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Talk Outline
n Paper discussed: On the Constancy of Internet Path 

Properties. Yin Zhang, Nick Duffield, Vern Paxson, Scott 
Shenker. IMW 2001

n Motivation
n Three notions of constancy

n Mathematical
n Operational
n Predictive

n Constancy of three Internet path properties
n Packet loss
n Packet delays
n Throughput

n Conclusions
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Motivation

n Interests in network measurement
n Mathematical modeling
n Operational procedures
n Adaptive applications

n Measurements are most valuable 
when the relevant network properties 
exhibit constancy
n Constancy: holds steady and does not 

change
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Mathematical Constancy

n Mathematical Constancy
n A dataset is mathematically steady if it can be 

described with a single time-invariant mathematical 
model.
n Simplest form: IID –independent and identically distributed
n Key: finding the appropriate model

n Examples
n Mathematical constancy

n Session arrivals are well described by a fix-rate Poisson 
process over time scales of 10s of minutes to an hour [PF95]

n Mathematical non-constancy
n Session arrivals over larger time scales
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Operational Constancy

n Operational constancy
n A dataset is operationally steady if the quantities 

of interest remain within bounds considered 
operationally equivalent
n Key: whether an application cares about the changes

n Examples
n Operationally but not mathematically steady

n Loss rate remained constant at 10% for 30 minutes and 
then abruptly changed to 10.1% for the next 30 minutes.
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Predictive Constancy

n Predictive constancy
n A dataset is predictively steady if past 

measurements allow one to reasonably predict 
future characteristics
n Key: how well changes can be tracked

n Examples
n Mathematically but not predictively steady

n IID processes are generally impossible to predict well

n Neither mathematically nor operationally steady, 
but highly predictable
n E.g. RTT
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Analysis Methodology

n Mathematical constancy
n Identify change-points and partition a timeseries into 

change-free regions (CFR)
n Test for IID within each CFR

n Operational constancy
n Define operational categories based on 

requirements of real applications
n Predictive constancy

n Evaluate the performance of commonly used 
estimators
n Exponentially Weighted Moving Average (EWMA)
n Moving Average (MA)
n Moving Average with S-shaped Weights (SMA)
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Predictive Constancy of Loss Rate

n Estimators

n MA, SMA, EWMA

MA HMoving AverageL
S HtL =

Úi=1
M Y Ht - iL

M
, M r 1

SMA HS - shaped Moving AverageL
S HtL =

Úi=1
M wi Y Ht - iLÚi=1

M wi
, M r 1

EWMA  HExponentially Weighted Moving AverageL
S HtL = aY HtL + H1 - aL S Ht - 1L ae@0, 1D.
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Testing for Change-Points

n Identify a candidate change-point using CUSUM

n Use CUSUM and bootstrapping to detect 
changes(CP/Bootstrap)
n Analyze ranks –resistant to the presence of outlier
n Find a candidate change-point
n Use bootstrap analysis

Ck = ∑i=1..k (Ti –E(T))Ti

E(T)
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Testing for Change-Points -
CP/RankOrder

n Analyze ranks –resistant to the presence of 
outlier

n Find a candidate change-point

For HXiL i = 1, 2, ..., n
ri: rank of Xi

Si = â
j=1

n
ri

Si = i Hn + 1L ê2
Si

¢ = È Si- Si È,
Candidate change - point at it , s.t.

Sit
¢ > Si¢ , where 1 b i b n, i ¹ it
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Testing for Change-Points -
CP/RankOrder(Cont’d)

n Bootstrap analysis
A. Let Sdiff= Smax- Smin, where

Smax = max
i=1,...,n

HSiL
Smin = min

i=1,...,n
HSiL

B. Generate bootstrap sample : x1
k, x2

k, ..., xn
k, 1 b k b M.HSampling wo ê replacementL

C. Calculate Sdiff
k , 1 b k b M

Yk= 91 if Sdiffk < Sdiff
0 if Sdiffk r Sdiff

,

X = â
k=1

M
Yk,

Change -point at it with confidence Level = 100 
X
M

 %
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Measurement Environment

n Two basic types of measurements
n Poisson packet streams (for loss and delay)

n Payload: 64 or 256 bytes; rate: 10 or 20 Hz; 
duration: 1 Hour.

n Poisson intervals
n Bi-directional measurements à RTT

n TCP transfers (for throughput)
n 1 MB transfer every minute for a 5-hour period

n Measurement infrastructure
n NIMI: National Internet Measurement Infrastructure

n Patterned after Paxson's Network Probe Daemon (NPD), 
n 35-50 hosts
n ~75% in USA; the rest in 6 countries
n Well-connected: mainly academic and research institute
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Datasets Description

n Two main sets of data
n Winter 1999-2000 (W1)
n Winter 2000-2001 (W2)

31,700111113M1,60249W2

49

31

# NIMI
sites

48,600169253M3,977W1 + W2

16,90058140M2,375W1

# transfers
# thruput

traces
# packets

# packet
traces

Dataset
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Individual Loss vs. Loss Episodes

n Traditional approach –look at individual losses 
[Bo93,Mu94,Pa99,YMKT99].
n Correlation reported on time scales below 200-1000 ms

n Our approach –consider loss episodes
n Loss episode: a series of consecutive packets that are lost
n Loss episode process –the time series indicating when a 

loss episode occurs
n Can be constructed by collapsing loss episodes and the 

non-lost packet that follows them into a single point.

1 0 11 1 010 0

0 0 1 1 10 0 0

0 00 0loss process
episode process
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Source of Correlation in the 
Loss Process

n Many traces become consistent with IID when we consider 
the loss episode process

n IID-independent identically distributed - Box-Ljung test

Box - Ljung statistic Qk

Qk = n Hn + 2L ã
i=1

k
ri
2

n - i
, where riis the autocorrelation

ri =
Cov Hxt+k, xtLèVar  Hxt+kL Var  H xtL

Under null hypothesis : xt are independent Gaussian RV,
Qk converges to c2 distribution.

If Qk r c1-a
2 H1 - a quantile of c2 distributionL, reject.

If Qk < c1-a
2 accept.
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Source of Correlation in the 
Loss Process(Cont’d)

•Individual Loss vs. Loss Episodes

•Correlation in the loss process is often due to back-to-back 
losses, rather than intervals over which loss rates become 
elevated and “nearby” but not consecutive packets are lost.

Traces consistent with IID

64%27%

EpisodeLoss
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Poisson Nature of 
Loss Episodes within CFRs

n Independence of loss episodes within 
change-free regions (CFRs)

n Exponential distribution of interarrivals within 
change-free regions
n 85% CFRs have exponential interarrivals

88%

IID CFRs

64%

IID traces

Loss episodes are well modeled as homogeneous 
Poisson process within change-free regions.
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Mathematical Constancy of
Loss Episode Process
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n X: size of the largest CFR found for each trace
n CFR: Change Free Regions. (Change-point test)

n “Lossy” traces are traces with overall loss rate over 1%
n Only 50% with largest CFR>20mins
n Higher loss rate makes the loss episode process less steady

n All traces: more than half of the traces are steady over full 
hour
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Poisson Nature of 
Loss Episodes within CFRs(Cont’d)

n Exponential distribution of interarrivals 
within change-free regions

• X: length of the loss-free periods(loss episode inter-arrival time)

• Y: CDF
• Argues strongly for Poisson loss episode arrivals

20

Operational Constancy of Loss Rate

n Loss rate categories
n 0-0.5%, 0.5-2%, 2-5%, 5-10%, 10-20%, 20+%

n Probabilities of observing a steady interval 
of 50 or more minutes

n .

71%Episode
1 min

22%Loss
25%Episode

10 sec

57%Loss

Prob.Type
Interval  to 

calculate loss 
rate:
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Mathematical vs. Operational

n Categorize traces as “steady” or “not steady”
n whether a trace has a 20-minute steady region

M: Mathematically steady
O: Operationally steady

Operational constancy of packet loss coincides with 
mathematical constancy on big time scales (e.g. 1 min), but not 

so well on medium time scales (e.g. 10 sec).

Interval

44-52%74-83%
0.1%2-5%

37-45%6-15%
11%6-9%

10 sec1 min 
Set

MO MOMŌ ¯MŌ¯

MŌ¯

MO¯

MŌ

MO
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Predictive Constancy of Loss Rate

n What to predict?
n The total time of next loss 

free run

n Estimators

n EWMA, MA, SMA

n Mean prediction error
E [ | log (predicted / actual) | ]

The parameters don’t matter, nor does the averaging scheme.
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n How predictive constancy is related with 
mathematical constancy and 
operational constancy. 
n Aim only to understand the coarse grained 

relationship
n Consider a trace mathematically steady if it 

has a maximum CFR of at least 20 mins. 
n Consider a trace operationally steady if it 

stays within a particular loss region for at 
least 20 mins

Effects of Mathematical and 
Operational Constancy on Prediction

24

Effects of Mathematical and 
Operational Constancy on Prediction 

(cont’d)
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Effects of Mathematical and 
Operational Constancy on Prediction 

(cont’d)
• Quality of the predictor is virtually unchanged if we 

have
• MO
• MO
• MO

• Prediction performance is the worst for traces that 
are both mathematically and operationally steady
n Loss episode process resembles an IID process

-no significant short-term variations
-recent samples provide no help in predicting the 

next event

¯

¯

¯ ¯
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Delay Constancy

n Mathematical constancy
n Delay “spikes”

n A spike is identified when 
n R’ ≥ max{ K·R, 250ms } (K = 2 or 4)

where 
n R’is the new RTT measurement; 
n R is the previous non-spike RTT measurement; 

n The spike episode process is well described as Poisson 
within CFRs

n Body of RTT distribution
n Good agreement (90-92%) with IID within CFRs
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Delay Constancy (cont’d)

n Operational constancy
n Operational categories

n 0-0.1sec, 0.1-0.2sec, 0.2-0.3sec, 0.3-0.8sec, 
0.8+sec
n Based on ITU Recommendation G.114

n No operational constancy
n Over 50% traces have max steady regions 

under 10 min;
n 80% are under 20 minutes
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Delay Constancy (cont’d)

n Predictive constancy
n All estimators perform similar 
n Highly predictable in general (whether including RTT spikes 

or not)

CDFs of the mean error for a large number of delay predictors.
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Throughput Constancy

n Mathematical constancy
n Apply change-point analysis to the mean of the series of per-

minute throughput measurements. 

CDF of maximum and weighted average CFRs for throughput achieved transferring 1 MB 
using TCP. X: length of maximum CFR or weighted average of lengt h of CFR(in 
hours). Y: Cumulative distribution function. 
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Throughput Constancy

n Operational constancy
n Categorize based on p=Max_Throughput/Min_Throughput. 
n Distribution of length of period in which bw stays in the region of 

p<a.  
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Throughput Constancy

n Mathematical Constancy vs. Operational Constancy
n No simple relationship between mathematical constancy and 

operational constancy due to there is a wide range as p = 1.2 ~ 10. 

43.8 
%

51.5 
%

1.2 %3.6 %10

5.9%2.4%39%53%1.2

MO^MOM^O^M^Op
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Throughput Constancy

n Predictive constancy
n All estimators perform very similar
n Estimators with long memory perform poorly –MA and SMA with 

windows of 128
n For math steady traces(max CFR>1h), estimators do twice as well 

as they do on all the traces. 
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Conclusions

n Three kinds of constancy: 
Mathematical,  Operational,  Predictive

n Three key Internet path properties
n IID works surprisingly well

n It’s important to find the appropriate model.

n Different classes of predictors frequently used in 
networking produced very similar error levels

n One can generally count on constancy on at least 
the time scales of minutes
n This gives the time scales for caching path parameters
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Thanks


