposed system in
real-world scenarios. The stability of the CIR and the distinct signal
patterns associated with different states of water in the food show
the effectiveness of this approach, though our settings are limited
in size. Our findings hold significant promise for improving food
safety protocols, optimizing cooking and thawing processes, and
potentially transforming the monitoring practices within the frozen
food and cold-chain logistics industries. Future work could focus on
refining the system for commercial or household use and exploring
its application in use-cases beyond the freezer, including microwave
ovens, traditional oven, thawing trays, or even industrial conveyor belts
where progressively food is cooled down to freeze it or warmed up to
thaw it for further processing. Additionally, further refinements are
required for broader applicability to diverse enclosures and packaging
materials (e.g., metal, cardboard).
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