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Motivation

Three notions of constancy

= Mathematical

= Operational

= Predictive

Constancy of three Internet path properties
= Packet loss

= Packet delays

= Throughput

Conclusions




Motivation

= Interests in network measurement
= Mathematical modeling
= Operational procedures
= Adaptive applications

= Measurements are most valuable
when the relevant network properties
exhibit constancy

» Constancy: holds steady and does not
change

Mathematical Constancy

= Mathematical Constancy
= A dataset is mathematically steady if it can be
described with a single time-invariant mathematical
model.
= Simplest form: [ID — independent and identically distributed
= Key: finding the appropriate model

= Examples

= Mathematical constancy

= Session arrivals are well described by a fix-rate Poisson
process over time scales of 10s of minutes to an hour [PF95]

= Mathematical non-constancy
= Session arrivals over larger time scales




Operational Constancy

= Operational constancy

= A dataset is operationally steady if the quantities
of interest remain within bounds considered
operationally equivalent
= Key: whether an application cares about the changes

= Examples

= Operationally but not mathematically steady

= Loss rate remained constant at 10% for 30 minutes and
then abruptly changed to 10.1% for the next 30 minutes.

Predictive Constancy

= Predictive constancy

= A dataset is predictively steady if past
measurements allow one to reasonably predict
future characteristics
= Key: how well changes can be tracked

= Examples
= Mathematically but not predictively steady
= |ID processes are generally impossible to predict well
= Neither mathematically nor operationally steady,
but highly predictable
« E.g.RTT




Analysis Methodology

= Mathematical constancy
= Identify change-points and partition a timeseries into
change-free regions (CFR)
= Test for IID within each CFR
= Operational constancy
= Define operational categories based on
requirements of real applications
= Predictive constancy

» Evaluate the performance of commonly used
estimators
= Exponentially Weighted Moving Average (EWMA)
= Moving Average (MA)
= Moving Average with S-shaped Weights (SMA)

Predictive Constancy of Loss Rate

s Estimators
= MA, SMA, EWMA
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Testing for Change-Points

= ldentify a candidate change-point using CUSUM

o

Cy = Ay« (Ti —E(T))

= Use CUSUM and bootstrapping to detect
changes(CP/Bootstrap)
= Analyze ranks — resistant to the presence of outlier
= Find a candidate change-point
= Use bootstrap analysis

Testing for Change-Points -
CP/RankOrder

= Analyze ranks — resistant to the presence of
outlier

For HXjLi =1, 2, ..., n
ri: rank of X;
= Find a candidate change-point
n
S = arj
j=1
S =i Hn+1Lé2
Si*=ES -5 E,
Candi dat e change —-point at i+, s.t.
Sif>Si% where l<i<n, i %ig
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Testing for Change-Points -
CP/RankOrder(Cont’d)

= Bootstrap analysis
A. Let Sgiff = Snax — Smin, Where
Shax = i=£n_a_>$’nHSi L
Snin = i:{n:.r?,nHSi L
B. Cenerate bootstrapsanple : x'{, x'§, xh 1<k <M
HSanpl i ngwo é repl acenent L
C. Calculate S¢, 1<k <M

1 if S§fe < Sqi
Y= 9 . 5Iff di f f '
0 i f Sﬁiff > Sdiff
M
X= &Yy
k=1
Change -point at i ¢wi thconfidencelLevel = 100 v %
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Measurement Environment

= Two basic types of measurements

= Poisson packet streams (for loss and delay)
= Payload: 64 or 256 bytes; rate: 10 or 20 Hz;
duration: 1 Hour.
= Poisson intervals
= Bi-directional measurements > RTT

= TCP transfers (for throughput)

= 1 MB transfer every minute for a 5-hour period

s Measurement infrastructure

= NIMI: National Internet Measurement Infrastructure
= Patterned after Paxson's Network Probe Daemon (NPD),
= 35-50 hosts
= ~75% in USA; the rest in 6 countries

= Well-connected: mainly academic and research institute
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Datasets Description

= Two main sets of data
= Winter 1999-2000 (W,)
= Winter 2000-2001 (W.)

Dataset # !\“MI # packet it packets f# thruput # transfers
sites | traces traces
W, 31 2,375 140M 58 16,900

W, 49 1,602 113M 111 31,700

W, +W, 49 3,977 253M 169 48,600
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Individual Loss vs. Loss Episodes

= Traditional approach — look at individual losses
[B093,Mu94,Pa99,YMKT99].
= Correlation reported on time scales below 200-1000 ms

= Our approach — consider loss episodes
= Loss episode: a series of consecutive packets that are lost

= Loss episode process — the time series indicating when a
loss episode occurs

= Can be constructed by collapsing loss episodes and the
non-lost packet that follows them into a single point.

loss process a9 nam! 1 Mo}
episode process

14




Source of Correlation in the
Loss Process

= Many traces become consistent with [ID when we consider
the loss episode process
= |ID-independent identically distributed - Box-Ljung test
Box -Ljung statistic Q
k
r2
X =n Hn+2L;"‘a‘_n Ii , whererjistheautocorrelation
i=1
Cov Hxt+k, XtL
eVar Hxt+kL Var HxtL

ri =

Under null hypothesis: xt are independent Gaussian RV,
Q converges to c® distribution.
If Q > c%_a Hl1 -a quantile of c®distributi onL, reject.
If Q < c%_a accept .
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Source of Correlation in the
Loss Process(Cont’d)

*Individual Loss vs. Loss Episodes

Traces consistent with ID

Loss Episode

27% 64%

«Correlation in the loss process is often due to back-to-back
losses, rather than intervals over which loss rates become
elevated and “nearby” but not consecutive packets are lost.
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Poisson Nature of
Loss Episodes within CFRs

» Independence of loss episodes within
change-free regions (CFRSs)

IID CFRs IID traces
88% 64%

= Exponential distribution of interarrivals within
change-free regions

= 85% CFRs have exponential interarrivals

Loss episodes are well modeled as homogeneous
Poisson process within change-free regions.
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Mathematical Constancy of
Loss Episode Process

Size of Largest Change Free Regions
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= X: size of the largest CFR found for each trace

= CFR: Change Free Regions. (Change-point test)
m “Lossy” traces are traces with overall loss rate over 1%
= Only 50% with largest CFR>20mins
= Higher loss rate makes the loss episode process less steady

= All traces: more than half of the traces are steady over full
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Poisson Nature of
Loss Episodes within CFRs(Cont’d)

= Exponential distribution of interarrivals
within change-free regions
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X: length of the loss-free periods(loss episode inter-arrival time)
Y: CDF

Argues strongly for Poisson loss episode arrivals
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Operational Constancy of Loss Rate

= LOss rate categories
= 0-0.5%, 0.5-2%, 2-5%, 5-10%, 10-20%, 20+%
= Probabilities of observing a steady interval
of 50 or more minutes

Interval to
calculate loss Type Prob.
rate:
1 min Episode 1%
Loss 57%
Episede 2504
10 sec tess 225

20

10



Mathematical

vs. Operational

= Categorize traces as “steady” or “not steady”
= Whether a trace has a 20-minute steady region

M: Mathematically steady
O: Operationally steady

Interval
Set -

1 min 10 sec
MO 6-9% 11%
MO 6-15% | 37-45%
MO 2-5% 0.1%
MO 74-83% | 44-52%

Operational constancy of packet loss coincides with
mathematical constancy on big time scales (e.g. 1 min), but not
so well on medium time scales (e.g. 10 sec).
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=
.

Cumulative Probability

=
o

=
o

L=

Predictive Constancy of Loss Rate

= What to predict?

= The total time of next loss
free run

s Estimators

= EWMA, MA, SMA
= Mean prediction error
E [| log (predicted / actual) | ]

o 2

4 _ 6 _ 8
Mean Prediclion Ermor

The parameters.don’t. matter

nor.does the averaaina.scheme
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Effects of Mathematical and
Operational Constancy on Prediction

= How predictive constancy is related with
mathematical constancy and
operational constancy.

= Aim only to understand the coarse grained
relationship

= Consider a trace mathematically steady if it
has a maximum CFR of at least 20 mins.

» Consider a trace operationally steady if it
stays within a particular loss region for at
least 20 mins
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Effects of Mathematical and
Operational Constancy on Prediction

1
(cont’'d)
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Effects of Mathematical and
Operational Constancy on Prediction
(cont’'d)

* Quality of the predictor is virtually unchanged if we
have
e MO
« MO
« MO

» Prediction performance is the worst for traces that
are both mathematically and operationally steady

= LOSs episode process resembles an IID process
-no significant short-term variations

-recent samples provide no help in predicting the
next event
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Delay Constancy

= Mathematical constancy

= Delay “spikes”
= A spike is identified when
R*3 max{ K-R, 250ms } (K=2or 4)
where

R”is the new RTT measurement;
R is the previous non-spike RTT measurement;

= The spike episode process is well described as Poisson
within CFRs

= Body of RTT distribution
= Good agreement (90-92%) with 1ID within CFRs

26
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Delay Constancy (cont’'d)

= Operational constancy

= Operational categories

= 0-0.1sec, 0.1-0.2sec, 0.2-0.3sec, 0.3-0.8sec,
0.8+sec

Based on ITU Recommendation G.114
= No operational constancy

= Over 50% traces have max steady regions
under 10 min;

= 80% are under 20 minutes
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Delay Constancy (cont’'d)

= Predictive constancy
= All estimators perform similar

= Highly predictable in general (whether including RTT spikes
or not)
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CDFs of the mean error for alarge number of delay predictors.

1.5
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Throughput Constancy

= Mathematical constancy

Apply change-point analysis to the mean of the series of per-
minute throughput measurements.

i 1 ] ] a

Hreurs
CDF of maximum and weighted average CFRsfor throughput achieved transferring 1 MB
using TCP. X: length of maximum CFR or weighted average of lengt h of CFR(in
hours). Y: Cumulative distribution function.
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Throughput Constancy

= Operational constancy
= Categorize based on p=Max_Throughput/Min_Throughput.

= Distribution of length of period in which bw stays in the region of
p<a.

Hawirs
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Throughput Constancy

= Mathematical Constancy vs. Operational Constancy

= No simple relationship between mathematical constancy and
operational constancy due to there is a wide range as p = 1.2 ~ 10.

P AMAO (MO MO [MO

1.2 |53% [39% [2.4% |5.9%

10 [3.6% |1.2% |515 |43.8
% %
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Throughput Constancy

= Predictive constancy

All estimators perform very similar
Estimators with long memory perform poorly — MA and SMA with
windows of 128

For math steady traces(max CFR>1h), estimators do twice as well
as they do on all the traces.
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Conclusions

= Three kinds of constancy:
Mathematical, Operational, Predictive

= Three key Internet path properties
= |ID works surprisingly well
= It's important to find the appropriate model.
= Different classes of predictors frequently used in
networking produced very similar error levels

= One can generally count on constancy on at least
the time scales of minutes
= This gives the time scales for caching path parameters
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Thanks
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