
The Evolution of Layered Protocol Stacks Leads
to an Hourglass-Shaped Architecture (extended version)

∗

Saamer Akhshabi
College of Computing

Georgia Institute of Technology

sakhshab@cc.gatech.edu

Constantine Dovrolis
College of Computing

Georgia Institute of Technology

dovrolis@cc.gatech.edu

ABSTRACT

The Internet protocol stack has a layered architecture that resem-

bles an hourglass. The lower and higher layers tend to see frequent

innovations, while the protocols at the waist of the hourglass appear

to be “ossified”. We propose EvoArch, an abstract model for study-

ing protocol stacks and their evolution. EvoArch is based on a few

principles about layered network architectures and their evolution

in a competitive environment where protocols acquire value based

on their higher layer applications and compete with other protocols

at the same layer. EvoArch produces an hourglass structure that is

similar to the Internet architecture from general initial conditions

and in a robust manner. It also suggests a plausible explanation

why some protocols, such as TCP or IP, managed to survive much

longer than most other protocols at the same layers. Furthermore, it

suggests ways to design more competitive new protocols and more

evolvable future Internet architectures.

Categories and Subject Descriptors: C.2.5 [Computer Commu-

nication Networks]: Internet

General Terms: Theory

Keywords: Internet Architecture, Future Internet, Layering, Net-

work Science, Evolutionary Kernels, Evolution.

1. INTRODUCTION
Why does the Internet protocol stack resemble an hourglass? Is

it a coincidence, intentional design, or the result of an evolutionary

process in which new protocols compete with existing protocols

that offer similar functionality and services? The protocol stack

was not always shaped in this way. For instance, until the early

nineties there were several other network-layer protocols compet-

ing with IPv4, including Novell’s IPX, the X.25 network protocol

used in Frame Relay, the ATM network layer signaling protocol,

and several others. It was through a long process that IPv4 eventu-

ally prevailed as practically the only surviving protocol at layer-3,

creating a very narrow waist at the Internet architecture hourglass

(see Figure 1).

Another important question is: why do we tend to see more fre-

quent innovations at the lower or higher layers of the protocol

hourglass, while the protocols at the waist of the hourglass appear

to be “ossified” and difficult to replace? During the last 30–40

years we have seen many new physical and data link layer protocols

created and surviving. And of course the same can be said about

applications and application-layer protocols. On the other hand,

the protocols at the waist of the hourglass (mostly IPv4, TCP and

∗This research was supported by the NSF award 0831848 (“To-
wards a Theory of Network Evolution”).
This is an extended version of a paper with the same title that ap-
peared at ACM SIGCOMM 2011 [1].

TCP

HTTP
Skype/Kazaa

Kazaa

Twisted Pair
Fiber

Optical
CDMA TDMA

802.11EthernetPPP

IPv4

UDP

RTP

MPlayerSkypeFireFoxSilverlightThunderbird

Coaxial Cable

DOCSIS

P2P Protocol
POPSMTP

Figure 1: An (incomplete) illustration of the hourglass Internet

architecture.

UDP) have been extremely stable and they have managed to out-

compete any protocols that offer the same or similar functionality.

How can a new protocol manage to survive the intense competition

with those core protocols at the waist of the Internet hourglass? In

fact, the ossification of the hourglass waist has been a major moti-

vation for “clean-slate” efforts to design a novel future Internet ar-

chitecture [16]. There are two important questions in that context.

First, how can we make it more likely that a new (and potentially

better) protocol replaces an existing and widely used incumbent

protocol? And second, how can we make sure that a new archi-

tecture we design today will not be ossified 10–20 years later? In

other words, what makes a protocol stack or network architecture

evolvable? The previous questions have generated an interesting

debate [9, 10, 19].

In this paper, we attempt a first effort to study protocol stacks

(and layered architectures, more generally) as well as their evolu-

tion in a rigorous and quantitative manner. Instead of only con-

sidering a specific protocol stack, we propose an abstract model

in which protocols are represented by nodes, services are repre-

sented by directed links, and so a protocol stack becomes a layered

directed acyclic graph (or network). Further, the topology of this

graph changes with time as new nodes are created at different lay-

ers, and existing nodes are removed as a result of competition with

other nodes at the same layer.

The proposed evolutionary model, referred to as EvoArch, is

based on few principles about layered network architectures in which

an “item” (or service) at layer-X is constructed (or composed) us-

ing items at layer-(X-1). These principles capture the following:

(a) the source of evolutionary value for an item,

(b) the generality of items as we move to higher layers,

(c) the condition under which two items compete,

(d) the condition under which one item causes the death or removal

of a competing item.

Perhaps surprisingly, these few principles are sufficient to produce

hourglass-shaped layered networks in relatively short evolutionary

periods.

As with any other model, EvoArch is only an abstraction of re-

ality focusing on specific observed phenomena, in this case the

hourglass structure of the Internet protocol stack, and attempting

to identify a parsimonious set of principles or mechanisms that are

sufficient to reproduce the observed phenomena. As such, EvoArch

is an explanatory model (as opposed to black-box models that aim

to only describe statistically some observations). EvoArch deliber-

ately ignores many aspects of protocol architectures, such as the

functionality of each layer, technological constraints, debates in

standardization committees, and others.1 The fact that these practi-

cal aspects are not considered by EvoArch does not mean that they

are insignificant; it means, however, that if the evolution of network

architectures follows the principles that EvoArch is based on, then

those aspects are neither necessary nor sufficient for the emergence

of the hourglass structure.

EvoArch is certainly not going to be the only model, or “the cor-

rect model”, for the emergence of hourglass-shaped network archi-

tectures. It is likely that there are other models that can produce the

same hourglass structure, based on different principles and param-

eters. Additionally, EvoArch does not aim to capture every aspect

of the Internet architecture; it only focuses on the emergence of

the hourglass structure, and so it may be the wrong model to use

for other purposes (e.g., to study the economics of new protocol

deployment). G.Box wrote that “all models are wrong but some

models are useful” [3]. We believe that EvoArch is a useful model

for (at least) the following ten reasons:

1- It gives us a new way to think about protocol stacks and net-

work architectures and to study their evolutionary properties based

on few fundamental principles (§2).

2- EvoArch provides a plausible explanation (but certainly not the

only explanation) for the emergence of hourglass-like architectures

in a bottom-up manner (§3).

3- EvoArch shows how the location and width of the hourglass

waist can follow from certain key parameters of the underlying evo-

lutionary process (§5).

4- EvoArch can be parameterized to produce a structure that is sim-

ilar to the TCP/IP protocol stack, and it suggests an intriguing ex-

planation for the survival of these protocols in the early days of the

Internet (§5.4).

5- EvoArch suggests how to make a new protocol more likely to

survive in a competitive environment, when there is a strong in-

cumbent (§5.5).

6- EvoArch provides recommendations to designers of future Inter-

net architectures that aim to make the latter more evolvable (§5.5).

7- EvoArch predicts that few protocols at the waist (or close to it)

become ossified, surviving much longer than most other protocols

at the same layer, and it shows how such ossified protocols can be

eventually replaced (§6).

8- When we extend EvoArch to capture the effect of different pro-

tocol qualities, we find that the lower part of the hourglass is sig-

nificantly smaller than the upper part (§7.1).

9- The most stable protocols at the waist of the architecture are of-

ten not those with the highest quality (§7.2).

10- Finally, EvoArch offers a new way to think about the compe-

1The reader can see some of the criticism raised by anonymous
reviewers in Section 9.

tition between IPv4 and IPv6 and to understand why the latter has

not managed to replace the former (§7.3).

The rest of the paper is structured as follows. In Section 2, we

describe EvoArch and explain how the model relates to protocol

stacks and evolving network architectures. In Section 3, we present

basic results to illustrate the behavior of the model and introduce

some key metrics. Section 4 is a robustness study showing that the

model produces hourglass structures for a wide range of parameter

values. The effect of those parameters is studied in Section 5 fo-

cusing on the location and width of the waist. Section 6 examines

the evolutionary kernels of the architecture, i.e., those few nodes

at the waist that survive much longer than other nodes. Section 7

generalizes EvoArch in an important and realistic manner: what if

different protocols at the same layer have different qualities (such

as performance or extent of deployment)? We review related work

in Section 8, present some criticism in Section 9, and conclude in

Section 10.

2. MODEL DESCRIPTION
In EvoArch, a protocol stack is modeled as a directed and acyclic

network with L layers (see Figure 2). Protocols are represented

by nodes, and protocol dependencies are represented by directed

edges. If a protocol u at layer l uses the service provided by a pro-

tocol w at layer l−1, the network includes an “upwards” edge from

w to u.2 The layer of a node u is denoted by l(u). The incoming

edges to a node u originate at the substrates of u, represented by

the set of nodes S(u). Every node has at least one substrate, ex-

cept the nodes at the bottom layer. The outgoing edges of a node

u terminate at the products of u, represented by the set of nodes

P (u). Every node has at least one product, except the nodes at the

top layer.

The substrates of a node are determined probabilistically when

that node is created.3 Specifically, each layer l is associated with a

probability s(l): a node u at layer l+ 1 selects independently each

node of layer l as substrate with probability s(l). We refer to s(l)
as the generality of layer l. s(l) decreases as we move to higher

layers, i.e., s(i) > s(j) for i < j. The decreasing generality prob-

abilities capture that protocols at lower layers are more general in

terms of their function or provided service than protocols at higher

layers. For instance, in the case of the Internet protocol stack, a

protocol at layer-1 offers a very general bit transfer service between

two directly connected points; this is a service or function that al-

most any higher layer protocol would need. On the other extreme,

an application-layer protocol, such as SMTP, offers a very special-

ized service and it is only used by applications that are related to

email exchanges. Note that if node u does not select any substrate

from layer l we connect it to one randomly chosen substrate from

that layer.

Each node u has an evolutionary value, or simply value v(u) that

is computed recursively based on the products of u,

v(u) =

{ ∑

p∈P (u) v(p) l(u) < L

1 l(u) = L
(1)

2In practice, the principle of strict layering is occasionally violated
through tunnels or other forms of virtual networks. For the most
part, however, layering is the norm in protocol architectures rather
than the exception. Considering architectures without strict layer-
ing is outside the scope of this paper and an interesting subject for
future research.
3Of course in practice substrates are never chosen randomly. The
use of randomness in the model implies that a realistic mechanism
of substrate selection is not necessary for the emergence of the
hourglass structure.

1 111

1 2 2

5

1

wu4 q 1

1010109

s(4)=0

s(3)=0.3

s(2)=0.6

s(1)=0.9

Generality

Figure 2: A toy network with four layers. The value of each

node is shown inside the circle.

The value of the top-layer nodes is assumed to be fixed; in the sim-

plest version of EvoArch it is equal to one. So, the model captures

that the value of a protocol u is driven by the values of the protocols

that depend on u. For instance, TCP has a high evolutionary value

because it is used by many higher layer protocols and applications,

some of them being highly valuable themselves. A brand new pro-

tocol on the other hand, may be great in terms of performance or

new features, but its value will be low if it is not used by important

or popular higher layer protocols.

The value of a node largely determines whether it will survive the

competition with other nodes at the same layer that offer similar

services. Consider a node u at layer l. Let C(u) be the set of

competitors of u: this is the set of nodes at layer l that share at least

a fraction c of node u’s products, i.e.,

w ∈ C(u) if l(w) = l(u) and
|P (u) ∩ P (w)|

|P (u)|
≥ c (2)

The fraction c is referred to as the competition threshold. In other

words, a node w competes with a node u if w shares a significant

fraction (at least c) of u’s products, meaning that the former offers

similar services or functions with the latter. Note that the compe-

tition relation is not symmetric: w may provide a generic service,

having many products, and thus competing with several protocols

at the same layer; the latter may not be competitors of w if they

provide more specialized functions and have only few products.

Given the set of competitors of a node u, we can examine whether

u would survive the competition or die. The basic idea is that u dies

if its value is significantly less than the value of its strongest (i.e.,

maximum value) competitor. Specifically, let vc(u) be the maxi-

mum value among the competitors of u

vc(u) = max
w∈C(u)

v(w) (3)

If u does not have competitors, vc(u) and the death probability for

u are set to zero. Otherwise, we introduce the death probability

ratio r = v(u)
vc(u)

. The death probability pd(r) is then computed as

follows:

pd(r) =

{

e
−z r

1−r 0 < r < 1
0 r ≥ 1

(4)

The death probability function pd(r) is shown in Figure 3 for three

different values of the mortality parameter z. This parameter cap-

tures the intensity of the competition among protocols. As z de-

creases, the competition becomes more intense and it is more likely

that a protocol will die if at least one of its competitors has higher

value than itself.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
e

a
th

 P
ro

b
a

b
ili

ty

Death Probability Ratio r

z = 0.5
z = 1
z = 2

Figure 3: The death probability for three values of the mortal-

ity parameter z.

When a node u dies, its products also die if their only substrate

is u. This can lead to a cascade effect where the death of a node

leads to the death of several nodes in higher layers.

To illustrate the previous concepts, Figure 2 shows a toy net-

work with L = 4 layers. The generality probability for each layer

is shown at the left of the corresponding layer. Note that, on av-

erage, the number of products per node decreases as we move to

higher layers because the generality probability decreases in that

direction. Assuming that c = 3/5, nodes u and q are competitors

of node w in layer-2. It is likely (depending on the parameter z)

that w would soon die because its value is much less than that of its

maximum-value competitor, u. u is also a competitor of q but this

competition is much less likely to be lethal for the latter because its

value is comparable to that of u.

EvoArch captures the inherent competition between nodes at the

same layer, and specifically, between nodes that offer about the

same service. For instance, FTP and HTTP are two application-

layer protocols that can both be used for the transfer of files. The

large overlap of the services provided by HTTP with the services

provided by FTP (i.e., HTTP is a competitor of FTP) and the fact

that HTTP acquired over the years a larger evolutionary value from

its own higher layer products (applications such as web browsers)

leads to the extinction of FTP. On the other hand, TCP and UDP are

two transport layer protocols that offer largely different services.

Their competition, in terms of products (i.e., application layer pro-

tocols), is minimal and the two protocols have coexisted for more

than 30 years.

In the simplest version of EvoArch, the creation of new nodes

follows the basic birth process. Specifically, the number of new

nodes at a given time is set to a small fraction (say 1% to 10%) of

the total number of nodes in the network at that time, implying that

the larger a protocol stack is, the faster it grows. Each new node

is assigned randomly to a layer. In Section 6, we also examine a

death-regulated birth process, in which the frequency of births at a

layer depends on the death rate at that layer.

EvoArch is a discrete-time model. By tk, we denote the k’th

round. In each round, the model execution includes the following

steps in the given order:

a) birth of new nodes and random assignment to layers,

b) examine each layer l, in top-down order, and perform three tasks:

b.1) connect any new nodes assigned to that layer, choosing sub-

strates and products for them based on the generality probabilities

s(l − 1) and s(l), respectively,

b.2) update the value of each node at layer l (note that the value of a

node in the k’th round can be affected by nodes added in that same

round),

b.3) examine, in order of decreasing value in that layer, whether

any node should die (considering the case of cascade deaths).

Initially, we start with a small number of nodes at each layer,

and form the edges between layers as if all nodes were new births.

Unless noted otherwise, the execution of the model stops when the

network reaches a given number of nodes.4 We refer to each exe-

cution as an evolutionary path.

We have mathematically analyzed a significantly simpler version

of EvoArch (See Appendix). Those simplifications are: static anal-

ysis (i.e., a non-evolving network), a node can compete only with

the maximum-value node at that layer, each layer has the same

number of nodes n, and n s(L − 1) ≫ 1. Under the previous

assumptions, we derived a mathematical expression for the death

probability ratio r(l) for a node with the average number of prod-

ucts at layer l. Unfortunately the expression for r(l) is not math-

ematically tractable and it does not allow us to examine whether

it has a unique minimum. Numerically, however, that expression

suggests that the ratio r(l) has a unique minimum at a certain layer

l̂ that only depends on the generality probabilities and the competi-

tion threshold. Because the death probability decreases monotoni-

cally with r(l) (see Figure 3), the previous observation means that

the death probability has a unique maximum at layer l̂, and it de-

creases monotonically at layers above and below l̂. It is this death

probability pattern that pushes, over several evolutionary rounds,

the network to take the shape of a (generally asymmetric) hour-

glass with a waist at layer l̂. The interested reader can find these

derivations and further numerical results in the Appendix.

In the rest of the paper, the results are generated from discrete-

time simulations of the EvoArch model. The benefits of such com-

putational analysis are threefold: first, we do not need to make fur-

ther simplifying assumptions. Second, we can examine the dynam-

ics of the model, focusing on how the shape of the network changes

with time. And third, we can quantify the variability of the results

across many different evolutionary paths, instead of only looking

at expected values.

3. BASIC RESULTS
In this section, we illustrate the behavior of the EvoArch model

focusing on the width of each layer across time. We also introduce

the main metrics we consider, and the default values of the model

parameters.

The default values of EvoArch’s parameters are: L = 10 layers,

s(l) = 1− l/L (i.e., the generality decreases as 0.9, 0.8, . . . , 0.1, 0,

as we go up the stack), c = 0.6 (i.e., at least 3 out of 5 shared prod-

ucts), and z = 1 (see Figure 3). Each evolutionary path starts with

10 nodes at every layer, the average birth rate at each round is 5%

of the current network size, and an evolutionary path ends when the

network size reaches 500 nodes (but not sooner than 100 rounds).

Unless noted otherwise, we repeat each experiment 1000 times,

while the graphs show the median as well as the 10th, 25th, 75th

and 90th percentiles across all evolutionary paths. We emphasize

that the previous default values do not correspond, obviously, to

the characteristics of the Internet stack. A parameterization of the

model for that specific architecture is given in Section 5.4. EvoArch

is a general model for layered protocol stacks and it does not aim

to only capture the existing Internet architecture.

Figure 4 shows the width of each layer at the 50th and 100th

rounds of the evolutionary process (typically, the network reaches

4We have also experimented with a termination condition based on
the number of rounds, instead of the number of nodes. There is no
significant difference as long as the network can evolve for at least
few tens of rounds.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6 7 8 9 10

W
id

th

Layer Number

Round 100
Round 50

Figure 4: The median width of each layer at round-50 and

round-100 (percentiles are only shown for the latter).

500 nodes in about 100–150 rounds). Note that, at least in terms of

the median, the width decreases as we move from the bottom layer

to a middle layer, around layer 5, and then it increases again as we

move towards the top layer. There is some variability across evo-

lutionary paths however, and so we further examine if the network

structure has the shape of an hourglass in every evolutionary path.

To do so, we introduce a metric that quantifies the resemblance

of a layered network structure to an hourglass. Let w(l) be the

width of layer l, i.e., the number of nodes in that layer at a given

round. Let wb be the minimum width across all layers, and sup-

pose that this minimum occurs at layer l = b; this is the waist of

the network (ties are broken so that the waist is closer to ⌊L/2⌋).

Consider the sequence X = {w(l)}, l = 1, . . . b} and the sequence

Y = {w(l)}, l = b, . . . L}. We calculate the normalized univari-

ate Mann-Kendall statistic for monotonic trend on the sequences

X and Y as coefficients τX and τY respectively [12]. The co-

efficients vary between -1 (strictly decreasing) and 1 (strictly in-

creasing), while they are approximately zero for random samples.

We define H = (τY − τX)/2; H is referred to as the hourglass

resemblance metric. H = 1 if the network is structured as an hour-

glass, with a strictly decreasing sequence of b layers, followed by a

strictly increasing sequence of L − b layers. For example, the se-

quence of layer widths {10,6,8,2,4,7,10,12,9,16} (from bottom to

top) has wb = 4, τX = -0.67, τY = 0.81 and H = 0.74. Note that

we do not require the hourglass to be symmetric, i.e., the waist may

not always be at the middle layer.

Figure 5 shows H (median and the previous four percentiles) as

function of time. Note that it only takes few rounds, less than 10,

for the median H to exceed 80%. By the 100th round, the median

H is almost 95% and even the 10th percentile is more than 80%.

This illustrates that EvoArch generates networks that typically have

the shape of an hourglass. Even though the accuracy of the hour-

glass structure improves with time, the basic hourglass shape (say

H > 0.8) is formed within only few rounds. Figure 6 shows the

location of the waist as function of time, and the associated 10th

and 90th percentiles across 1000 evolutionary paths. With the de-

fault parameter values, the median waist is almost always located at

layer-6, while the 10th and 90th percentiles correspond to layers-5

and 7, respectively. So, even though there is some small variability

in the exact location of the waist across time and across different

evolutionary paths, the narrowest layer of the hourglass does not

fluctuate significantly.

Figure 7 shows the median width of the typical waist (layer-6),

as well as the median width of layers-1 and 9, as functions of time.

Even though all three layers start from the same number of nodes,

layers-1 and 9 become significantly wider with time, implying a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120

H

Round

H Score

Figure 5: The hourglass resemblance metric H over time.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120

H

Round

Bottleneck Position

Figure 6: The location of the waist of the hourglass over time.

low death probability. On the other hand, the width of the waist

remains relatively low compared to other layers. It typically de-

creases significantly in the first few rounds, as several of the initial

nodes are “unlucky” in terms of products and die soon. It then

slowly increases because higher layers become much wider, the

birth rate increases with the size of the network, and few additional

nodes at the waist can acquire significant value compared to the

maximum-value node in that layer.

Obviously, the major question is: why does EvoArch generate

hourglass-shaped networks? Let us discuss separately what hap-

pens at layers close to the top, close to the bottom, and close to the

waist.

Because the generality probability s(l) is quite low at layers

close to the top, those nodes typically have a small number of

products. This means that they rarely compete with each other,

and so the death probability is close to zero. For instance, in the

application-layer a new protocol can compete and replace an in-

cumbent only if the former provides a very similar service with the

latter (e.g., recall the example with FTP and HTTP).

At layers close to the bottom, the generality probability is close

to one, and so those nodes have many shared products and thus

several competitors. Their value is often similar however, because

those nodes typically share almost the same set of products. Thus,

the death probability at layers close to the bottom is also quite low.

At layers close to waist, where the generality probability is close

to 50%, the variability in the number of products is maximized—

recall that the variance of a Bernoulli random variable X(p) is max-

imum when p=50%. So, few nodes in that layer may end up with

a much larger number of products than most other nodes in the

same layer, and so with a much higher value. Those nodes would

compete with most others in their layer, often causing the death of

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100 110 120

W
id

th

Round

Layer 1
Layer 9

 Layer 6

Figure 7: The median width of three layers over time.

their competitors. In other words, the death probability at bottom

and top layers is quite low, while the death probability close to the

waist is higher. The birth rate, on the other hand, is the same for all

layers, and so the network’s middle layers tend to become narrower

than the bottom or top layers.

The reader should not draw the conclusion from the previous

simplified discussion that the waist is always located at the layer

with s(l)=0.5. As will be shown in Section 5, the competition

threshold c also affects the location of the waist. Also, it is not

true that the node with the maximum value at the waist never dies.

Section 6 focuses on these “extraordinary” nodes, showing that,

even though they live much longer than almost all other nodes in

their layer, under certain conditions they can also die.

4. ROBUSTNESS
In this section, we focus on the robustness of the hourglass re-

semblance metric H with respect to the parameters of the EvoArch

model. The robustness study has two parts. First, we show that

wide deviations from the default value, for a single parameter at a

time, do not cause significant changes in H . Second, we show that

even if we simultaneously and randomly vary all EvoArch param-

eters, the model still produces hourglass-like structures with high

probability.

Let us first focus on the three most important EvoArch parame-

ters: the competition threshold c, the generality probability vector

s, and the mortality parameter z. We have also examined the ro-

bustness of H with respect to the number of layers L, the birth rate,

the number of initial nodes at each layer, or the stopping criterion,

but those parameters have a much smaller impact on H .

Figure 8-a shows the median H score (together with the previous

four percentiles) as we vary c between 0 and 1. The value c = 0
corresponds to “global” competition meaning that two nodes of the

same layer compete with each other even if they do not share any

products. When the competition threshold is so low, the death prob-

ability becomes significant even at higher layers, as those nodes

start competing even without sharing many products. Thus, the up-

per part of the network deviates from the hourglass shape.

When c = 1, on the other hand, a node u competes with node

w only if the former shares all products of w. This means that

nodes rarely compete, and so most layers grow randomly, without

a significant death probability. There is a wide range of c (between

0.1 and 0.9) in which we get reasonably good hourglass structures

(H > 0.8) in most evolutionary paths. The best results, however,

are produced in the range 0.5 < c < 0.8. In that range, almost all

evolutionary paths produce H > 0.9.

To study the robustness of the model with respect to the gener-

ality vector s, we consider a function s(l) comprising of two lin-

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H

c

a-Effect of c on H

H Score

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9

H

γ

b-Effect of s on H

H Score

 0.6

 0.8

 1

 0.25 0.5 0.75 1 1.25 1.5 1.75 2

H

z

c-Effect of z on H

H Score

Figure 8: The hourglass resemblance score H as a function of

the competition threshold c, the layer γ at which the generality

is 50%, and the mortality parameter z.

ear segments that satisfy the constraints: s(1)=0.9, s(γ)=0.5 and

s(L)=0, where γ is any layer between layer-2 and layer-(L-1). This

function allows us to place the layer γ at which the generality prob-

ability is 50% at any (interior) layer of the architecture. Figure 8-b

shows H as we vary the layer γ. The model is extremely robust

with respect to variations in the generality vector s and layer γ.

Figure 8-c shows H as we vary the mortality parameter z. We

limit the range of z to less than 2.0 so that the death probability is

almost zero only if the value ratio r is close to one; this is not true

for higher values of z (see Figure 3). Note that H is typically higher

than 0.9 when 0.75 < z < 1.5. For lower values of z, the death

probability becomes so high that only the most valuable node tends

to survive in several layers. When z is higher than 1.5, the death

probability becomes too low and several layers grow randomly.

In the previous experiments, we varied one parameter at a time.

We now examine the robustness of the model when we randomly

sample each parameter value simultaneously from a certain range

(a Monte Carlo method). Together with the previous three param-

eters (c, s and z), we also consider here variations in the number

of layers L, the random number of initial nodes n0 separately at

each layer, the birth rate µ, and the maximum network size Nmax

at the end of an evolutionary path. A subtle point here is that, as L
increases, we need to make sure that Nmax is also increased (with

a larger number of layers the network should be allowed to grow

larger). For this reason we set Nmax = η L, and vary the factor η
instead of Nmax. We consider the following range for each param-

eter:

0.25 ≤ c ≤ 0.75, 3 ≤ γ ≤ L− 2, 0.75 ≤ z ≤ 1.5, 5 ≤ L ≤ 15,

1% ≤ µ ≤ 10%, 5 ≤ n0 ≤ 20, and 25 ≤ η ≤ 55.

We generate 1000 evolutionary paths, each with a randomly cho-

sen value for all previous parameters. The CDF of the hourglass

resemblance scores is shown in Figure 9. Even when we vary all

parameters randomly in the given ranges, the score H is still higher

than 0.9 in 68% of the evolutionary paths, and higher than 0.75 in

90% of the evolutionary paths. We manually examined some evolu-

tionary paths in which the score H is lower than 0.5. They typically

result from “bad” combinations of parameter values. For instance, a

large value of c in combination with a large value of z severely sup-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n

H

CDF of H

Figure 9: CDF of the hourglass resemblance score H when all

parameters vary randomly in a certain range (see text).

press deaths in all layers, allowing the network to grow randomly.

Or, a small value of c pushes the waist towards higher layers, while

a small γ pushes the waist towards lower layers, causing deviations

from the basic hourglass shape (e.g., a double hourglass shape with

two waists).

5. LOCATION AND WIDTH OF WAIST
In this section, we focus on the effect of the three major EvoArch

parameters (competition threshold c, generality vector s, and mor-

tality parameter z) on the location and width of the waist.5 We also

estimate the value of these three parameters in the case of the cur-

rent Internet architecture (TCP/IP stack), and discuss several im-

plications about the evolution of the latter and its early competition

with the telephone network. We also discuss how to design a new

architecture so that it has higher diversity (i.e., larger width) at its

waist compared to the TCP/IP stack.

5.1 Effect of competition threshold
Figure 10-a shows the location and width of the waist as c in-

creases. Recall from Section 4 that the model produces high values

of H when c is between 0.1 to 0.9. As c increases in that range,

the waist moves lower and its width increases. The competition

threshold c quantifies how similar the services or products of two

protocols must be before they start competing. As c increases, it

becomes less likely that two nodes compete. Especially at higher

layers, where the generality is low and nodes have few products,

increasing c decreases the frequency of competition and thus the

death probability. This means that those higher layers grow faster.

Nodes at lower layers, where s(l) is close to one, have many over-

lapping products and so they are less affected by c. Thus, increas-

ing c pushes the waist towards lower layers. The same reason-

ing (increasing c decreases the death probability) explains why the

waist becomes wider as c increases.

5.2 Effect of generality vector
As in Section 4, we focus on a two-segment piecewise linear

generality vector: the first segment extends between s(1) = 0.9 and

s(γ) = 0.5, and the second extends between s(γ) and s(L) = 0.

This function allows us to control the layer at which the generality

is 50% (and the variance of the number of products is maximized)

by modifying the parameter γ. Figure 10-b shows the location and

width of the waist as γ increases from layer-2 to layer-(L-1). Recall

that EvoArch produces high hourglass resemblance scores through-

5Any parameter we do not mention is set to the default value given
in § 3.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.2 0.4 0.6 0.8 1
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
L
a
y
e
r

N
u
m

b
e
r

W
id

th

c

a

Waist Location
Waist Width

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

L
a
y
e
r

N
u
m

b
e
r

W
id

th

γ

b

Waist Location
Waist Width

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.25 0.5 0.75 1 1.25 1.5 1.75 2
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

L
a
y
e
r

N
u
m

b
e
r

W
id

th

z

c

Waist Location
Waist Width

Figure 10: Location and width of the waist as a function of (a) competition threshold c, (b) layer γ with 50% generality, and (c)

mortality parameter z.

out that range. The general observation is that as γ increases, the

location of the waist increases. It is important however that the

location of the waist is not exactly equal to γ; in other words, the

variance in the number of products is not sufficient to predict the

layer at which the death probability is highest (and the width is low-

est). The competition threshold c also influences the location of the

waist, as previously discussed.

As γ increases, the width of the waist also increases. The reason

is that the location of the waist moves to layers with larger gener-

ality. For instance, Figure 10-b shows that when γ = 5 the median

waist is also at layer-5, while when γ = 8 the median waist is at

layer-6. Thus, when γ = 5, the generality of the waist is 50%,

while when γ = 8 the generality of the waist is approximately

61%. Higher generality, however, means a larger number of prod-

ucts for new nodes at the waist, a higher evolutionary value relative

to the node with the maximum number of products in that layer,

and thus a higher probability of survival.

5.3 Effect of mortality parameter
Recall that z controls the shape of the death probability (see Fig-

ure 3), with lower values of z causing more lethal competition. Fig-

ure 10-c shows the location and width of the waist when z varies

between 0.25 and 2.0. As expected, as z increases, the width of

the waist increases—the reason is that the death probability de-

creases, allowing more nodes to survive even though they compete

with other nodes. On the other hand, the parameter z does not have
a significant effect on the location of the waist.

5.4 Implications for the TCP/IP stack
In the current Internet architecture, the waist is located at the net-

work layer and so it is practically at the mid-point of the protocol

stack (see Figure 1). Further, the waist is very narrow: just one

dominant networking protocol (IPv4) and two major transport pro-

tocols (TCP and UDP). We have estimated a good parameterization

of the EvoArch model for the case of the TCP/IP stack (based on

trial-and-error and also exploiting the trends shown in Figure 10).

The values are: L = 6 (we distinguish between application-layer

protocols such as HTTP at layer-5, and individual applications such

as Firefox at layer-6), c ≈ 0.7, γ = 3, and z ≈ 0.3. With these pa-

rameter values the waist is almost always located at layer-3 and it

consists of only few nodes (typically less than three). The median

H score is 1 and the 10-90th percentiles are 0.66 and 1, respec-

tively.6

What do these parameter values imply about the evolutionary

characteristics of the current Internet architecture? In terms of the

6A corresponding parameterization using the more realistic death-
regulated birth process is given in Section 6.

parameter c, a competition threshold around 70% implies that two

protocols can co-exist in the TCP/IP stack as long as their relative

product overlap (see Equation 2) is no more than about 70%; other-

wise at least one of them will compete with the other. A good exam-

ple of two protocols that co-exist at the same layer with little over-

lap in their services and functionality are TCP and UDP. The reason

is that one of them is mostly used by applications that require relia-

bility, while the other is chosen by a largely non-overlapping set of

applications that prefer to avoid TCP’s retransmissions, congestion

control or byte-stream semantics. It is only few applications (e.g.,

DNS or Skype) that use both TCP and UDP.

The low value of z (approximately 0.3) implies that competition

between protocols at the TCP/IP stack is very intense: a protocol

can survive only if its value is higher than about 90% of the value

of its strongest component! A good survival strategy for a new

protocol u would be to avoid competition with the highest-value

protocol in that layer w. This can be achieved if u has largely

non-overlapping products with w; in other words, the new protocol

should try to provide mostly different services or functionality than

the incumbent. The relatively high value of c (70%) means that

a significant degree of service overlap would be tolerated, making

it easier for the new protocol to also support some of the legacy

applications.

The previous point also suggests an intriguing answer to a histor-

ical question. How can we explain the survival of the TCP/IP stack

in the early days of the Internet, when the telephone network was

much more powerful? During the 70s or 80s, the TCP/IP stack was

not trying to compete with the services provided by the telephone

network. It was mostly used for FTP, E-mail and Telnet, and those

services were not provided by the incumbent (telephone) networks.

So, TCP/IP managed to grow and increase its value without being

threatened by the latter. In the last few years, on the other hand, the

value of the TCP/IP protocols has exceeded the value of the tradi-

tional PSTN and Cable-TV networks, and it is now in the process

of largely replacing them in the transfer of voice and video.

In terms of the parameter s, the fact that the waist of the TCP/IP

stack is located at the network layer implies that the generality of

that layer is close to 50%. This means that a new protocol at the

network layer would see the highest variability (i.e., maximum un-

certainty) in terms of whether it will be selected as substrate from

protocols at the next higher layer. So, from an architect’s perspec-

tive, the network layer of the TCP/IP stack is the layer at which a

new protocol would experience the maximum uncertainty in terms

of deployment and ultimate success.

5.5 Future Internet architectures
EvoArch also gives some interesting insights about the evolvabil-

ity of future Internet clean-slate architectures. Suppose that a net-

work architect would like to ensure that there is more diversity (i.e.,

larger width) in the waist of a new architecture compared to the

TCP/IP stack—this goal has been suggested, for instance, by Pe-

terson et al. [17]. How can the network architect increase the like-

lihood that the evolution of a new architecture will lead to a wider

waist, with several surviving protocols? Based on the previous re-

sults, this will happen if we increase z—it is unlikely however that

a network architect can control the intensity of competition; that is

largely determined by economic and deployment considerations. A

second and more pragmatic approach is to design protocols that are

largely non-overlapping in terms of services and functionality, as

previously discussed, so that they do not compete with each other.

This approach was discussed in the previous section.

A third approach is to design the architecture so that its waist is

located at a layer with a high generality. As we saw in Figure 10-b,

as we increase γ, increasing the generality of all layers, the waist

moves higher, at a layer with higher generality. This also means

that the waist is getting wider, allowing the co-existence of several

protocols at that layer. How can this be done in practice? Sup-

pose that we start from a 6-layer architecture X in which the waist

is located at layer-3, and we want to redefine the functionality of

each layer so that the waist of the new architecture Y is located at

a higher layer. We should increase the generality of each layer (but

still maintaining that s(l) decreases as l increases) so that the cor-

responding protocols provide more general services in Y than in X.

For instance, instead of defining HTTP as an application-specific

protocol that is only used by web browsers, HTTP can be re-defined

and used as a very general content-centric delivery protocol. This

specific example, actually, has been recently proposed as a rather

simple way to provide the benefits of clean-slate content-centric

architectural proposals using an existing protocol [18].

6. EVOLUTIONARY KERNELS
It is often said that the core protocols of the Internet architecture

(mostly IPv4, TCP and UDP) are “ossified”, meaning that they are

hard to modify or replace, creating an obstacle for network inno-

vations [17]. At the same time however, they can be viewed more

positively as the protocols that form the core of the architecture,

creating a common interface between a large number of nodes at

lower layers and a large number of nodes at higher layers. This is

why we refer to them as evolutionary kernels, based on a similar

concept about certain genes and gene regulatory networks in biol-

ogy [10]. What can we learn from EvoArch about such ossification

effects and evolutionary kernels? Does the model predict the emer-

gence of long-surviving nodes at the hourglass waist? What is the

reason that those nodes manage to survive much longer than their

competitors? Do they ever get replaced by other nodes, and if so,

under what conditions?

Let us focus on the waist—under the default parameters (L =

10) the waist is typically at layer-6. As previously discussed, the

waist has the highest death probability, and so one may expect that

it is unlikely to find any long-living nodes at that layer. We gener-

ate 1000 evolutionary paths, each lasting 100 rounds. At the end

of the evolutionary path, we calculate the maximum age among all

nodes that were ever born at layer-6. Figure 11 shows the CDF of

the maximum age for various subsets of nodes: a) the node with

the maximum age (we refer to such nodes as rank-1 kernels or sim-

ply kernels), b) the second older node (we refer to them as rank-2

kernels), c) all nodes, excluding only rank-1 kernels.

Note that almost all (rank-1) kernels survive for at least 50–60%

of the entire evolutionary path. Actually, about 40% of the kernels

are still alive at the end of the evolutionary path, meaning that their

age is only determined by their birth time. On the other hand, the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n

Age

All Nodes Except Rank-1 Kernels
Rank-2 Kernels
Rank-1 Kernels

Figure 11: CDF of the age of various node subsets at layer-6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n

Number of Nodes

CDF

Figure 12: CDF of the number of nodes at layer-6 surviving

more than half of the evolutionary path.

remaining nodes have much shorter life span. About 40% of them

do not survive for more than a round or two and 90% of them sur-

vive for less than 20 rounds. The rank-2 kernels have much larger

age than most nodes, but there is still a significant gap in the age of

rank-1 and rank-2 kernels. So, our first observation is that EvoArch

predicts the emergence of very stable nodes at the waist that tend

to survive for most of the evolutionary path.

Figure 11 shows that only a small fraction of nodes survive for

more than 50 rounds in an evolutionary path. So, let us identify

in each evolutionary path those few nodes that survive for at least

that long - we refer to them as “higher-rank kernels”. Figure 12

shows the CDF of the number n of higher-rank kernels in each

evolutionary path. In about half of the evolutionary paths only the

rank-1 kernel exists. In almost all cases, n ≤ 4. So, the number

of nodes that can co-exist with the rank-1 kernel for more than 50

rounds is typically at most three. This confirms that it is difficult

to survive for long at the waist in the presence of a rank-1 kernel.

The nodes that manage to do so either have almost the same set of

products with the rank-1 kernel (and thus almost the same value),

or they have mostly different products than the rank-1 kernel, not

competing with it. We have also examined the birth times of those

nodes, and observed that in about 70% of the evolutionary paths

rank-1 kernels are born earlier than higher rank kernels.

How large is the value of a kernel, and how can a kernel die?

We define the normalized value v̂(u) of a node u at a given round

as its value v(u) divided by the value that u would have if it was

connected to all products at the next higher layer in that round. So,

v̂(u) ≤ 1. Note that because the death probability is almost zero

when r > 0.90 (for the default value of z), if the normalized value

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n

Round

Normalized Value
Death Probability of Kernels

Figure 13: Normalized value for kernels at layer-6 (basic birth

process).

of a node is higher than 90% that node cannot die even if it had a

higher-value competitor.

Figure 13 shows the normalized value of all (rank-1) kernels,

based on 1000 evolutionary paths. In the first 10–20 rounds, the

normalized value increases as the upper layer grows larger and the

kernels acquire new products. Then, during the next 30–40 rounds

their normalized value varies around 80–90%, which means that

those kernels are unlikely to die, even if they face competition.

During the last 30–40 rounds, however, the normalized value of

many kernels gradually drops. To understand this trend, and to ex-

plain how a kernel can be replaced, we have to examine the birth

process. As time progresses, the upper layers of the network grow

larger (recall that the death probability is low at higher layers due

to low competition). In the basic birth model, however, the birth

rate is proportional to the size of the network, and new nodes are

distributed uniformly across all layers. Thus, the birth rate at the

waist also increases with time.

The previous increase has two consequences. First, as the layer

above the waist increases in size, new potential products appear for

both the kernel and its competitors. Each of these new nodes will

select the kernel as substrate with probability s(lb), where lb is the

waist. Second, as the birth rate at the waist increases, it becomes

more likely that a new node at that layer will acquire enough new

products so that its value becomes comparable, or even higher, than

the value of the kernel. In other words, the death of kernels is

largely due to the birth of several new nodes at the next higher layer:

if the kernel fails to quickly acquire most of those new potential

products at the next higher layer it will experience a decrease in

its normalized value, becoming more vulnerable to new or existing

competitors at its own layer.

The previous discussion raises the question: what if the birth

rate is not the same at all layers? Specifically, what if the birth

rate at a layer is negatively correlated with the death probability

at that layer? This modification of the model, which we refer to

as death-regulated birth process, captures situations in which the

implementation or deployment of new protocols at a certain layer

is discouraged by the intense competition that one or more incum-

bent protocols create at that layer. Arguably, this is a more realistic

model than the basic birth model we considered earlier.

In the death-regulated birth process, we maintain an estimate of

the death probability d̃(l) at layer l since the start of the evolution-

ary path. As in the basic birth process, the overall birth rate is pro-

portional to the network size and the allocation of births to layers

is random. However, a birth at layer l is successful with probability

1− d̃(l); otherwise the birth fails and it is counted as a death in that

layer.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

F
ra

ct
io

n

Round

Normalized Value

Figure 14: Normalized value for kernels at layer-6 (death-

regulated birth process).

The death-regulated birth process creates a positive feedback

loop through which the emergence of one or more kernels at the

waist reinforces their position by decreasing the rate at which new

nodes (and potential competitors) are created. Figure 14 shows the

normalized value of the rank-1 kernel at layer-6, when we switch

from the basic birth model to the death-regulated birth model af-

ter round-20. Note that the median normalized value (as well as

the 25-th percentile) of the kernel becomes 100% within just few

rounds. In other words, with a death-regulated birth process it be-

comes practically impossible to replace a kernel at the waist of the

hourglass. Even when a new node u is somehow successfully born

at the waist, the number of new nodes at the next higher layer is

limited (because the birth process is also death-regulated at that

layer) and so u’s products will be most likely shared by the kernel.

This means that u will face the kernel’s competition, and so u will

most likely die.

We have also estimated a good parameterization of the EvoArch

model for the case of the TCP/IP stack using the death-regulated

birth process (again based on trial-and-error and exploiting the trends

shown in Figure 10): L = 6, c ≈ 0.7, γ = 3, and z ≈ 0.5. With these

values the waist is located at layer-3, its median width is one node,

the median width of layer-4 is four nodes, while the width of the

remaining layers increases with time. The median H score is 1 and

the 10-90th percentiles are 0.66 and 1, respectively.

6.1 Kernels in the Internet architecture
There are several interesting connections between what EvoArch

predicts about kernels and what happens in the Internet architec-

ture. There is no doubt that IPv4, as well as TCP and UDP, are the

kernels of the evolving Internet architecture. They provide a stable

framework through which an always expanding set of physical and

data-link layer protocols, as well as new applications and services

at the higher layers, can interoperate and grow. At the same time,

those three kernel protocols have been difficult to replace, or even

modify significantly. Further, the fact that new network or transport

layer protocols are rarely designed today implies that the birth pro-

cess at those layers is closer to what we call “death-regulated”, i.e.,

limited by the intense competition that the kernel protocols create.

EvoArch suggests an additional reason that IPv4 has been so sta-

ble over the last three decades. Recall that a large birth rate at

the layer above the waist can cause a lethal drop in the normalized

value of the kernel, if the latter is not chosen as substrate by the

new nodes. In the current Internet architecture, the waist is the net-

work layer but the next higher layer (transport) is also very narrow

and stable. So, the transport layer acts as an evolutionary shield for

IPv4 because any new protocols at the transport layer are unlikely

to survive the competition with TCP and UDP. On the other hand,

a large number of births at the layer above TCP or UDP (applica-

tion protocols or specific applications) is unlikely to significantly

affect the value of those two transport protocols because they al-

ready have many products. In summary, the stability of the two

transport protocols adds to the stability of IPv4, by eliminating any

potential new transport protocols that could select a new network

layer protocol instead of IPv4.

In terms of future Internet architectures, EvoArch predicts that

even if these architectures do not have the shape of an hourglass

initially, they will probably do so as they evolve. When that hap-

pens, the emergence of new ossified protocols (kernels) will be a

natural consequence. If the architects of such clean-slate designs

want to proactively avoid the ossification effects that we now expe-

rience with TCP/IP, they should try to design the functionality of

each layer so that the waist is wider, consisting of several proto-

cols that offer largely distinct but general services, as discussed in

Section 5.5.

7. QUALITY DIFFERENTIATION
So far we have assumed that the value of a protocol is only de-

termined by the value of its products. It would be more realistic

however to consider that the evolutionary value of a protocol also

depends on other factors, which we refer to as quality. The “quality

factor” should be interpreted broadly; it can capture properties such

as performance, extent of deployment, reliability or security, clarity

of the corresponding specification or other features. The quality

factor also allows EvoArch to capture the effect of incremental im-

provements in existing protocols: such improvements do not create

a new node in the model, but they increase the quality parameter

of an existing node. In the following, we assume that the quality

factor of a node is constant—an interesting extension of the model

will be to consider time-varying quality factors.

In this section, we conduct a simple extension to the EvoArch

model so that each protocol u has a certain quality factor q(u).
We are mostly interested in two questions. First, how does this

quality differentiation affect the shape of the resulting architecture?

And second, focusing on the kernel nodes at the waist, do they tend

to be nodes with the highest quality factor? The quality of a

node u is represented by a multiplicative factor q(u), uniformly

distributed in [qmin , 1] (with 0 <qmin< 1). The value of node

u is then the product of the quality factor q(u) with the quality-

independent value of u:

v(u) =

{

q(u)
∑

p∈P (u) v(p) l(u) < L

q(u) l(u) = L
(5)

7.1 Effect of quality differentiation
We have repeated the analysis of Section 3 with the previous

model extension, with qmin = 0.8. Figure 15 shows the median

width of each layer with the default parameter values, based on

1000 evolutionary paths. The resulting network continues to have

the hourglass shape (decreasing width up to a certain layer and then

increasing width), even when nodes have different quality factors;

the median H score is 1.0 and the 10th and 90th percentiles are 0.9

and 1.0, respectively. The location of the waist does not change as

a result of the quality factor heterogeneity.

There are two interesting differences however. First, the network

grows at a slower pace. This is a result of the increased death

probability because of nodes with low quality factor. Second, the

lower part of the hourglass, below the waist, is now smaller in size

than the upper part of the hourglass. The reason is that nodes at

lower layers have more competitors (due to higher generality at

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

W
id

th

Layer Number

Round 100-Without Quality
Round 100-With Quality

Figure 15: The median width of each layer when nodes have

different quality factors (compared to the case that all nodes

have the same quality).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

F
ra

ct
io

n

Quality

Layer 9
Layer 6
Layer 1

Figure 16: CDF of the quality factor q(u) of the kernel node

at the waist (layer-6). The corresponding CDFs for the oldest

node at layer-1 and layer-9 are also shown.

those layers) than nodes at higher layers. When all nodes have the

same quality, nodes at lower layers compete widely but they usually

survive the competition because their product sets are similar, and

thus their values are similar. With heterogeneous qualities, on the

other hand, the value of nodes at lower layers can be significantly

different, increasing the death probability compared to the case of

homogeneous qualities. This increased death probability makes the

size of the lower part of the hourglass smaller than the upper part.

It is interesting that the TCP/IP stack has a similar asymmetry,

with the bottom part of the hourglass being smaller in terms of

size than the upper part. EvoArch offers a plausible explanation for

this effect: the heterogeneity among different protocols at the same

layer, in terms of performance, security, extent of deployment, etc,

increases the death probability at lower layers more than at higher

layers.

7.2 Quality of kernel nodes
Section 6 focused on the evolutionary kernels at the waist of

the hourglass. In the case of heterogeneous qualities, an impor-

tant question is whether the kernels tend to also have the highest

quality factor. In other words, can we expect that the “best” nodes

(i.e., highest quality factor) are also the strongest nodes in terms of

value?

Figure 16 shows the CDF of the quality factor of the kernel node

at the waist (layer-6), based on 1000 evolutionary paths. As a refer-

ence point, we also show the CDF of the quality factor of the oldest

node at layer-1 and at layer-9.

If the quality of a node has no effect on its death probability, we

would expect that the CDF of the quality factor of the oldest node

would be a straight line between 0.8 and 1 (recall that the quality

factor varies uniformly in that range). This is the case at layer-9.

In that layer, which is almost at the top of the stack, nodes rarely

compete with each other because of their low generality and small

number of products. So, their quality does not influence their age,

and the quality factor of the oldest node varies randomly between

0.8 and 1.

At the bottom layer (layer-1) on the other hand, we observe a

strong bias towards higher quality values. As discussed earlier in

this section, the nodes at the bottom layer have high generality,

many competitors, and so their quality factor strongly affects their

value and death probability. It is mostly high-quality nodes that

survive at the bottom layers.

At the waist, where only few kernel nodes survive for most of the

evolutionary path, the bias towards higher quality values is much

weaker. In about 30% of the evolutionary paths the quality factor

of the kernel is less than 0.9, which means that those kernels are

in the bottom half of all nodes in terms of quality. Similarly, the

probability that a node with high quality factor (say q(u) > 0.95)

becomes the kernel of the waist is only 40%.

7.3 Implications for IPv4 and IPv6
In the Internet architecture, it would be hard to argue that IPv4

has dominated at the network layer because it was an excellent pro-

tocol in terms of design. During the last 30–40 years, several other

network-layer protocols have been proposed, and probably some

of them were better than IPv4 in several aspects. EvoArch gives us

another way to understand the success of IPv4, and to also think

about future protocols that could potentially replace it. It will help

if such future protocols are better than IPv4; that is not a sufficient

condition to replace IPv4 however. If the potential replacements

attempt to directly compete with IPv4, having a large overlap with

it in terms of applications and services but without offering a major

advantage in terms of the previous “quality factor”, it will remain

difficult to replace IPv4.

What does EvoArch suggest about IPv6 and the difficulty that the

latter faces in replacing the aging IPv4? We should first note that

IPv6 does not offer new services compared to IPv4; it mostly offers

many more addresses.7 This means that IPv6 has, at most, the same

products with IPv4, and so the latter is its competitor. Further,

because IPv6 is not widely deployed, it is reasonable to assume

that its quality factor is much lower than that of IPv4. So, even

if the two protocols had the same set of products, IPv4 has much

higher value and it wins the competition with IPv6. The situation

would be better for IPv6 under two conditions. First, if IPv6 could

offer some popular new services that IPv4 cannot offer—that would

provide the former with additional products (and value) that the

latter does not have. Second, IPv6 should avoid competition with

IPv4, at least until it has been widely deployed. That would be the

case if IPv6 was presented, not as a replacement to IPv4, but as

“the second network layer protocol” that is required to support the

previous new services.

8. RELATED WORK
To the extent of our knowledge, there is no prior work in mod-

eling the evolution of protocol stacks or hourglass-like network ar-

chitectures. At a high level however, our work is related to recent

7The original proposals for IPv6 included several novel services,
such as mobility, improved auto-configuration and IP-layer secu-
rity, but eventually IPv6 became mostly an IPv4-like protocol with
many more addresses.

efforts that develop a rigorous theory of network layering and ar-

chitecture, mostly using mathematical tools from optimization and

control systems [4]. We agree with those authors that network ar-

chitecture can become the subject of more quantitative and rigor-

ous scientific methods. We have a different view however on how

to get there: instead of thinking about each layer as the solution to

an optimization problem, we focus on the evolutionary process that

shapes a network architecture over time and we emphasize the role

of robustness and evolvability instead of optimality. Also relevant

is the work of Csete and Doyle [5], which has emphasized the role

of hierarchical modularity and evolution in both technological and

biological systems. Those authors have also identified the signif-

icance of the hourglass (or bowtie) structure in the corresponding

network architectures.

Recent work has investigated the competition between incum-

bent and emerging network architectures [13, 14]. Their focus,

however, is mostly on the deployment share of each architecture

using economic models from the literature of technology diffusion.

We think that the deployment effects represent just one of many in-

stances of competition between protocols at the same layer. In the

economics literature, several authors have focused on standards,

compatibility, and on the diffusion of new technologies (see, for

instance, the early work by Farrell and Saloner [11] or the review

[7]). That line of work focuses on the positive externalities created

by the requirement for compatibility, and how those externalities

often lead to the dominance of a single standard or protocol. To the

extent of our knowledge, however, there is no work in economics

about multi-layer architectures or networks that involve multiple

standards, and no studies of the hourglass or bowtie structure that

can emerge in such architectures.

In a 2001 IETF talk, Steve Deering alarmed the community that

the waist of the Internet architecture is getting bigger, as more func-

tionality (such as QoS or native multicast) was then proposed for

IPv4 [8]—EvoArch suggests that a wider waist, with different pro-

tocols offering largely non-overlapping but general services, is ac-

tually a good way to increase the evolvability of an architecture.

Popa et al. argue that HTTP (a layer-5 protocol) can become the

new narrow waist of the Internet architecture because almost all

applications and services today can run over HTTP [18]. We ar-

gue that instead of pushing a single-protocol waist from layer-3 to

layer-5, a more evolvable network architecture should have a wider

waist that does not include only one protocol. Otherwise, HTTP

will also be considered “ossified” and an obstacle to innovation

in few years from now. Culler et al. argue that the narrow waist

of a sensor network architecture should not be the network layer,

as in the current Internet, but a single-hop broadcast with a rich

enough interface to allow multiple network protocols [6]. EvoArch

can help designers of such new and special-purpose architectures

to think about the ideal location of the hourglass waist considering

the generality of the services provided at each layer.

9. CRITICISM
EvoArch does not consider the semantics and various practical

aspects of specific layers, protocols or architectures. There are cer-

tainly several objections to this abstract modeling approach. We

include here some of the concerns expressed by the anonymous re-

viewers, including a brief response.

One reviewer summarized most of the criticism with the follow-

ing quote: “The strength of this work is the simplicity of the model

as it makes fairly general assumptions that are not tied into, for

instance, the semantics of what each layer does. However, the fail-

ure to take semantics into account is its biggest failing as well.”

EvoArch shows that it is not necessary to consider the layer seman-

tics for the emergence of the hourglass structure; the semantics are

probably important for other architectural characteristics but not for

the hourglass structure.

Another high-level concern relates to the confirmation-bias risk:

“The problem with a paper like this is that we know the answer the

model must produce, so (like Jeopardy) we have to find a model

that can be tweaked to give that answer, and then see if we learn

anything beyond what we already knew about the answer.” It is true

that our objective has been to identify a model that can produce the

hourglass structure. Additionally, however, our objective was to

identify a general, parsimonious and explanatory model based on

a small set of principles about layered and evolving network archi-

tectures. More importantly, EvoArch leads to several insights and

explanations that were not expected from or “built-in” the model

formulation.

Some reviewers offer different explanations for the narrow pro-

tocol waist at the network layer: “The need for global addressing is

a more important factor in having a single internetworking proto-

col than the evolutionary dynamics proposed here. IP does almost

nothing else besides global addressing, and there is little reason to

have two global addressing protocols.” This view is also reflected

in the following quote: “What if the reality is that the lower-most

layer that provides end-to-end connectivity is the waist by default

because that in effect represents the balance between generality

and ease of use? It is hard to roll out an end-to-end connectivity

service on top of lower-level primitives, and IP won because it got

there (wide-area deployment) first.” Note that the previous plausi-

ble explanations for the presence of a narrow waist (with a single

protocol at the network layer) do not explain, however, why we

observe an hourglass structure. Another reviewer thinks that the

hourglass structure is a result of a wide diversity of constraints at

the lower layers and a wide diversity of services and applications at

the upper layers: “The more relevant dynamic at the bottom of the

architecture is that there are different environmental niches (wire-

less, optical, etc.) that serve different needs in terms of deploy-

ability, bandwidth, and cost. So the model should have idiosyn-

cratic applications at the top and idiosyncratic technologies at the

bottom, tied together by layered protocols of varying generalities.”

This is actually similar to EvoArch, even though it introduces more

“semantics” about the function and constraints of lower layer pro-

tocols.

A more negative review questioned even whether the protocol

stack has the shape of an hourglass: “This model bears no intu-

itive relation to reality - in assumptions about the conditions under

which protocols are invented, the process by which some are se-

lected over others, or, indeed, that the protocol stack of the Internet

is an hourglass (in practice, it is not: VPNs, tunnels, federation

with other networks like the phone system, all complicate the pic-

ture).” We believe that despite the former architectural exceptions

(that are hard to place at a given layer), the Internet architecture

is still shaped as an hourglass. Finally, we repeat what should be

well-known to any scientist: the beauty and usefulness of a model

is that it allows us to understand certain aspects of a system without

having to describe or consider all the elements that constitute that

system.

10. CONCLUSIONS
A main thesis behind this work is that we can study network ar-

chitectures in a quantitative and scientific manner, in the same way

that we study for instance the performance of transport protocols

or the stability of routing protocols. In this spirit, we proposed

a model for the evolution of layered protocol stacks. EvoArch is

based on few principles about the generality of protocols at differ-

ent layers, the competition between protocols at the same layer, and

how new protocols are created. Even though EvoArch does not cap-

ture many practical aspects and protocol-specific or layer-specific

details, it predicts the emergence of an hourglass architecture and

the appearance of few stable nodes (not always of the highest qual-

ity) at the waist. Further, EvoArch offers some intriguing insights

about the evolution of the TCP/IP stack, the competition between

IPv4 and IPv6, and the evolvability of future Internet architectures.

Possible extensions of EvoArch include a dynamic notion of qual-

ity (to capture, for instance, how the deployment of a protocol can

change with time depending on the protocol’s value), a growing

number of layers as the complexity of the provided services in-

creases with time, and architectures without strict layering.

Finally, we note that the presence of hourglass (or bowtie-like)

architectures has been also observed in metabolic and gene regu-

latory networks [5, 20], in the organization of the innate immune

system [2], as well as in gene expression during development [15].

Even though it sounds far-fetched, it is possible that there are sim-

ilarities between the evolution of protocol stacks and the evolu-

tion of the previous biological systems. We explore these cross-

disciplinary connections in on-going work.

Acknowledgements

We are grateful to Todd Streelman (School of Biology, Georgia

Tech) for many long discussions about evolution that provided the

inspiration for this work. We are also grateful to those anonymous

reviewers that provided constructive comments and to our “shep-

herd” John Heidemann.

11. REFERENCES
[1] S. Akhshabi and C. Dovrolis. The Evolution of Layered Protocol Stacks Leads

to an Hourglass-Shaped Architecture. In ACM SIGCOMM, 2011.

[2] B. Beutler. Inferences, Questions and Possibilities in Toll-like Receptor

Signalling. Nature, 430(6996):257–263, 2004.

[3] G.E.P. Box. Robustness in the Strategy of Scientific Model Building. Technical

report, DTIC Document, 1979.

[4] M. Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering as

Optimization Decomposition: A Mathematical Theory of Network

Architectures. Proceedings of the IEEE, 95(1):255–312, 2007.

[5] M. Csete and J. Doyle. Bow Ties, Metabolism and Disease. TRENDS in

Biotechnology, 22(9):446–450, September 2004.

[6] D. Culler, P. Dutta, C. T. Ee, R. Fonseca, J. Hui, P. Levis, J. Polastre,

S. Shenker, I. Stoica, G. Tolle, and J. Zhao. Towards a Sensor Network

Architecture: Lowering the Waistline. In USENIX HotOS, 2005.

[7] P.A. David and S. Greenstein. The Economics of Compatibility Standards: An

Introduction to Recent Research. Economics of Innovation and New

Technology, 1(1):3–41, 1990.

[8] S. Deering. Watching the Waist of the Protocol Hourglass. 2001.

www.iab.org/documents/docs/hourglass-london-ietf.pdf.

[9] C. Dovrolis. What would Darwin Think about Clean-Slate Architectures? ACM

SIGCOMM Computer Communications Review, 38(1):29–34, 2008.

[10] C. Dovrolis and T Streelman. Evolvable Network Architectures: What can we

Learn from Biology? ACM SIGCOMM Computer Communications Review,

40(2), 2010.

[11] J. Farrell and G. Saloner. Standardization, Compatibility, and Innovation. The

RAND Journal of Economics, 16(1):70–83, 1985.

[12] M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods. Willey

Interscience, 1999.

[13] Y. Jin, S. Sen, R. Guérin, K. Hosanagar, and Z.L. Zhang. Dynamics of

Competition between Incumbent and Emerging Network Technologies. In

NetEcon, 2008.

[14] D. Joseph, N. Shetty, J. Chuang, and I. Stoica. Modeling the Adoption of New

Network Architectures. In Proceedings of ACM CoNEXT, 2007.

[15] A.T. Kalinka, K.M. Varga, D.T. Gerrard, S. Preibisch, D.L. Corcoran, J. Jarrells,

U. Ohler, C.M. Bergman, and P. Tomancak. Gene Expression Divergence

Recapitulates the Developmental Hourglass Model. Nature,

468(7325):811–814, 2010.

[16] NSF-10528. Future Internet Architectures (FIA). National Science Foundation,

2010.

[17] L. Peterson, S. Shenker, and J. Turner. Overcoming the Internet Impasse

through Virtualization. In ACM SIGCOMM HotNets, 2004.

[18] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the Narrow Waist of the Future

Internet. In ACM SIGCOMM HotNets, 2010.

[19] J. Rexford and C. Dovrolis. Future Internet Architecture: Clean-Slate versus

Evolutionary Research. Communications of the ACM, 53:36–40, 2010.

[20] J. Zhao, H. Yu, J.H. Luo, Z.W. Cao, and Y.X. Li. Hierarchical Modularity of

Nested Bow-Ties in Metabolic Networks. BMC Bioinformatics, 7(1):386, 2006.

APPENDIX

The objective of the following analysis is to derive the death prob-

ability ratio r(l) for an “average node” at layer l, i.e., for a node

with the mean number of products at layer l.
We can do so under several assumptions that simplify the EvoArch

model significantly:

1. The network is static (i.e., non-evolving).

2. Each layer has the same number of nodes n.

3. n s(L− 1) ≫ 1 (recall that s(L− 1) is the lowest non-zero

generality across all L layers).

4. A node can only have one competitor: the node with the

largest number of products at that layer.

The following analysis focuses on two nodes at each layer l: a

node u with the mean number of products at layer l, and a node

um with the expected value of the maximum number of products at

layer l. Based on assumption (4), the death probability of node u
depends on the ratio r(l) = v(u)/v(um) between the value of node

u and the value of node um. Let ρ(l) be the number of products of

node u and ρm(l) the number of products of node um. We need a

fifth assumption, regarding nodes u and um:

5.
v(u)

v(um)
=

ρ(l)

ρm(l)
(6)

Based on the previous five assumptions, we derive next the fol-

lowing mathematical expression for the death probability ratio r(l):

r(l) = 1−

(

1−
⌊n s(l)⌉

⌊ρm(l)⌉

) ⌊ns(l)⌉
∑

i=⌈c×⌊n s(l)⌉⌉

(

⌊ρm(l)⌉
i

)(

n−⌊ρm(l)⌉
⌊n s(l)⌉−i

)

(

n

⌊n s(l)⌉

)

(7)

where ⌊x⌉ represents the “round to closest integer” operator, while

ρm(l) =
n
∑

i=0

i
(

F (i)n − F (i− 1)n
)

(8)

where

F (x) =
x
∑

i=0

(

n

i

)

s(l)i
(

1− s(l)
)n−i

. (9)

Unfortunately the previous expression for r(l) is not tractable

and it does not allow us to examine whether r(l) has a unique min-

imum. We observed numerically, however, that the ratio r(l) has a

unique minimum at a certain layer l̂ that only depends on the gen-

erality probabilities and the competition threshold (see Figure 17).

Because the death probability decreases monotonically with r(l),
the previous observation about r(l) means that the death probabil-

ity has a unique maximum at layer l̂, and it decreases monotonically

at layers above and below l̂. It is this death probability pattern that

pushes, over several evolutionary rounds, the network to take the

shape of a (generally asymmetric) hourglass with waist at layer l̂.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

r(
l)

Layer Number

c = 0.9
c = 0.7
c = 0.5
c = 0.3
c = 0.1

Figure 17: The death probability ratio r(l) as a function of the

layer l for different values of the competition threshold c. The
parameters are: L = 10, n = 50, and s(l) = 1− l/L.

In the following, we derive the expression for r(l) given in (7).

Proof

Based on the earlier definition of nodes u and um at layer l, the

death probability ratio for node u is:

r(l) =

{

v(u)
v(um)

if um is a competitor of u

1 otherwise
(10)

while based on assumption (5) the previous value ratio is equal to

the corresponding number of products ratio,

r(l) =

{

ρ(l)
ρm(l)

if um is a competitor of u

1 otherwise.
(11)

We can rewrite the ratio r(l) as

r(l) =P [um is competitor of u]×
ρ(l)

ρm(l)

+
(

1− P [um is competitor of u]
)

× 1. (12)

So, we need to derive ρ(l), ρm(l) and the probability

P [um is competitor of u].

The number of products for a node at layer l is given by the

random variable

X = max{B(n, s(l)), 1}. (13)

where B(n, s(l)) is a random variable that follows the binomial

distribution with parameters n and s(l). Based on assumption (3),

the expected value n × s(l) of this binomial distribution is much

larger than one at all layers, and so the average number of products

at layer l can be approximated as:

ρ(l) ≈ n× s(l). (14)

We derive the expected value ρm(l) of the maximum number of

products at layer l using ordered statistics.

Specifically, if X1,X2,...,Xn are n I.I.D. random variables with

cdf and pmf F(x) and f(x), respectively, the pmf of the k’th ordered

statistic X(k) (in increasing order) is given by

P (X(k) = x) =

n−k
∑

j=0

(

n

j

)

(

(

1− F (x)
)j(

F (x)
)n−j

−
(

1− f(x)
)j(

F (x)− f(x)
)n−j

)

. (15)

The n’th order statistic represents the maximum of X1, X2, ..., Xn,

and its pmf fm(x) is:

fm(x) = P (X(n) = x) = F (x)n −
(

F (x)− f(x)
)n

. (16)

Suppose now that the random variable Xi represents the number

of products of a node i at layer l (i = 1 . . . n), as defined in (13). If

n×s(L−1) >> 1, X can be approximated as a binomial random

variable with parameters n and s(l), and so

f(x) = P (X = x) =

(

n

x

)

s(l)x
(

1− s(l)
)n−x

(17)

and

F (x) = P (X ≤ x) =

⌊x⌋
∑

i=0

(

n

i

)

s(l)i
(

1− s(l)
)n−i

. (18)

Replacing f(x) and F (x) in fm(x), and assuming that x is integer,

we get that

fm(x) =

[

x
∑

i=0

(

n

i

)

s(l)i
(

1− s(l)
)n−i

]n

−

[

x
∑

i=0

(

n

i

)

s(l)i
(

1− s(l)
)n−i

−

(

n

x

)

s(l)x
(

1− s(l)
)n−x

]n

=F (x)n − F (x− 1)n. (19)

ρm(l) is then given by

ρm(l) =

n
∑

i=0

ifm(i). (20)

Replacing (19) in (20), we get (8).

Figure 18 shows ρ(l) and ρm(l) as a function of layer l.

The final step is to derive the probability that um is a competitor

of u. This probability, denoted by c(l), refers to the event that u
shares at least a fraction c of its products with um at layer l, where

c is the competition threshold.

We define the function

hl(x, y, z) = P[A node with x products at layer l shares exactly

y products with a node that has z products]

which is equal to

hl(x, y, z) =

(

z

y

)(

n−z

x−y

)

(

m

x

) . (21)

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

N
o

d
e

s

Layer Number

ρm(l)
ρ(l)

Figure 18: ρ(l) and ρm(l) as a function of layer l. The parame-

ters are: L = 10, n = 50, and s(l) = 1− l/L.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

c(
l)

Layer Number

c = 0.9
c = 0.7
c = 0.5
c = 0.1

Figure 19: The probability c(l) as a function of layer l for dif-
ferent values of the competition threshold c. The parameters

are: L = 10, n = 50, and s(l) = 1− l/L.

c(l) can then be expressed as

c(l) = P[um is a competitor of u]

= P[a node with ρ(l) products at layer l shares at least

c ρ(l) products with a node that has ρm(l) products]

=

⌊ρ(l)⌉
∑

i=⌈c×⌊ρ(l)⌉⌉

hl(⌊ρ(l)⌉, i, ⌊ρm(l)⌉)

=

⌊ρ(l)⌉
∑

i=⌈c×⌊ρ(l)⌉⌉

(

⌊ρm(l)⌉
i

)(

n−⌊ρm(l)⌉
⌊ρ(l)⌉−i

)

(

n

⌊ρ(l)⌉

) . (22)

Figure 19 shows the probability c(l) as a function of layer l.
Finally, combining the expressions (14), (8), (22) and (12), we

get the final result in (7).

