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Self-similarity and its evolution in
Computer Network Measurements

* Prior models used ‘Poisson-like’ models
— Origins in telecommunication voice traffic
— Smoother aggregate traffic.

— Simpler and traditional (tried and tested)
congestion management (OR principles)

« Self-Similarity — An orthogonal approach

— The Ethernet measurements at Bellcore and
their subsequent statistical analysis.



Prior Models

Poisson processes or Markov-modulated Poisson
processes

Multi-state Markov models

— Voice traffic (two state Markov model)
 Silence and Talking states

— Video traffic (multi-state Markov model)

 Variable bit-rate video traffic (I, Band P
frames)

IDC, Peak-to-Mean Ratio, coefficient of variation are
iInadequate to illustrate the burstiness



On the Self-Similar Nature of Ethernet
Traffic

Leland, Taqqu, Willinger, Wilson. IEEE/ACM ToN, Vol. 2, pp 1-15, 1994

 Establish self-similar nature of Ethernet
traffic

* lllustrate the differences between self-
similar and standard models

« Serious implications of self-similar traffic
for design, control and performance
analysis of packet-based communication
systems



Self similarity

* Definition
— If X be a covariance stationary stochastic process with
u and o2 and auto-correlation function r
X = (Xt:t=01,2...) r(k)~ k7 LK)k —> oo

— For each m=1,2,3.... If X™ denotes a new time series
obtained by averaging the original series over non-
overlapping blocks of m

XM =1/m(X g+t X))

— Process X is self similar with self-similarity parameter
H=1-3/2if
r'™ k) =r(k),m=123...



Traces of Ethernet Traffic Measurements

Measurement Period data set total number total number Ethernet
of bytes of packets utilization
ATUUGUST 1989 total (27.45 hours) 11.448.753.134 27,901,984 9. 39%
Start of trace: low hour ATTGE9 LB 224 315,439 5.0%o
Aung. 29 11:25am (6:25am-7:25am) ATTGES L.P G652 909
End of trace: normal hour ATIGES MB 380_889 404 8 5%
Ang. 30, 3:10pm 2:25pm-3:25pm) ATTGE9 MP 968.631
busy hour ATTGE89 HB 677,715,381 15.1%6
(4:25pm-5:25pm) ATIGSE9 1P 1,404,444
OCTOBER 1989 total (20.86 hours) 14.774,694.236 27.915.376 15.7%
Start of trace: low hour OCTE9 LE 468,355,006 10.4%4%
Oct. 5, 11:00am (2:00am-3:00am) OCTE9 LP 978,911
End of trace: normal hour OCTE89 MB 827 287,174 18 4%
Oct. 6, 7:51am (5:00pm-6:00pm) OCTE9 MP 1.359 656
busy hour OCTE9 HB 1.382 483 551 30.7%%
(11:00am-12:00am) OCT89 1P 2.141,245
JANWUARTY 1990 total (40_16 hours) 7,122 417,589 27954 961 3.9%2%
Start of trace: low hour (Jan. 11, JTANOO LB 87.299 639 1.9%%
Jan. 10, 6:07am 8:32pm-9:32pm) JANSO LP 310,038
End of trace: normal hour (Jan. 10, JTANO0O MB 182.636.845 4 1%o
Jan. 11. 10:17pm 9:32am-10:32am) JAINS90O MP 643,451
busy hour (Jan. 11. TANO0. HB 711.529.370 15.8%
10:32am-11:32am) JANSO HP 1,391 718
FEBRUARY 1992 total (47 .91 hours) 6585 355,731 27,674 814 3.1%
Start of trace: low hour (Feb. 20, FEB92 1B 56,811,435 1.32%
Feb. 18, 5:22am 1:Z1lam-2:21am) FEEBS2 LP 231,823
End of trace: normal hour (Feb. 18, FEB92 MB 154 626,159 3 4%
Feb. 20 5:16am 8:21pm-9:21pm) FEB92 MP 524 458
busy hour (Feb. 18, FEBO2 HB 225 066,741 5.0%
11:21am-12-21am) FEB92 HP 947 662

Table 1. Qualitative description of the sets of Ethernet traffic
measurements used in the analysis in Section 4.2




Statistical tests for Self-Similarity

* Variance-time plots

— Analysis of the variances of the aggregated
processes

« R/S Statistic
— Time-domain analysis of the data

* Periodogram Analysis
— Frequency domain analysis (~ FFT)
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Variance-time plot of sequence AUG89.MB. The asymptotic slope is clearly larger than the
slope -1.0 of the dotted reference line and is readily estimated to be about -0.40. H=0.80



Significance of self-similarity

« Nature of traffic generated by individual Ethernet
users. Aggregate traffic study provides insights
into traffic generated by individual users.

« Commonly used measures of “burstiness” like
IDC, peak-to-mean ratio etc. are not meaningful
for self-similar traffic and can be replaced by
Hurst parameter.

« Nature of congestion produced by self-similar
models differs drastically from that predicted by
standard formal models



Why is Ethernet traffic self-similar 7

* Plausible physical explanation of self-
similarity in Ethernet traffic

= Convergence results for processes that
exhibit high variability (i.e., infinite
variance)

Willinger, Tagqu, Sherman and Wilson: Self similarity through high
variability: Statistical Analysis of Ethernet LAN traffic at Source Level

ACM SIGCOMM 1995



Mathematical Result

« Superposition of many ON/OFF sources
whose ON-periods and OFF-periods
exhibit the Noah-effect ( i.e., have high
variability or infinite variance) produces
aggregate network traffic that features the
Joseph effect (i.e., is self-similar or long-
range dependent).

— Terminology attributed to Mandelbrot



ldealized ON/OFF Model

 Theorem 1. For large enough source Number M and
Block aggregation size b, the cumulative load

{W,, , (i), =0} behaves statistically as

3—« 1

where H = > and 7 = 2@ -D2-2)G-a)




Measurements and Analysis

 Two sets of Ethernet measurements from
the Bellcore measurements. (89 & 94)

* Unlike previous studies, data has been
classified according to source-destination
pairs by looking at headers to verify
— The ON/OFF traffic model assumption

— The Noah Effect for the corresponding ON
and OFF periods
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Checking for the Noah Effect

« Complementary distribution plots
log(P(U >u)) ~ log(c) —alog(u),asu — o
* Hill's estimate

—LetU,, U,,..., U, denote the observed ON-(or
the corresponding order statistics

~ 1 i=k-1 -1
a, = (K 2 (logU ;- IogU(nk))j
1=0
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Fig. 2. Complementary distribution plots for ON-periods (top left) and OFF-periods (top right) for the source-destination pair 10-18,
using a threshold value of t = 2s; for a sample from an egponential distribution that matches the ON-periods (lower left), and for a
sample from a Pareto distribution that matches the OFF-periods (lower right). (The vertical solid, dotted and dashed lines indicate
that 10%, 20% and 50% of all data points are to the right of the respective lines.)
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Fig. 3. Hill estimate plots for ON-periods (top left) and OFF-periods (top right) for the source-destination pair 10-18, using a threshold

value of + = 25 for a sample from an erponential distribution that matches the ON-periods (lower left), and for a sample from a
Pareto distribution that matches the OFF-periods (lower right). (The vertical solid, dotted and dashed lines indicate that 10%, 20%
and 50% of the largest order statistics have been included in the Hill estimation calculation.)



Robustness of the Noah Effect

« As far as the Noah effect is concerned it doesn’t
matter how the OFF-periods or the inter-train
distances (or for that matter ON-periods or the train
lengths) are defined. (choice of threshold t)

 Why??

— Distributions that satisfy the hyperbolic tail condition are
scalable.

for sufficiently large u,t and u >t

P(U >u|U >t)~(l:j l<a<?
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Fig. 4. An illustration of the robustness property of the Noah Effect for the OFF-periods (using source 10). For threshold values
t = 1.0=,0.205 and 0.025s, the top row gives the complementary distribution plots and the bottom row the corresponding Hill plots.



Implications of Noah Effect

 Traffic Modeling and Synthetic traffic
generation

— Parsimonious modeling is still possible
despite the complexity of network traffic since
a single parameter needs to be estimated.

* Performance and Protocol Analysis

— Fewer meaningful parameters that need to be
iInvestigated
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What is the impact of LRD on
queuing in a packet network ?

* Queuing Performance
— When incoming traffic is fractal in nature

* Conditions under which parsimonious
traffic models are appropriate

A. Erramilli, O.Narayan and W. Willinger, “Experimental
Queuing Analysis with Long Range Dependent Packet
Traffic” IEEE/ACM Trans. Networking, vol. 4, no. 2, Apr
1996



Experimenting with Traces

* A single 30-min trace.

— Variabllity of relevant traffic statistics is within
confidence limits

— Experiment with inter-arrival traces to
preserve inter-arrival time distributions

« Queuing System Characteristics

— Infinite waiting room, deterministic service
time and single server



Experimenting with traces(2)

* Three sets of experiments
— Original trace

— QNA based approximations (two-moment
approximation for the mean waiting time in a
GI/G/1 queue)

— Synthetic trace obtained by shuffling the time
series of inter-arrival times

— Vary the service time of the server to obtain
different utilizations of the queue
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Fig. 2. Average delay (in seconds) versus utilization plot for original trace
{A). QNA-based approximation (B), and fully shuffled trace (C).

Check the “knee of the curve”
Differences between A and C suggest that even the best renewal model
will underestimate the delays at moderate to high utilizations



Two more experiments

 Divide the inter-arrival times Ethernet trace
into blocks of size m

— External shuffle
» order of the blocks is shuffled
 preserving the sequence within.
* preserves short-range correlations

— Internal shuffle
» Sequence within each block is randomized

* Order of blocks is preserved
» Destroys short-range correlations
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Fig. 4. Average delay (in seconds) versus utilization plot for original trace
(A), trace with identical one-step correlations (D), externally shuffled trace

(E). and internally shuffled race (F).

m=25;
average block duration=76ms,
varying from 14-629ms;

*The internally shuffled trace is almost coincident with the original trace
*The LRD is not only important for queuing performance but is a dominant
characteristic for determining several issues in traffic engineering
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Fig. 5. Average delay (in seconds) versus utilization plot for original trace
(A), fully shuffled (i.e.. external shuffle with block size mr = 1) trace (C),
externally shuffled trace with block size e = 25 (E). and externally shuffled
trace with block size e = 500 (G).

*Correlations over extremely long time scales in the data have
measurable practical consequences

A description in terms of arrival counts over a small time
interval is adequate even though it won’t include traffic
characteristics below this scale



Observations

 Tails of queue length distributions
obtained with actual data traces are
heavier than indicated by exponential
delay (due to LRD).

* Experiments with counts are more in tune
with the past LRD studies. (similar results
are expected from data sets with time
series of counts in datasets)



Why does WWW traffic (subset of
network traffic) looks self-similar 7

Mark E, Crovella, and Azer Bestavros, “Self-
Similarity in World Wide Web Traffic: Evidence
and Possible Causes” IEEE/ACM Trans.
Networking, vol. 5, no. 6, Dec 1997

— Different from the earlier work which
decomposed the whole traffic as generated
from different sources



How is this different?

» Since the focus is on only web traffic, the
busiest four hours are taken

* Less busy hours do not show self similar
characteristics

— Possibly because the traffic demand is too
less in the logs of data collected



Data Collection

Modified NCSA Mosaic browser

URL, Session, User, Machine, Request Time, Document size,
Object Retrieval time

Convert logs to traffic time series, bytes transferred in each
request are allocated into bins spanning the transfer duration

TABLE 1
SumMmary Staristics For Trace Data Usep v Tris Stupy
Sesslons 4700
Users 501
URLs Eequested 373,775
Files Transferred 130,140
Unique Files Requested 46,830
Bytes Requested 2713 MB
Bytes Transferred 1848 MB

Unique Bvtes Requested 1088 MB




Explaining self-similarity

* Superposition of Heavy-Tailed Renewal
Processes

— ON times correspond to the transmission
duration of individual web objects (assumption
that transmission rate is constant during ON
times)

— OFF times correspond to the intervals
between transmissions

 Examining Transmission Times
— Distribution of web transmission times
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Explaining self-similarity

— Why are transmission times variable ?
 Size distribution of web objects (files) a=1.15
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Explaining Self-Similarity

« Rather than the set of file requests made by users, the
transmission times are more strongly determined by the
set of available files.
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Explaining Self-Similarity

* Using the www-stat

tool, file size distribution

at web servers can be
obtained

 This distribution closely

matches Unique files
distribution

LoglOiP[X=>x]}

=

Umgque Files
Available Files ———
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LoglU(File Size in Byles)

b
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Explaining Self-Similarity

* Why are available file-sizes heavy-tailed ?
* Probably a property of most data storage systems
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Examining Self-Similarity

— The Off-times’ distribution( a=1.5)

— Weibull & Pareto distributions for active and inactive
times
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Future Work

« Parsimonious modeling is good enough
but it doesn’t quantify the effects of various

factors in traffic management

* Multi-resolution signal processing using
Wavelets as used for quakes’ prediction
may be used for traffic prediction too !!

— Choice of wavelet and the subsequent math



