# Packet dispersion techniques and a capacity estimation methodology

Georgia Tech

Constantinos Dovrolis Parameswaran Ramanathan University of Wisconsin

David Moore CAIDA

## Abstract

The packet pair technique aims to estimate the capacity of a path (bottleneck bandwidth) from the dispersion of two equal-sized probing packets sent back-to-back. It has been also argued that the dispersion of longer packet bursts (packet trains) can estimate the available bandwidth of a path. This paper examines such packet pair and packet train dispersion techniques in depth. We first demonstrate that, in general, packet pair bandwidth measurements follow a multimodal distribution, and explain the causes of multiple local modes. The path capacity is a local mode, often different than the global mode of this distribution. We illustrate the effects of network load, cross traffic packet size variability, and probing packet size on the bandwidth distribution of packet pairs. We then switch to the dispersion of long packet trains. The mean of the packet train dispersion distribution corresponds to a bandwidth metric that we refer to as Average Dispersion Rate (ADR). We show that the ADR is a lower bound of the capacity and an upper bound of the available bandwidth of a path. Putting all pieces together, we present a capacity estimation methodology that has been implemented in a tool called *pathrate*. We report on our experiences with pathrate after having measured hundreds of Internet paths over the last three years.

Keywords: Bandwidth estimation, bottleneck link, packet pair, packet train, available bandwidth, network measurements, multimodal distributions, density estimation.

#### Introduction 1

The Internet is largely a commercial infrastructure in which users pay for their access to an Internet Service Provider (ISP), and from there to the global Internet. It is often the case that the performance level (and tariff) of these network connections is based on their bit-rate, or "network bandwidth", since more bandwidth normally means higher throughput and better quality-of-service. In such an environment, bandwidth monitoring becomes a crucial operation. Users need to check whether they get the access bandwidth that they pay for, and whether the network "clouds" that they use are sufficiently provisioned. ISPs also need

This work was supported by the "Scientific Discovery through Advanced Computing" (SciDAC) program of DOE (award number: DE-FC02-01ER25467) and by an equipment donation from Intel Corporation. bandwidth monitoring tools in order to plan their capacity upgrades, and to detect congested or underutilized links.

Network operators commonly use tools such as MRTG [16] to monitor the utilization of their links with information obtained from the router management software. These techniques are based on counters maintained by routers, and they are normally accurate. Their drawback, however, is that they can only be performed with router access, and such access is usually limited to the corresponding network administrators. Instead, in this paper we focus on an end-to-end bandwidth monitoring approach that requires cooperation of only the path end-points. Even though endto-end approaches are typically not as accurate as routerbased measurements, they often are the only feasible approach for monitoring a path that crosses several networks.

Let us first define two important bandwidth metrics for a network path. Consider a network path  $\mathcal{P}$  as a sequence of First-Come First-Served (FCFS) store-and-forward links that transfer packets from the sender S to the receiver R. Assume that the path is fixed and unique for the duration of the measurements, i.e., no routing changes or multipath forwarding occur. Each link i transmits data with a constant rate of  $C_i$  bits per second, referred to as link capacity or transmission rate. Two bandwidth metrics that are commonly associated with path  $\mathcal{P}$  are the capacity C and the available bandwidth A. Capacity is the minimum transmission rate among all links in  $\mathcal{P}$ . Note that the capacity does not depend on the traffic load of the path. Available bandwidth, on the other hand, is the minimum spare link capacity, i.e., capacity not used by other traffic, among all links in  $\mathcal{P}$ .

More formally, if H is the number of hops (links) in  $\mathcal{P}$ ,  $C_i$  is the capacity of link i, and  $C_0$  is the transmission rate of the sender, then the path capacity is

$$C = \min_{i=0...H} C_i \tag{1}$$

Additionally, if  $u_i$  is the utilization of link i (with  $0 < u_i < 1$ 1) over a certain time interval, the average spare capacity of link i is  $C_i(1-u_i)$ . Thus, the available bandwidth of  $\mathcal{P}$ in the same interval can be defined as

$$A = \min_{i=0...H} [C_i(1-u_i)]$$
 (2)

Even though the term "available bandwidth" has been previously given various interpretations (such as fair share or bulk TCP throughput), there is growing consensus in the literature for a definition that is equivalent to Equation (2)

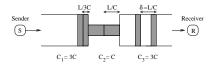


Figure 1: Graphical illustration of the packet pair technique. The width of each link corresponds to its capacity. Two packets leave the sender back-to-back and they arrive at the receiver with a dispersion that is determined by the narrow link.

[10, 15, 24]. A longer discussion of the capacity and available bandwidth metrics, including clarifications for paths with rate limiters, traffic shapers, or time-varying capacity, can be found in [23].

The link with the minimum transmission rate determines the capacity, while the link with the minimum spare bandwidth determines the available bandwidth. To avoid the term bottleneck link, that has been widely used for both metrics, we refer to the capacity limiting link as narrow link, and to the available bandwidth limiting link as tight link. Note that these two links may be different.

The packet pair technique is a well-known mechanism for measuring the capacity of a path. When a packet is transmitted by a store-and-forward link it encounters a transmission (or serialization) delay, related to the clock rate of the underlying transmission hardware. In a link of capacity  $C_i$ , the transmission delay for a packet of size L is  $\tau_i = L/C_i$ . For now, let us ignore the fact that a packet can carry different encapsulation headers in different links, and assume that the packet size L remains constant as the packet traverses the path; we return to this issue in §3.3. A packet pair measurement consists of two packets of the same size L sent back-to-back from S to  $\mathcal{R}$ . Without any cross traffic in the path, the packet pair will reach  $\mathcal{R}$  with a dispersion  $\delta$  (i.e., time spacing from the last bit of the first packet to the last bit of the second packet) equal to  $\tau_n \equiv L/C$ . Note that  $\tau_n$  is the transmission delay at the narrow link. The receiver can then estimate the capacity C from the measured dispersion  $\delta$ , as  $C = L/\delta$ . Figure 1 illustrates the packet pair technique in the case of a threelink path, using the fluid analogy introduced by Jacobson in [8].

Even though simple in principle, the packet pair technique can produce widely varied measurements and erroneous capacity estimates. The reason is that cross traffic can distort the packet pair dispersion, leading to capacity underestimation or overestimation. In this paper, we examine the packet pair bandwidth estimation technique, as well as its generalization to packet trains, in depth. We first demonstrate that, in general, packet pair bandwidth measurements follow a multimodal distribution, and explain what causes multiple local modes. The path capacity is a local mode, often different than the global mode of this distribution, and so it cannot be estimated with standard statistical procedures for the most common value or range. We illustrate the important effects of network load, cross traffic packet size variability, and probing packet size on the

packet pair bandwidth distribution. An interesting result is that the conventional wisdom of using maximum-sized packet pairs is not optimal for estimating the capacity of a path. Instead, the probing size of different packet pairs should vary, so that the sub-capacity erroneous local modes become wider and weaker.

We then switch to the dispersion of long packet trains. Earlier work [2, 3, 7] assumed that the dispersion of long packet trains is directly related to the available bandwidth of a path. We show that this is not the case. Instead, the mean of the packet train dispersion distribution corresponds to a bandwidth metric, referred to as Average Dispersion Rate (ADR), that depends in general on the capacity and utilization of all links in the path as well as on the routing of cross traffic relative to the measured path. We also show that the ADR is a lower bound of the capacity, and an upper bound of the available bandwidth.

Putting all pieces together, we present a capacity estimation methodology that has been implemented in a tool called *pathrate*. *Pathrate* sends many packet pairs to uncover the local modes of the underlying bandwidth distribution, and then selects the local mode that corresponds to the capacity. This latter part is also based on the fact that the ADR, measured with long packet trains, is a lower bound for the capacity of the path. We report on our experiences with *pathrate*, after having measured hundreds of Internet paths over the last three years.

The rest of the paper is structured as follows. Section 2 summarizes previous work on bandwidth estimation. Section 3 investigates in depth the distribution of packet pair bandwidth measurements, while Section 4 focuses on the distribution of packet train bandwidth measurements and derives key properties of the ADR. Based on the insight of previous sections, Section 5 describes the *pathrate* capacity estimation methodology and tool. We conclude in Section 6.

### 2 Previous work

The concept of packet dispersion, as a burst of packets traverses the narrow link of a path, was originally described in [8] and it is closely related to the TCP self-clocking mechanism. Jacobson did not consider however the effects of cross traffic, and so he did not distinguish between capacity and available bandwidth. Keshav explored the same concept in the context of congestion control [11], recognized that the dispersion of packet pairs is not related to the available bandwidth when router queues use the First-Come First-Served discipline, and so he focused on fair-queueing instead. Bolot used packet dispersion measurements to estimate the capacity of a transatlantic link and to characterize the traffic interarrivals [1].

Early work on packet pair dispersion was followed by more sophisticated variations, focusing on statistical techniques that can extract an accurate capacity estimate from

<sup>&</sup>lt;sup>1</sup>Even though reference [3] did not formalize the available bandwidth definition as in Equation (2), it essentially used the same definition ("the portion of the base bandwidth not used by competing traffic").

noisy bandwidth measurements. Carter and Crovella created *bprobe*, which uses union and intersection filtering of packet pair measurements, with variable probing sizes, to produce a final capacity estimate [3]. Lai and Baker, on the other hand, used a kernel density estimator as their statistical filtering tool [12], and maximum-sized probing packets.

Paxson was the first to observe that the distribution of bandwidth measurements is multimodal, and he elaborated on the identification and final selection of a capacity estimate from these modes [20]. He used both packet pairs and packet trains to estimate the underlying bandwidth distribution. The complete methodology is called "Packet Bunch Modes" (PBM) and as Paxson notes in [20] (p.267): "It is unfortunate that PBM has a large heuristic component, as it is more difficult to understand. (...) We hope that the basic ideas underlying PBM—searching for multiple modes and interpreting the ways they overlap in terms of bottleneck changes and multi-channel paths—might be revisited in the future, in an attempt to put them on a more systematic basis".

More recently, the packet pair technique has been largely revisited, explaining the multiple modes that Paxson observed based on queueing and cross traffic effects [4, 15, 19]. This paper is an extension of our earlier work [4], with some major differences however. Specifically, we elaborate on the positive effect of packet pairs with variable sizes (while [4] recommended fixed-size probing packets), define the ADR based on the mean dispersion of packet trains, rather than based on the asymptotic dispersion rate as the train length increases, prove that the ADR is an upper bound for the available bandwidth, and present a significantly different statistical methodology for capacity estimation. [19] proposed a queueing model which shows the effects of cross traffic, and identified some key signatures in the packet pair distribution. Additionally, [19] revealed the negative effect of lower layer headers, and it argued for peak detection as superior to mode detection for capacity estimation. Along a different research thread, [6] showed that it is possible to measure the capacity of targeted path segments using packet dispersion techniques.

Dispersion techniques using packet trains, instead of packet pairs, have been also proposed for available bandwidth estimation. Carter and Crovella developed a tool called *cprobe* which estimates the available bandwidth from the dispersion of eight-packet trains [3]. Other researchers have proposed that the *ssthresh* variable in TCP's slow-start phase, which should be ideally set to the product of the connection's RTT with the available bandwidth, can be determined from the dispersion of the first three or four ACKs [2, 7]. The underlying assumption in [2, 3, 7] is that the dispersion of packet trains is inversely proportional to the available bandwidth. However, as it was first shown in [15] and then in [4], this is not the case: the average dispersion of long packet trains is inversely proportional, instead, to the ADR.<sup>2</sup>

More recently, significant progress has been made in the estimation of available bandwidth through end-to-end measurements [10, 15, 24]. The TOPP and SLoPS techniques, of [15] and [10] respectively, use packet streams of variable rates. When the stream rate exceeds the available bandwidth, the stream arrives at the receiver with a lower rate than its rate at the sender. TOPP has the additional advantage that, together with available bandwidth, it can also estimate the capacity of the tight link in the path, and in some cases, the capacity and available bandwidth of other links in the path. SLoPS, on the other hand, gives more emphasis on the variability of available bandwidth, and on the resulting measurement uncertainty (referred to as "grey region"). For a more detailed discussion of the related work in available bandwidth estimation, we refer the reader to [10].

We finally note that packet dispersion techniques are not the only way to measure bandwidth. A different methodology, called Variable Packet Size (VPS) probing, attempts to measure the capacity of every link in a path. The underlying idea in VPS probing is based on the variation of one-way delays as the packet size increases [5, 9]. Lai and Baker proposed a variation of this technique, called packet tailgating, which avoids the need for ICMP replies from routers [13]. However, the reported capacity estimates with VPS techniques are often inaccurate. A possible explanation is that the presence of layer-2 store-and-forward devices (e.g., Ethernet switches) creates additional transmission delays that are not accounted for by these tools [17, 21].

## 3 Packet pair dispersion

A packet pair measurement can be described more formally as follows. Consider a network path  $\mathcal{P}$  defined by the sequence of link capacities  $\mathcal{P} = \{C_0, C_1, \dots, C_H\}$ . Two packets of the same size L are sent from the sender  $\mathcal S$  to the receiver  $\mathcal{R}$ . These packets are called probing packets of size L. The dispersion  $\delta_i$  of the packet pair after a link i is the time interval between the complete transmission (up to the last bit) of the two packets by link i. The dispersion of the probing packets after the sender S is  $\delta_0 = \tau_0 \equiv L/C_0$ , i.e., the two probing packets are sent "back-to-back". When the packet pair reaches the receiver,  $\mathcal{R}$  measures the dispersion  $\delta_H$ , and then computes a bandwidth estimate  $b = L/\delta_H$ . Since  $\delta_H$  can vary among different packet pair measurements, b can be considered a continuous random variable. Suppose that b follows a probability density function  $\mathcal{B}$ , that we refer to as the packet pair bandwidth distribution. Our main objective here is to understand the salient features of the distribution  $\mathcal{B}$ , and in particular those characteristics that relate to the capacity of the path.

First, let us assume that there is no cross traffic in the path. It is easy to see that the dispersion  $\delta_i$  cannot be lower than the dispersion  $\delta_{i-1}$  at the previous hop and the transmission delay  $\tau_i = L/C_i$  at hop i, i.e.,  $\delta_i = \max\{\delta_{i-1}, \tau_i\}$ . Applying this model recursively from  $\mathcal{R}$  back to  $\mathcal{S}$ , we find

<sup>&</sup>lt;sup>2</sup>Note that [15] used the term "proportional share bandwidth" to describe what we call ADR.

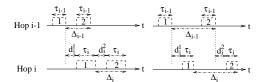


Figure 2: The two cases of Equation (4).

that the dispersion at  $\mathcal{R}$  is

$$\delta_H = \max_{i=0...H} \tau_i = \frac{L}{\min_{i=0...H} \{C_i\}} = \frac{L}{C} = \frac{L}{C_n} = \tau_n$$
 (3)

where  $C_n$  and  $\tau_n$  are the capacity and transmission delay at the narrow link, respectively. Consequently, without cross traffic, all packet pair bandwidth measurements are equal to the capacity, independent of the probing size L.

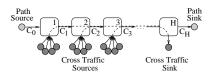
Note that the two probing packets of the same packet pair should have the same size L, so that both packets encounter the same transmission delay at each link. Otherwise, if  $L_1$  is the size of the first probing packet and  $L_2$  is the size of the second probing packet, the dispersion after link i is  $\delta_i = \delta_{i-1} + \frac{L_2 - L_1}{C_i}$  if  $\delta_{i-1} > L_1/C_i$ , and  $\delta_i = L_2/C_i$  otherwise. The dispersion  $\delta_H$  at the receiver is not always determined by the capacity of the narrow link in that case.<sup>3</sup>

In the presence of cross traffic, probing packets can experience additional queueing delays. Let  $d_i^1$  be the queueing delay of the first probing packet at hop i. Also, let  $d_i^2$  be any additional queueing delay of the second probing packet at hop i, after the first packet has departed from that link (see Figure 2). The dispersion after hop i is

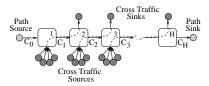
$$\delta_i = \begin{cases} \tau_i + d_i^2 & \text{if } \tau_i + d_i^1 \ge \delta_{i-1} \\ \delta_{i-1} + (d_i^2 - d_i^1) & \text{otherwise} \end{cases}$$
(4)

Note that when  $\tau_i + d_i^1 < \delta_{i-1}$  and  $d_i^2 < d_i^1$ , the dispersion from hop i-1 to hop i decreases, i.e.,  $\delta_i < \delta_{i-1}$ . This effect can cause a dispersion at  $\mathcal{R}$  that is lower than the dispersion at the narrow link  $(\delta_H < L/C_n)$ . Note that this can only happen if there are additional links after the narrow link. We refer to such links as post-narrow links. The last observation implies that the capacity of the path cannot be estimated simply from the minimum measured dispersion (or, equivalently, the maximum bandwidth measurement) because the minimum dispersion could have resulted at a post-narrow link.

In order to examine the properties of the packet pair bandwidth distribution  $\mathcal{B}$  in a controllable and repeatable manner, we used the network simulator NS. Simulations allow us to investigate the effects of cross traffic in packet pair dispersion, avoiding issues such as route changes, multichannel links, timestamping accuracy and resolution, that can distort the measurements. Together with simulations, we also present measurements from Internet paths.



(a) Path persistent cross traffic



(b) One-hop persistent cross traffic

Figure 3: Two cases of cross traffic routing.

The simulated model follows the path description given earlier, i.e., S sends packet pairs to R, and the latter computes bandwidth estimates b from the measured dispersions  $\delta_H$ . The bandwidth distribution  $\mathcal{B}$  is estimated from a histogram of 1000 packet pair measurements. The Appendix describes in detail the statistical procedure that we use to detect local modes in  $\mathcal{B}$ , as well as a heuristic for selecting the bin width  $\omega$ . In summary, a local mode estimates the range of a local maximum in  $\mathcal{B}$ . The *strength* of a local mode is the number of measurements in the central bin of that mode, i.e., the maximum number of measurements in a range of width  $\omega$  in that mode. The width of a local mode, on the other hand, is related to the range in which that mode extends. The global mode of  $\mathcal{B}$  is the local mode with the maximum strength, i.e., the most common range of bandwidth measurements with width  $\omega$ . For example, Figure 12 shows a distribution with three local modes; the global mode has a strength  $S_2$  and a width  $W_2$ .

Unless noted otherwise, the probing size L is fixed at 1500 bytes. Cross traffic is generated from sixteen sources at each hop with Pareto interarrivals and shape parameter  $\alpha$ =1.9, i.e., the packet interarrivals are heavy-tailed. The cross traffic packet size is denoted by  $L_c$ , and it is either constant or it is uniformly distributed in the [40,1500] (bytes) range.

The routing of cross traffic packets relative to the measured path is also important. Figure 3 shows two extreme cases. In Figure 3-a, cross traffic follows the same path with the packet pairs (path persistent cross traffic). In Figure 3-b, cross traffic exits the path after one hop (one-hop persistent cross traffic). We explain the importance of cross traffic routing in §4. For now, we note that the following simulations use one-hop persistent cross traffic.

### 3.1 The effect of network load

Let us first examine the effect of network load on the packet pair bandwidth distribution  $\mathcal{B}$ . Figure 4 shows the his-

<sup>&</sup>lt;sup>3</sup> Variations of the packet pair technique, with probing packets of different sizes, have been proposed for different estimation purposes [6, 13, 19].

 $<sup>^4</sup>$  If there is more than one link with capacity C, the narrow link is the last of them in the path.

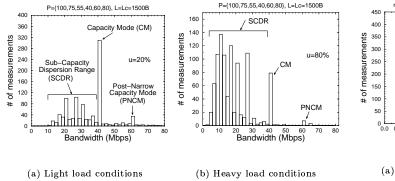


Figure 4: The effect of network load on the packet pair bandwidth distribution  $\mathcal{B}$  (simulations).

togram of  $\mathcal{B}$  for a path  $\mathcal{P} = \{100,75,55,40,60,80\}$  (all capacities in Mbps), with a bin width of 2 Mbps. Note that the path capacity is C = 40 Mbps, while the post-narrow links have capacities of 60 and 80 Mbps, respectively. In Figure 4-a all links are 20% utilized, whereas in Figure 4-b all links are 80% utilized.

When the path is lightly loaded (u=20%) the capacity value of 40 Mbps is prevalent in  $\mathcal{B}$ , and it forms the Capacity Mode (CM), that is the global mode of the distribution in this case. CM is formed by packet pairs that did not get queued behind cross traffic packets in the path. Bandwidth measurements at the left of CM are caused by cross traffic packets that interfere with packet pairs, increasing their dispersion, and causing a Sub-Capacity Dispersion Range (SCDR). For instance, the SCDR in Figure 4-a is between 10 and 40 Mbps. The reason we observe several local modes in the SCDR is discussed later in this section.

Bandwidth measurements at the right of CM are caused at the post-narrow links when the first probing packet is delayed more than the second. The corresponding local modes are referred to as Post-Narrow Capacity Modes (PNCMs). Note a PNCM at 60 Mbps, which is the capacity of the link just after the narrow link. That local mode is created when the first probing packet is delayed long enough for a packet pair to be serviced back-to-back in that link. A link with capacity  $C_i$  can form a PNCM if all links later in the path have higher capacities, i.e., if  $C_i < C_j$  for any link j with  $i < j \le H$ .

In the case of heavy load (u=80%), the probability of cross traffic packets interfering with the probing packets becomes much larger, and CM is not the global mode of  $\mathcal{B}$  (see Figure 4-b). Instead, the global mode resides in the SCDR, which now dominates the bandwidth measurements. In fact, in heavily congested paths CM may not even appear as a local mode if almost every packet pair is affected by cross traffic.

A key point to take from Figure 4-b is that the path capacity cannot be estimated, in the general case, by statistical techniques that extract the most common bandwidth value or range. Instead, we must analyze the queueing ef-

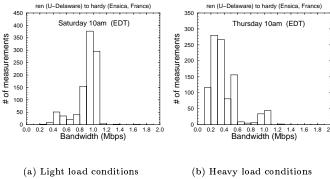


Figure 5: The effect of network load on the packet pair bandwidth distribution  $\mathcal{B}$  (measurements).

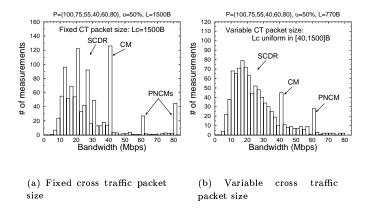


Figure 6: The effect of the cross traffic packet size  $L_c$  on the packet pair bandwidth distribution  $\mathcal{B}$ .

fects that cause different local modes, understand what distinguishes CM from SCDR and PNCM modes, and choose a probing size L that will make CM relatively stronger than those erratic modes.

Figure 5 shows packet pair bandwidth distributions based on Internet measurements, rather than simulations. The measured path is from the University of Delaware to Ensica in Toulouse, France. The capacity of the path is 1 Mbps, limited by Ensica's access link. The distribution of Figure 5-a resulted from measurements on a Saturday morning in Delaware (afternoon in France), while the distribution of Figure 5-b resulted from measurements on a Thursday morning in Delaware. Even though we do not know the actual utilization at each link of the path, it is reasonable to expect that the path is much more loaded on a weekday than on a Saturday. The impact of the network load is obvious in Figure 5. When the path is lightly loaded, CM is prevalent and thus easy to measure. In heavier loads, on the other hand, the SCDR is prevalent, and CM is only a minor local mode. There are no significant PNCMs in these measurements.

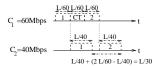


Figure 7: Generation of a 30 Mbps local mode in a path  $\mathcal{P} = \{100, 60, 40\}.$ 

# 3.2 The effect of cross traffic packet size variability

Let us now investigate what causes local SCDR modes. Figure 6 shows  $\mathcal{B}$  for the same path as in Figure 4, when the cross traffic packet size  $L_c$  is fixed to 1500 bytes (Figure 6-a), and when it varies uniformly in the range [40, 1500] bytes (Figure 6-b). In the first case, the probing size L is also 1500 bytes, while in the second case it is set to 770 bytes, i.e., the average of the cross traffic packet range [40, 1500].

When all packets in the path have the same size ( $L_c = L$ ), it is simple to explain the local modes in the SCDR of Figure 6-a. The basic idea is that SCDR local modes are created when a number of cross traffic packets interferes with the packet pair in specific links of the path. For instance, consider the path  $\mathcal{P} = \{100, 60, 40\}$ . A local mode at 30 Mbps can be caused when a single cross traffic packet interferes between packet pairs at the 60 Mbps link. In that case the packet pair dispersion after the narrow link is  $\delta_n = \frac{L}{40} + (2\frac{L}{60} - \frac{L}{40}) = \frac{L}{30}$  (see Figure 7). Similarly, a mode at 20 Mbps can be caused by a single packet interfering between packet pairs at the 40 Mbps link, or by two packets interfering at the 60 Mbps link, and so on.

On the other hand, when cross traffic packet sizes vary uniformly in the range [40,1500] (Figure 6-b), the resulting packet pair dispersion is much less predictable. If the cross traffic packet size distribution has no local modes (such as the uniform distribution), the SCDR in  $\mathcal B$  has no local modes either. On the other hand, the CM and some of the PNCMs are still distinct modes in the distribution of Figure 6-b, because they are caused by probing packets serviced back-to-back at the narrow or post-narrow links, respectively, independent of the cross traffic packet size distribution.

Several measurement studies have shown that the packet size distribution in the Internet has strong modalities, centered around three or four common values [14, 26]. Specifically, about 50% of the packets are 40 (or 44) bytes, 20% are 576 bytes, and 15% are 1500 bytes. These dominant packet sizes would cause a packet pair bandwidth distribution that is more similar to the discrete dispersion effects of Figure 6-a, rather than the continuous dispersion effects of Figure 6-b. Thus, when measuring real Internet paths with fixed-size probing packets, we should expect strong SCDR local modes.

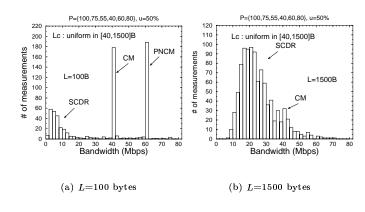


Figure 8: Small versus large probing size L.

### 3.3 The effect of the probing packet size

We now focus on the effect of the probing size L on the packet pair bandwidth distribution  $\mathcal{B}$ . The conventional wisdom, as reflected for instance in [20] or [12], is that the best value of L is the maximum non-fragmented packet size, i.e., the path Maximum Transmission Unit (MTU) size. The reason is that a larger L leads to wider dispersion that is easier to measure, more robust to queueing delay noise, and less sensitive to the timestamping resolution at the receiver. Here, we first investigate the effect of the probing size on the strength of the PNCM, CM, and SCDR modes, showing that MTU-sized probing packets are not optimal for capacity estimation. We also show that if the probing size L varies among different packet pairs, the SCDR modes become wider and weaker, making the CM mode relatively stronger.

Let us first examine the effect of a fixed probing size L on the strength of the PNCM, CM, and SCDR modes. Suppose that a packet pair arrives at a link i of capacity  $C_i$ . If a cross traffic packet arrives at link i in the time interval between the arrival of the first and second probing packets, which is of duration  $L/C_i$ , it will interfere with the probing packets, increasing the dispersion  $\delta_i$  above  $\tau_i$ . The larger L is, the higher the probability of an interfering cross traffic arrival, and the more prevalent the SCDR will be in  $\mathcal{B}$ .

The effect of a fixed probing size is clear in Figure 8, where  $\mathcal{B}$  is shown for a small probing size (L=100B) and for a large probing size (L=1500B). In both cases, the path configuration, load, and cross traffic packet size distribution are the same. Note that the probing size L is qualified as "small" or "large", relatively to the size of cross traffic packets. The SCDR in the case of small L is much weaker than in the case of large L, because it is less likely for cross traffic packets to interfere between small probing packets.

As L decreases, on the other hand, the dispersion decreases proportionally, and it becomes more susceptible to distortion at post-narrow links. Suppose that L=100B,  $\mathcal{P}=\{40,80\}$ , and that a packet pair leaves the 40Mbps narrow link back-to-back, i.e., with  $\delta_0=20\mu$ s. It only takes at least 100 bytes of cross traffic interfering at the 80Mbps link, to make the packet pair depart from that link back-

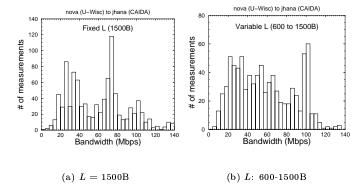


Figure 9: Fixed versus variable-sized packet pair bandwidth measurements.

to-back, i.e., with  $\delta_1$ =10 $\mu$ s. In general, as L decreases, the formation of PNCMs becomes more likely. This is shown in Figure 8. Note the PNCM at 60 Mbps in Figure 8-a, which is actually stronger than the CM located at 40 Mbps. On the other hand, there are no significant PNCMs when L=1500B, as shown in Figure 8-b.

We next consider the following question: in order to estimate the capacity of a path, is it better to use the same probing size L in all packet pairs, or a variable L across different packet pairs? The key idea here is that, if L is the same in all packet pairs, SCDR local modes will be created when cross traffic packets of certain common sizes interfere between packet pairs. For example, if L=1500B, the interference of a 1500-byte cross traffic packet at a 40Mbps link can cause an SCDR mode at 20Mbps. As noted in §3.2, there are 3-4 common packet sizes in Internet traffic, and so the creation of strong SCDR modes should be expected when all packet pairs have the same probing size L (see also Figure 6).

Suppose, instead, that L varies uniformly across different packet pair experiments between 50B and 1500B. The interference of 552 byte cross traffic packets between a packet pair at a 40Mbps link will generate bandwidth measurements uniformly distributed between 3.3Mbps and 29Mbps, depending on the probing size L. So, the use of variable-sized probing packets distributes the sub-capacity measurements in a larger bandwidth range, making the SCDR modes wider, and thus weaker compared to CM.

The difference between fixed and variable probing packet sizes is clear in Figure 9. The two bandwidth distributions resulted from 1000 packet pair experiments in the path from University of Wisconsin to CAIDA in San Diego, CA. In the first case (Figure 9-a), all packet pairs consist of probing packets with size L=1500 bytes. Note the presence of strong SCDR modes around 72Mbps, 35Mbps, and 26Mbps.<sup>5</sup> CM, located around 100Mbps, appears only as a weak mode compared to these SCDR modes. In Figure 9-b, on the other hand, the probing size varies uniformly

between 600 and 1500 bytes. Notice that the sub-capacity measurements have been spread throughout a wider range, and that the SCDR modes are weaker compared to Figure 9-a. The CM has accumulated roughly the same number of measurements in both Figures 9-a and 9-b, but it is easier to detect in the latter, because it is stronger compared to the SCDR modes.

Given all previous constraints, what should the probing size L be? We showed that using a range of L, instead of a certain value, spreads the sub-capacity measurements making the SCDR modes wider, and thus weaker. We also showed that using probing packets that are too small compared to cross traffic packets can create intense PNCMs, while using probing packets that are too large can lead to a prevalent SCDR and a weak CM. Combining these effects, we see that a good compromise for the probing packet size is to use a range of sizes, say from  $L_{min}$  to  $L_{max}$ , where  $L_{min}$  is not a very small packet and  $L_{max}$  is not a very large packet, compared to cross traffic packets.

We need to consider two additional practical constraints on  $L_{min}$ . First, encapsulation headers in lower layers of the protocol hierarchy can cause a significant capacity underestimation when using small probing packets. Suppose that a link has a capacity  $C_{L2}$  at the link-layer (layer-2). At the IP layer (layer-3), the link will deliver a lower rate than its nominal transmission rate  $C_{L2}$ , due to the overhead of layer-2 headers [19]. The transmission latency for an IP packet of size  $L_{L3}$  bytes is

$$\delta_{L3} = \frac{L_{L3} + H_{L2}}{C_{L2}} \tag{5}$$

where  $H_{L2}$  is the size of layer-2 headers that encapsulate the IP packet. So, the capacity  $C_{L3}$  of the link at layer-3 is

$$C_{L3} = \frac{L_{L3}}{\delta_{L3}} = C_{L2} \frac{L_{L3}}{L_{L3} + H_{L2}} = C_{L2} \frac{1}{1 + \frac{H_{L2}}{L_{L3}}}$$
(6)

Note that the layer-3 capacity depends on the size of the IP packet relatively to the layer-2 header size. To reduce the effect of layer-2 headers on the measured layer-3 capacity, we need to use probing packets that are significantly larger than the typical layer-2 encapsulation headers (5-50 bytes). In pathrate for instance, the minimum probing size  $L_{min}$  is set to 550 bytes.

Second, we need to consider the per-packet processing time at the receiver. An end-host can only measure the dispersion of a packet pair when the latter is larger than a certain lower bound  $\delta_m$ . This dispersion  $\delta_m$  is determined by the latency to receive a packet from the network interface, process the packet at the kernel protocol stack, move the packet from kernel to user space through a recvfrom system call, timestamp the arrival, etc, before waiting for the second probing packet. Given  $\delta_m$  for a particular host, the maximum possible capacity that can be measured for a packet size L is  $L/\delta_m$ . For example, with  $\delta_m = 10 \mu s$  and L = 800B, the maximum capacity that can be measured is 640 Mbps. On the other hand, when a rough estimate  $\bar{C}$  of the capacity is known, the minimum packet size should be set to  $L_{min} > \bar{C}\delta_m$ .

<sup>&</sup>lt;sup>5</sup>The estimation of local modes is performed using the statistical procedure described in the Appendix, and not based on visual inspection of these histograms.

### 3.4 Summary of packet pair dispersion

The packet pair bandwidth distribution  $\mathcal{B}$  can be viewed as a sequence of local modes imposed on an underlying random measurement noise. In general, the path capacity cannot be estimated from the most common measurement (global mode) or from the maximum bandwidth measurement. Each local mode in  $\mathcal{B}$  is caused by a commonly occurring queueing event that leads to a specific dispersion range. Some local modes are below the capacity (SCDR), some above the capacity (PNCMs), and one of them (CM) is normally the capacity. CM is typically the global mode of  $\mathcal{B}$  under light load conditions. The SCDR accumulates more measurements as the load increases however, and it exhibits several local modes if the cross traffic packet size distribution is multimodal. Regarding the probing packet size, using a range of values, instead of a fixed size, spreads the sub-capacity measurements making the SCDR modes wider, and thus, weaker. Finally, using probing packets that are too small compared to cross traffic packets can create intense PNCMs, while using probing packets that are too large can cause a prevalent SCDR and a weak CM.

## 4 Packet train dispersion

As a generalization of the packet pair technique,  $\mathcal{S}$  can send N back-to-back packets of size L to  $\mathcal{R}$  with N>2; we refer to these probing packets as a packet train, or simply train, of length N.  $\mathcal{R}$  measures the total dispersion  $\Delta(N) = \sum_{k=1}^{N-1} \delta^k$  of the train, from the first to the last packet, where  $\delta^k$  is the dispersion between packets k and k+1. From  $\Delta(N)$ ,  $\mathcal{R}$  calculates a bandwidth measurement b(N)

$$b(N) = \frac{(N-1)L}{\Delta(N)} \tag{7}$$

b(N) can also be written as  $b(N) = L/\bar{\delta}(N)$ , where

$$\bar{\delta}(N) = \frac{\sum_{k=1}^{N-1} \delta^k}{N-1}$$
 (8)

is the average dispersion among successive packet pairs of the train.

Without cross traffic in the path, all bandwidth measurements b(N) will be equal to the capacity, just as in the packet pair case. So, the capacity of an empty path can be measured with packet trains of any length. One should use packet trains, however, when the narrow link is multichanneled [20]. In a p-channel link of total capacity C, the individual channels forward packets in parallel at a rate of C/p, and so the link capacity can be measured from the dispersion of packet trains with N=p+1.

In a non-empty path,  $\Delta(N)$  will vary across different train measurements. In that case, b(N) can be considered a continuous random variable, and we refer to its probability density function as the *packet train bandwidth distribution*  $\mathcal{B}(N)$ . It may seem at first that using long packet trains simplifies the problem of capacity estimation compared to packet pairs. One can argue such a hypothesis because trains lead to larger dispersion values, which would

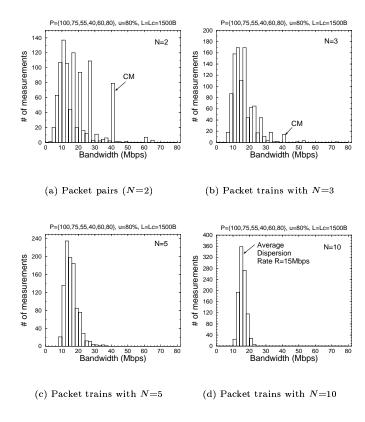


Figure 10: The effect of the packet train length N (simulations).

be less sensitive to measurement noise. However, as we show in this section, this is not the case. The key idea is that, although the dispersion  $\Delta(N)$  becomes larger as N increases, so does the cross traffic noise that is introduced in the dispersion  $\Delta(N)$ . In other words, as the train length N increases, more cross traffic packets can interfere with the packet train resulting in bandwidth measurements that are less than the path capacity C.

# 4.1 The packet train bandwidth distribution

We first make three observations, based on simulation and experimental results, on the relation between N and  $\mathcal{B}(N)$ . Figure 10 shows histograms of  $\mathcal{B}(N)$  for four increasing values of N at a simulated path  $\mathcal{P} = \{100, 75, 55, 40, 60, 80\}$  with u=80% in all links. Figure 11 shows histograms of  $\mathcal{B}(N)$  for four increasing values of N at an Internet path from the University of Wisconsin to the University of Delaware. All histograms are based on 1000 train measurements.

The first observation is that, as N increases, the CM and PNCMs become weaker, until they disappear, and the SCDR prevails in  $\mathcal{B}(N)$ . This is because, as N increases, the probability that a packet train will encounter additional dispersion due to cross traffic packets increases as well. When the train length is sufficiently large, almost every bandwidth measurement is less than the path capacity

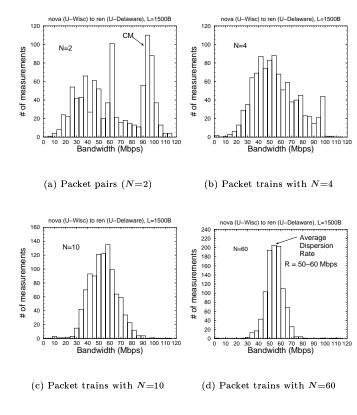


Figure 11: The effect of the packet train length N (measurements).

due to cross traffic interference. This observation also implies that the optimal train length for generating a strong Capacity Mode is N=2, i.e., to use packet pairs. Longer packet trains are more likely to cause capacity underestimation.

A second observation is that the variability of b(N) decreases as N increases. In Figures 10 and 11, this is shown both by the reduced distribution range and by the suppression of local modes as the train length increases. This observation can be explained from Equation (8) as follows: if  $\sigma_{\delta}^2$  is the variance of the packet pair dispersion  $\delta$ , and assuming that the packet pair dispersions  $\delta^k$  (k=1...N-1) are independent, the variance of  $\bar{\delta}(N)$  is  $\sigma_{\delta}^2/(N-1)$ . Since the train bandwidth b(N) is uniquely determined by  $\bar{\delta}(N)$ , the variance of b(N) decreases as N increases.

A third observation is that, if N is sufficiently large, the location of the packet train bandwidth distribution  $\mathcal{B}(N)$  becomes independent of N. In other words, as the train length increases, the resulting bandwidth measurements tend towards a certain value that we refer to as Average Dispersion Rate (ADR). We next use a simple model of packet train dispersion, based on a fluid cross traffic model, to explain the effect of N on the distribution  $\mathcal{B}(N)$ , derive the ADR in a multihop path, and show the relation between the capacity, available bandwidth, and ADR.

## 4.2 Average Dispersion Rate

Consider a path  $\mathcal{P} = \{C_0, C_1, \dots C_H\}$  from  $\mathcal{S}$  to  $\mathcal{R}$ . At link i, the average cross traffic rate is  $S_i$  ( $S_i < C_i$ ), the available bandwidth is  $A_i = C_i - S_i$ , and the utilization is  $u_i = S_i/C_i$ . We assume that links use the First-Come First-Served queueing discipline, and that they are adequately buffered to avoid any packet losses. S sends trains of length N to  $\mathcal{R}$  at the source rate  $C_0$ . The probing packet size is L bytes. Each train is sent after the previous train has been received, and so different trains do not interact while in transit. The train dispersion  $\Delta_i(N)$  after link i is the time interval between the complete transmission of the first and the last packets of the train from link i. The initial dispersion of the train after the source is  $\Delta_0(N) = L(N-1)/C_0$ , i.e., the probing packets are sent back-to-back. The train arrives at  $\mathcal{R}$  with a dispersion  $\Delta(N) \equiv \Delta_H(N)$ , resulting in a bandwidth measurement  $b(N) = (N-1)L/\Delta(N)$ . We are interested in the bandwidth metric R that corresponds to the mean packet train dispersion  $E[\Delta(N)]$ , i.e.,

$$R \equiv \frac{(N-1)L}{E[\Delta(N)]} \tag{9}$$

We refer to R as the Average Dispersion Rate, or ADR.

#### 4.2.1 The ADR in a single-hop path

Let us start with a single-hop path  $\mathcal{P}=\{C_0,C_1\}$ , where  $C_0\geq A_1$ . We assume that the cross traffic follows a fluid model, and so the amount of cross traffic that arrives at link i in any time interval T is  $S_iT$ . So, the cross traffic that arrives in the link during a train's initial dispersion  $\Delta_0(N)$  is  $X_1=S_1\Delta_0(N)$ . The traffic  $X_1$  is interleaved with the packet train at the FCFS queue of the link. The dispersion of the packet train after the link is

$$\Delta_1(N) = \frac{(N-1)L + X_1}{C_1} = \frac{(N-1)L}{C_1} (1 + u_1 \frac{C_1}{C_0}) \quad (10)$$

and so the ADR is

$$R = \frac{(N-1)L}{E[\Delta_1(N)]} = \frac{C_1}{1 + u_1 \frac{C_1}{C_0}} \le C_1 \tag{11}$$

Note that R does not depend on the train length N. This agrees with the last observation of §4.1, according to which the ADR is independent of the train length N.

Is Equation (11) valid for any train length N however? To answer this question we need to depart from the previous fluid model and take into account that cross traffic appears as a random process of distinct packet arrivals. In that case, the amount of cross traffic  $X_1$  that arrives at the link during a time interval  $\Delta_0(N)$  may be different than the mean  $E[X_1] = S_1 \Delta_0(N)$ . As N increases, however, we expect that the cross traffic rate  $X_1/\Delta_0(N)$  during the arrival of a particular packet train of length N will converge to the average rate  $S_1$ , and so we can approximate  $X_1$  by its mean  $E[X_1]$ . Thus, Equation (11) can be considered a good approximation for the ADR with packetized cross traffic as long as N is sufficiently large. As shown in Figure

11-d, which resulted from experiments with real Internet traffic, a train length of a few tens of packets is typically sufficient to approximate the location of the distribution  $\mathcal{B}(N)$ .

Equation (11) also shows that, for capacity estimation purposes, it is better to inject probing packets in the path from a higher bandwidth interface (higher  $C_0$ ), since the cross traffic error term  $u_1 C_1/C_0$  is then reduced. For instance, suppose that we measure the capacity of a path using packet trains and that  $C_0=100 \text{Mbps}$  and  $C_1=100 \text{Kbps}$ . Even if the narrow link is almost saturated ( $u \approx 1$ ), the term  $u_1 C_1/C_0$  will introduce an underestimation error that is less than 0.1%. This also explains why it is harder to estimate the capacity of paths in which the narrow link capacity is of the same order of magnitude with the source transmission rate.

# 4.2.2 The ADR in a multihop path with one-hop persistent cross traffic

Consider now the general case of a multihop path  $\mathcal{P} = \{C_0, C_1, \dots C_H\}$ . We assume again that the cross traffic follows the fluid model, and so the amount of cross traffic arriving at link i in any time interval T is  $S_iT$ . Additionally, we assume that the cross traffic is one-hop persistent (see Figure 3-b). This assumption guarantees that the amount of interfering cross traffic at link i does not depend on the amount of interfering cross traffic at previous links. Let  $R_i$  be the ADR at the output of link i, with  $R_0 = C_0$ . We derive  $R_i$  as a function of  $R_{i-1}$  for  $i = 1, \dots H$ .

If  $R_{i-1} < A_i$ , we have that  $R_{i-1} + S_i < C_i$ , and so cross traffic interferes between probing packets without increasing their dispersion. Thus, the ADR at the output of link i is  $R_i = R_{i-1}$ .

If  $R_{i-1} \geq A_i$ , we can follow the same derivations that resulted in (11) to show that,

$$R_{i} = \frac{C_{i}}{1 + u_{i} \frac{C_{i}}{R_{i-1}}} = \frac{R_{i-1}C_{i}}{S_{i} + R_{i-1}} = \frac{R_{i-1}C_{i}}{(C_{i} - A_{i}) + R_{i-1}}$$
(12)

Putting the previous two cases together, we have that

$$R_{i} = \begin{cases} R_{i-1} \frac{C_{i}}{S_{i} + R_{i-1}} & \text{if } R_{i-1} \ge A_{i} \\ R_{i-1} & \text{otherwise} \end{cases}$$
 (13)

So, if we know the capacity and available bandwidth at each link of the path, we can derive the ADR applying (13) recursively from i=1 to i=H, assuming that the cross traffic is one-hop persistent. Note that the ADR is determined, in general, by the capacity and available bandwidth of each link in the path. This is fundamentally different than the end-to-end available bandwidth  $A=\min A_i$ , which depends on the utilization and capacity of only the tight link.

## 4.3 ADR and cross traffic routing

If the cross traffic is not one-hop persistent, the interfering cross traffic at link i depends on the amount of cross traffic

at previous links. To illustrate this point, consider the two-hop path  $\mathcal{P}=\{C_0,C_1,C_2\}$  with  $C_0 \geq C_1 \geq C_2$ . We compare the ADR between one-hop persistent and path persistent cross traffic (see Figure 3), under the same load conditions.

Suppose that the average cross traffic rate is  $S_1 = r_1 < C_1$  at link-1, and  $S_2 = r_1 + r_2 < C_2$  at link-2, with  $r_1, r_2 > 0$ . In the case of one-hop persistent cross traffic we can use (13) to show that the ADR after each link is

$$R_1^{1p} = \frac{C_1}{1 + \frac{r_1}{C_0}} \qquad R_2^{1p} = \frac{C_2}{1 + (1 + \frac{r_1}{C_0})(\frac{r_1}{C_1} + \frac{r_2}{C_1})}$$
 (14)

because  $C_0 \ge A_1$  and  $R_1^{1p} \ge A_2 = C_2 - S_2$ .

In the path persistent model, the cross traffic rate entering link-1 is  $r_1$  and the cross traffic entering link-2 is  $r_2$ . So, the aggregate load at link-2 is  $S_2 = r_1 + r_2$ , as in the one-hop persistent case. The ADR at the exit of link-1 is the same as previously,

$$R_1^{pp} = R_1^{1p} = \frac{C_1}{1 + \frac{r_1}{C_0}}$$
 (15)

The train dispersion at the exit of link-1 is

$$\Delta_1 = \frac{(N-1)L + r_1 \Delta_0}{C_1} \tag{16}$$

with  $\Delta_0 = (N-1)L/C_0$ . The additional cross traffic that interferes with the train at link-2 is  $X_2 = \Delta_1 r_2$ , and so the train dispersion at the exit of link-2 is

$$\Delta_2 = \frac{(N-1)L + r_1 \Delta_0 + r_2 \Delta_1}{C_2} \tag{17}$$

So, the ADR after link-2 is

$$R_2^{pp} = \frac{(N-1)L}{\Delta_2} = \frac{C_2}{(1 + \frac{r_1}{C_0})(1 + \frac{r_2}{C_1})}$$
(18)

It is easy to show that  $R_2^{pp} > R_2^{1p}$ , i.e., the one-hop persistent model results in lower ADR. The two models produce different results because, in the path persistent model, the cross traffic that interferes with the train at link-1 has already been "spaced out" after link-1 to a rate that is lower than  $r_1$ . So, the cross traffic that interferes with the train at link-2 has a lower rate than  $r_1 + r_2$ .

# 4.4 The relation between ADR, capacity, and available bandwidth

It is easy to show that that the ADR is a lower bound for the capacity C of a path.

**Proposition 1:** The Average Dispersion Rate at the receiver is  $R \leq C$ .

Proof.

According to (12), if  $R_{i-1} \geq A_i$  then  $R_i \leq C_i$ . So, from (13), the ADR after each link i is either less than the available bandwidth  $A_i$ , and thus less than the capacity

 $C_i$ , or it becomes less than the capacity  $C_i$ . If the narrow link is link n, this means that  $R_n \leq C_n = C$ . Since the ADR after link i is never larger than the dispersion rate after link i-1, we have that  $R \equiv R_H \leq C$ . Q.E.D.

We next prove that the ADR is an upper bound for the available bandwidth A of a path, as long as the source rate  $C_0$  is not lower than A.

**Proposition 2:** If  $C_0 \ge A$ , the Average Dispersion Rate at the receiver is R > A.

#### Proof.

Consider first a link i in which  $A_i \leq R_{i-1}$ . From Equation (12), we can check whether  $R_i \geq A_i$  by examining the inequality  $A_i^2 - (C_i + R_{i-1})A_i + C_iR_{i-1} \geq 0$ . This inequality holds because  $A_i \leq R_{i-1}$  and  $A_i \leq C_i$ . So, if  $A_i \leq R_{i-1}$  then  $R_i \geq A_i$ .

We now use induction to show that  $R_i \geq A = \min_i A_i$  for each i = 1, ... H. At the first link, if  $C_0 < A_1$  then  $R_1 = C_0$ , but  $C_0 \geq A$  and so  $R_1 \geq A$ . If  $C_0 \geq A_1$  then  $R_1 \geq A_1$ , and so  $R_1 \geq A$  because  $A_1 \geq A$ .

Suppose now that  $R_k \geq A$ , with k < H. If  $R_k < A_{k+1}$  then  $R_{k+1} = R_k$ , but  $R_k \geq A$  and so  $R_{k+1} \geq A$ . If  $R_k \geq A_{k+1}$  then  $R_{k+1} \geq A_{k+1}$ , and so  $R_{k+1} \geq A$  because  $A_{k+1} \geq A$ . Thus,  $R \equiv R_H \geq A$ . Q.E.D.

### 4.5 Summary of packet train dispersion

Let us summarize our findings for the packet train bandwidth distribution  $\mathcal{B}(N)$ . As the packet train length N increases, trains become more vulnerable to cross traffic interference due to their larger duration. Thus, packet trains are not as appropriate as packet pairs to measure the capacity of a path. As N increases, the SCDR prevails in  $\mathcal{B}(N)$ , and the variability of b(N) decreases. Additionally, if N is sufficiently large, the bandwidth measurement that corresponds to the mean packet train dispersion, referred to as ADR, becomes independent of N. The ADR depends, in general, on the capacity and utilization of all links in the path, as opposed to the available bandwidth which depends only on the tight link, and it also depends on the routing of cross traffic relative to the measured path. Finally, the ADR is a lower bound for the path's capacity, and an upper bound for the path's available bandwidth.

## 5 A capacity estimation methodology

We now present a capacity estimation methodology that is based on the results of the previous two sections. This methodology has been implemented in a tool called *pathrate*. The main results upon which *pathrate* is based on are:

• The optimal train length for detecting the capacity mode is N=2, i.e., to use packet pairs.

- Using packet pairs with variable-sized packets makes the SCDR modes wider and weaker, facilitating the detection of a capacity mode.
- Using relatively larger (but still variable-sized) packets makes the PNCMs weaker, facilitating the detection of a capacity mode.
- The ADR can be measured with long packet trains (a few tens of packets). The ADR is a lower bound for the capacity of the path.

Pathrate requires the cooperation of both the sender and the receiver, i.e., it is a double end-point methodology. More flexible approaches require access only at the sender, forcing the receiver to reply to each probing packet using ICMP, UDP-echo, or TCP-FIN packets. The drawback of those approaches is that the reverse path from the receiver to the sender, through which the replies are forwarded, can affect the bandwidth measurements. We prefer the double end-point methodology, even though it is less flexible, because it is more accurate.

Pathrate uses UDP for transferring probing packets. Additionally, pathrate establishes a TCP connection, referred to as control channel, between the sender and the receiver. We ignore any packet pairs or trains that encountered losses during the measurement process. As a simple form of congestion avoidance, pathrate aborts the measurement process when it detects a number of consecutive losses in the path. We ensure that the time interval between successive packet pairs or trains is larger than the round-trip time of the path, and not less than 500 msec. On the average, the probing traffic overhead during a run varies between 25-600Kbps, depending on the range of the bandwidth measurements.

Pathrate consists mainly of three execution phases. We describe the major tasks in each phase next.

#### Preliminary measurements and bin width selection

Initially, pathrate detects the maximum train length  $N_{max}$  that the path can transfer without causing packet losses. The ADR estimation, during Phase II, uses trains of that length. Then, pathrate generates about 60 packet trains of gradually increasing length, from N=2 to  $N=\min(10,N_{max})$  packets. These preliminary measurements are used in two ways.

First, from the preliminary measurements, pathrate calculates a reasonable bandwidth resolution, or bin width,  $\omega$ . The bandwidth resolution  $\omega$  is an important parameter for the detection of local modes in a distribution of bandwidth measurements (see Appendix).  $\omega$  is set to about 10% of the interquartile range of the preliminary measurements. Thus, a wider distribution of measurements leads to a larger bin width, in accordance with standard statistical techniques for density estimation [25]. The final capacity estimate of pathrate is a bandwidth range of width  $\omega$ .

Second, the preliminary measurements terminate with a "Quick-Estimate", when there is very low variation. This happens at paths that are quite lightly loaded. Specifically, *pathrate* measures the Coefficient of Variation (CoV) of the

<sup>&</sup>lt;sup>6</sup> Pathrate is publicly available at http://www.pathrate.org.

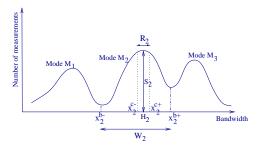


Figure 12: The characteristics of a local mode.

preliminary measurements (ignoring some of the largest and smallest values). If CoV is less than a certain threshold, pathrate exits. The final capacity estimate  $\tilde{C}$  in that case is calculated as the average of the preliminary measurements, after removing the 10% smallest and largest values.

#### Phase I: Packet pair probing

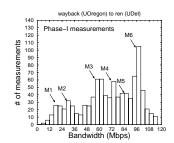
In Phase I, pathrate uses a large number of packet pairs to uncover the local modes of the bandwidth distribution  $\mathcal{B}$ . We expect one of these modes to be the Capacity Mode. Phase I consists of  $K_1$ =1000 packet pair measurements with variable sized probing packets. L varies between  $L_{min}$  and  $L_{max}$  bytes. The minimum size  $L_{min}$  results from the host-related timestamping constraints discussed at the end of §3.3, and is always larger than 550 bytes. The maximum size  $L_{max}$  is set to the control channel's Maximum Segment Size.

At the end of Phase I, pathrate estimates the local modes in the distribution of packet pair measurements. The Appendix describes the statistical procedure that we use for the identification of local modes. For each mode  $M_i$ , this procedure returns the central bin  $R_i$ , the number of measurements  $S_i$  in  $R_i$ , the range of the mode  $W_i$ , and the number of measurements  $B_i$  in  $W_i$  (see Figure 12). The average bandwidth in the central bin  $R_i$  is denoted by  $H_i$ . The sequence of all local modes in the Phase I measurements is  $\mathcal{M} = \{M_1, M_2, \dots M_{\Pi}\}$ , with the modes ordered so that  $H_i < H_{i+1}$ .

We expect that one of these local modes, say  $M_k$ , is the Capacity Mode, i.e.,  $H_k \approx C$ . Modes  $M_i$  with i > k are PNCMs, while modes  $M_i$  with i < k reside in the SCDR. The challenge then is to select the right local mode  $M_k$ . We do so using an ADR estimate from Phase II.

## Phase II: ADR estimation and Capacity Mode selection

In Phase II, pathrate estimates the ADR from a number of long packet train measurements. Specifically, Phase II consists of  $K_2$ =500 packet trains with length  $N_{max}$  and with maximum sized packets ( $L = L_{max}$ ). Because  $N_{max}$  is several tens of packets, the resulting train bandwidth distribution  $\mathcal{B}(N)$  has limited variability and it is typically unimodal. Using the same statistical procedure as in Phase I, pathrate estimates the ADR R as the global mode of this



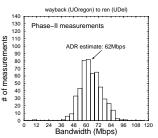


Figure 13: Histograms of Phase I and Phase II measurements in an Internet path.

distribution. Given that  $R \leq C$ , pathrate ignores all Phase I modes  $M_i$  with  $H_i < R$ , because they probably are SCDR modes.

If there are more than one Phase I modes that are larger than R, the next challenge is to select a mode that is most likely the CM. The insight that we use here is that CM is typically a relatively narrow and strong Phase I mode. The reason is that Phase I uses variable sized probing packets, widening the SCDR modes, and relatively large probing packets, weakening the PNCMs. CM, on the other hand, is not affected by either of these two techniques, and so it should be a relatively strong and narrow local mode.

To evaluate the strength and narrowness of Phase I modes, we compute the following figure of merit  $F_i$  for each Phase I mode:

$$F_i = S_i \, \Psi_i \tag{19}$$

 $S_i$  is the number of Phase I measurements in the central bin of mode  $M_i$ , and it estimates the strength of mode  $M_i$ .  $\Psi_i$  is the kurtosis of mode  $M_i$ , and it quantifies how narrow that mode is. The larger  $\Psi_i$  is the more "leptokurtic" mode  $M_i$  becomes, meaning that the measurements of  $M_i$  are more clustered around the center of that mode.

The final capacity estimate  $\hat{C}$  is the Phase I mode  $M_k$  that is larger (or equal) than R, and that has the maximum figure of merit F, i.e.,

$$k = \arg\max_{i=1...\Pi} F_i : \text{ such that } H_i \ge R$$
 (20)

#### Example of operation

To illustrate the operation of pathrate, Figure 13 shows the histograms of bandwidth measurements in Phase I and Phase II for a path that connects the University of Oregon to the University of Delaware. The local modes in Phase I are shown with arrows, while the ADR estimate in Phase II is about 62Mbps. Note that these two histograms are made with static bin-partitioning, and so they do not show the actual local modes that pathrate would estimate using the algorithm of the Appendix. The three Phase I modes that are larger than the ADR are centered around 74Mbps,

<sup>&</sup>lt;sup>7</sup>We use the mode, rather than the mean, as the latter may be affected by outliers or any remaining local modes in  $\mathcal{B}(N)$ .

83Mbps, and 98Mbps. The 98Mbps mode has the largest figrure of merit, and so it is the final *pathrate* estimate.

#### The accuracy of pathrate

The first version of *pathrate* was released in Spring 2000. Since then, the tool has gone through several revisions, and we have used it to measure hundreds of Internet paths. Here, we summarize our experiences with the accuracy of *pathrate*.

Overall, pathrate is quite accurate when the path meets the following two conditions: the capacity is not too high (typically below 500Mbps), and the path is not heavily loaded. Specifically, the tool has been consistently successful in measuring non-congested paths limited by Ethernet and Fast Ethernet segments, T1, T3, and OC-3 links, as well as slower links, such as dial-up, ADSL, and cable modems.

In high bandwidth paths, where the narrow link can be OC-12 (640Mbps) or Gigabit Ethernet (1000Mbps), pathrate can be less accurate, mostly due to the dispersion measurement noise at the receiver. The fact that pathrate uses application-layer timestamps can significantly deteriorate the accuracy of timing measurements when the latter are in the order of a few tens of microseconds. The use of a real-time operating system, as well as a high-resolution clock and timestamping facility, can improve the capacity estimation accuracy in high bandwidth paths [18]. The presence of interrupt coalescence at the receiver's network interface is another source of measurement error, but it can be dealt with as described in [22].

The accuracy of *pathrate* also drops in heavily loaded or congested paths. In that case, there may be no Capacity Mode in the packet pair bandwidth distribution, as almost all packet pairs encounter additional dispersion due to cross traffic. Typically, the accuracy of *pathrate* deteriorates when the utilization of the narrow link is more than 70-80%. The use of smaller probing packets may be able to decrease the SCDR modes in that case, but it would also increase the intensity of PNCMs. Additionally, such an adaptive probing size selection would require some a priori knowledge of the load conditions in the measured path.

In terms of the estimation methodology that pathrate is based on, we found that most errors could be avoided with a different bin width  $\omega$ . It is unfortunate that relatively small variations in this parameter often cause significant changes in the set of estimated local modes. The bin width selection heuristic that we use, namely that  $\omega$  is a fraction of the interquartile range of a certain number of measurements, is documented in the statistical literature (referred to as the "Freedman-Diaconis rule") [25], but nevertheless it is still a heuristic. A more robust (or adaptive) bin width selection algorithm, or a fundamentally different technique to detect local modes in the packet pair bandwidth distribution, are important problems for further investigation.

## 6 Conclusions

Internet routers do not provide explicit feedback to endhosts regarding the capacity or load of network links. Packet pairs and trains are useful probing mechanisms with which end-hosts can infer different bandwidth characteristics of a network path. This paper examined such packet dispersion techniques, producing some negative and some positive results. A negative result is that it is difficult to measure the capacity of a path with just a few packet pairs. Another negative result is that packet trains do not measure the available bandwidth of a path, but a different metric (ADR) that is larger (or equal) than the available bandwidth. On the positive side, we showed that it is possible to estimate the capacity of a path with packet dispersion techniques, especially if the path is not heavily loaded. To do so, it is important to understand the dispersion techniques not only in the statistical sense, but mostly in terms of the queueing effects that shape the distribution of bandwidth measurements. The main contribution of this work was to develop such an understanding, explaining the effect of various factors, including network load, cross traffic packet size variability, probing packet size, train length, and cross traffic routing.

# Appendix: Detection of local modes in a multimodal distribution

In general, the underlying distribution that generates a set of packet pair bandwidth measurements can be multimodal. The local modes are the local maxima of the corresponding probability density function. Since we only have a finite set of measurements, however, we can only approximate the probability density function. In this appendix, we describe a numerical algorithm that estimates the local modes of a distribution from a set of measurements.

Suppose that we have a set of K bandwidth measurements. We order the measurements in increasing sequence  $x_1 \leq x_2 \leq \ldots \leq x_K$ . The rank of a measurement is  $r(x_m)=m$ ; ties for equal measurements are broken in an arbitrary manner. An important input parameter in the mode detection algorithm is the resolution, or  $bin\ width$ ,  $\omega$ . We choose  $\omega$  as a fraction (typically 10%) of the interquartile range of the measurements.

The following algorithm estimates iteratively a sequence of local modes  $\{M_1, M_2, \ldots, M_{\Pi}\}$ , with each iteration resulting in an additional mode. For each mode  $M_l$ , the following mode characteristics are reported (see Figure 12):

- The range of the central bin  $R_l = [x_l^{c-}, x_l^{c+}]$ . The width of this range is no larger than  $\omega$ .
- The number of measurements in  $R_l$ ,  $S_l = r(x_l^{c+}) r(x_l^{c-}) + 1$ .
- The range of the mode  $W_l = [x_l^{b-}, x_l^{b+}]$ . The mode includes all measurements distributed around the central bin  $R_l$  (described next).
- The number of measurements in  $W_l$ ,  $B_l = r(x_l^{b+})$  –

$$r(x_l^{b-}) + 1.$$

The values  $x_l^{c-}$ ,  $x_l^{c+}$ ,  $x_l^{b-}$ , and  $x_l^{b+}$  for each local mode  $M_l$  are determined as follows.

Initially, all K measurements are unmarked and l=1.

- 1. First, estimate the range  $R_l$  and the number of measurements  $S_l$  in the central bin of mode  $M_l$ . The defining property of the central bin is that it includes the maximum number of consecutive and unmarked measurements in a range of width at most  $\omega$ . More formally,  $S_l$  is given by Equation (21).  $x_l^{c-}$  and  $x_l^{c+}$  are the values of  $x_i$  and  $x_j$ , respectively, that determine  $S_l$  in the previous equation.
- 2. Next, find the right extent of mode  $M_l$ , i.e., estimate  $x_l^{b+}$ . This part of the algorithm is iterative. In each step, determine the window at the right of the currently rightmost bin of  $M_l$ , overlapping with that bin, that includes the maximum number of measurements in a range of width at most  $\omega$ . If this window has more measurements than the rightmost bin of  $M_l$ , it belongs to a different local mode. Otherwise, set that bin as the rightmost bin of  $M_l$ , and repeat this step. The rightmost bin at the start of the iteration is the central bin of  $M_l$ .

More formally, suppose that the rightmost bin at iteration step k is  $[x_i, x_j]$  with s = j - i + 1 measurements. Then, find the bin  $[x_m, x_n]$  that resides at the right of  $[x_i, x_j]$ , overlapping with  $[x_i, x_j]$ , with the maximum number of measurements  $\hat{s}$  in a range of width at most  $\omega$ .  $\hat{s}$  is given by Equation (22). If  $\hat{s} < s$ , the bin  $[x_m, x_n]$  is included in the mode  $M_l$ . In that case, set  $m = i, n = j, s = \hat{s}$ , and repeat this iteration. Otherwise,  $[x_i, x_j]$  marks the rightmost bin of mode  $M_l$ , and set  $x_l^{b+} = x_j$ .

- 3. Using the same approach as in the previous step, determine the leftmost bin of mode  $M_l$ , and compute  $x_l^{b-}$ .
- 4. Mark all measurements in mode  $M_l$ , from  $x_l^{b-}$  to  $x_l^{b+}$ . Then, set l=l+1 and repeat the iteration from step-1. The algorithm terminates when all measurements are marked.

Note that when searching for the next local mode, marked measurements will be skipped from the estimation of the central bin, which implies that the estimated local modes cannot have overlapping central bins. The range of adjacent modes may overlap, however.

The previous algorithm is based on histograms of bandwidth measurements using a fixed bin width. We have also experimented with two other statistical tools. The first is histograms of dispersion measurements with a fixed bin width. Such histograms were used, for instance, in [19]. Note that a fixed bin width at the dispersion domain corresponds to a variable bin width at the bandwidth domain, because dispersion is inversely proportional to bandwidth. So, the corresponding histogram at the bandwidth domain is adaptive, with an increasing bin width for larger bandwidth measurements. As one would expect, such adaptive histograms remove some SCDR modes (lower band-

width values) by spreading those measurements into many bins, but they also intensify any PNCM modes (higher bandwidth values) by aggregating their measurements into wider bins. Overall, we found that adaptive histograms of this type do not lead to a consistent or significant improvement in the accuracy of pathrate.

Second, we experimented with a Kernel Density Estimator (KDE), using a fixed smoothing parameter at the bandwidth domain [25]. A KDE avoids the "origin-selection" problem of classical histograms. This technique has been used in [12], for instance. Note that even though we do not need to arbitrarily select an origin for the estimated density, we still need to choose the equivalent of a bin width, referred to as the smoothing parameter of the KDE. In our experiments, we found that a KDE does not help to identify the Capacity Mode among the local modes of the packet pair distribution, in the sense that a weak local mode in a histogram remains a weak local mode with a KDE, and a strong local mode in a histogram remains a strong local mode with a KDE.

## Acknowledgments

The authors would like to thank R.Prasad, M.Jain, H.Jiang, W.Zhu, A.Dhamdhere, K.Claffy, and M.Murray, as well as the anonymous referees and the Transactions Editor for their many constructive comments.

### References

- [1] J. C. Bolot. Characterizing End-to-End Packet Delay and Loss in the Internet. In *Proceedings of ACM SIGCOMM*, pages 289–298, September 1993.
- [2] L. S. Brakmo and L.L.Peterson. TCP Vegas: End to End Congestion Avoidance on a Global Internet. IEEE Journal on Selected Areas of Communications, 13(8):1465–1480, October 1995.
- [3] R. L. Carter and M. E. Crovella. Measuring Bottleneck Link Speed in Packet-Switched Networks. *Per*formance Evaluation, 27/28:297–318, October 1996.
- [4] C. Dovrolis, P. Ramanathan, and D. Moore. What do Packet Dispersion Techniques Measure? In *Proceedings of IEEE INFOCOM*, pages 905–914, April 2001.
- [5] A.B. Downey. Using Pathchar to Estimate Internet Link Characteristics. In *Proceedings of ACM SIG-COMM*, pages 222–223, September 1999.
- [6] K. Harfoush, A. Bestavros, and J. Byers. Measuring Bottleneck Bandwidth of Targeted Path Segments. In *Proceedings of IEEE INFOCOM*, pages 2079–2089, March 2003.
- [7] J.C. Hoe. Improving the Start-up Behavior of a Congestion Control Scheme for TCP. In *Proceedings of ACM SIGCOMM*, pages 270–280, August 1996.
- [8] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIGCOMM, pages 314–329, September 1988.

$$S_l = \max_{1 \le i \le K} \left\{ t = j - i + 1 \text{ with } j = \arg\max_{i \le j \le K} \{ x_j : x_j \le x_i + \omega \} \text{ where } x_i, \dots, x_j : \text{unmarked} \right\}$$
 (21)

$$\hat{s} = \max_{i+1 \le m \le j} \left\{ t = n - m + 1 \text{ with } n = \arg \max_{m \le n \le K} \{ x_n : x_n \le x_m + \omega \} \right\}$$
 (22)

- [9] V. Jacobson. Pathchar: A Tool to Infer Characteristics of Internet Paths. ftp://ftp.ee.lbl.gov/pathchar/, April 1997.
- [10] M. Jain and C. Dovrolis. End-to-End Available Bandwidth: Measurement Methodology, Dynamics, and Relation with TCP Throughput. IEEE/ACM Transactions on Networking, 11(4):537–549, August 2003.
- [11] S. Keshav. A Control-Theoretic Approach to Flow Control. In *Proceedings of ACM SIGCOMM*, pages 3–15, September 1991.
- [12] K. Lai and M.Baker. Measuring Bandwidth. In Proceedings of IEEE INFOCOM, pages 235–245, April 1999.
- [13] K. Lai and M.Baker. Measuring Link Bandwidths Using a Deterministic Model of Packet Delay. In *Proceedings of ACM SIGCOMM*, pages 283–294, September 2000.
- [14] S. McCreary and K. C. Claffy. Trends in Wide Area IP Traffic Patterns: A View from AMES Internet Exchange. In ITC Specialist Seminar on IP Traffic Modeling, Measurement and Management, sep 2000.
- [15] B. Melander, M. Bjorkman, and P. Gunningberg. A New End-to-End Probing and Analysis Method for Estimating Bandwidth Bottlenecks. In *IEEE Global Internet Symposium*, 2000.
- [16] T. Oetiker. MRTG: Multi Router Traffic Grapher. http://eestaff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html.
- [17] A. Pasztor and D. Veitch. Active Probing using Packet Quartets. In *Proceedings Internet Measurement Workshop (IMW)*, pages 293–305, November 2002.
- [18] A. Pasztor and D. Veitch. PC Based Precision Timing Without GPS. In *Proceedings of ACM SIGMETRICS*, pages 204–213, May 2002.
- [19] A. Pasztor and D. Veitch. The Packet Size Dependence of Packet Pair Like Methods. In IEEE/IFIP International Workshop on Quality of Service (IWQoS), pages 204–213, May 2002.
- [20] V. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis, University of California, Berkeley, April 1997.
- [21] R. S. Prasad, C. Dovrolis, and B. A. Mah. The Effect of Layer-2 Store-and-Forward Devices on Per-Hop Capacity Estimation. In *Proceedings of IEEE INFO-COM*, pages 2090–2100, March 2003.
- [22] R. S. Prasad, M. Jain, and C. Dovrolis. Effects of Interrupt Coalescence on Network Measurements. In Proceedings of Passive and Active Measurements (PAM) Workshop, April 2004.
- [23] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy. Bandwidth Estimation: Metrics, Measurement Tech-

- niques, and Tools. *IEEE Network*, 17(6), November 2003.
- [24] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathChirp: Efficient Available Bandwidth Estimation for Network Paths. In Proceedings of Passive and Active Measurements (PAM) workshop, April 2003.
- [25] D. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Prentice Hall, 1992.
- [26] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area Internet Traffic Patterns and Characteristics. *IEEE Network*, pages 10–23, November 1997.

Constantinos Dovrolis (M '93 / ACM '96) is an Assistant Professor at the College of Computing of the Georgia Institute of Technology. He received the Computer Engineering degree from the Technical University of Crete (Greece) in 1995, the M.S. degree from the University of Rochester in 1996, and the Ph.D. degree from the University of Wisconsin-Madison in 2000. His research interests include methodologies and applications of network measurements, bandwidth estimation algorithms and

tools, overlay networks, service differentiation, and router architectures. His email address is:  ${\tt dovrolis@cc.gatech.edu}.$ 

Parameswaran Ramanathan received the B. Tech degree from the Indian Institute of Technology, Bombay, India, in 1984, and the M. S. E. and Ph. D. degrees from the University of Michigan, Ann Arbor, in 1986 and 1989, respectively. Since 1989, Dr. Ramanathan has been faculty member in the Department of Electrical & Computer Engineering, University of Wisconsin, Madison, where is presently a Full Professor. He leads research projects in the areas of sensor networks and next genera-

tion cellular technology. Dr. Ramanathan's research interests include wireless and wireline networking, real-time systems, fault-tolerant computing, and distributed systems. He is presently an Associate Editor for IEEE Transactions on Mobile Computing and Elsevier Adhoc Networks Journal. He served as an Associate Editor for IEEE Transactions on Parallel and Distributed Computing from 1996–1999. He is a member of ACM and a senior member of IEEE.

David Moore (M '93 / ACM '96) is a Principal Investigator and Assistant Director of CAIDA (the Cooperative Association for Internet Data Analysis) and a PhD Candidate at the University of California Computer Science Department. His research interests are high speed network monitoring, denial-of-service attacks and infrastructure security, and Internet traffic characterization. In addition to network analysis, David has led several tool development projects ranging from data collection to

geographic mapping. His email address is dmoore@caida.org.