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Abstract

The available bandwidth (avail-bw) in a network path is of
major importance in congestion control, streaming appli-
cations, QoS verification, server selection, and overlay net-
works. We describe an end-to-end methodology, called Self-
Loading Periodic Streams (SLoPS), for measuring avail-bw.
The basic idea in SLoPS is that the one-way delays of a
periodic packet stream show an increasing trend when the
stream’s rate is higher than the avail-bw. We implemented
SLoPS in a tool called pathload. The accuracy of the tool
has been evaluated with both simulations and experiments
over real-world Internet paths. Pathload is non-intrusive,
meaning that it does not cause significant increases in the
network utilization, delays, or losses. We used pathload
to evaluate the variability (‘dynamics’) of the avail-bw in
internet paths. The avail-bw becomes significantly more
variable in heavily utilized paths, as well as in paths with
limited capacity (probably due to a lower degree of statisti-
cal multiplexing). We finally examine the relation between
avail-bw and TCP throughput. A persistent TCP connec-
tion can be used to roughly measure the avail-bw in a path,
but TCP saturates the path, and increases significantly the

path delays and jitter.
Keywords— Network capacity, bottleneck bandwidth, bulk
transfer capacity, packet pair dispersion, active probing.

1 Introduction

The concept of available bandwidth, or avail-bw for short,
has been of central importance throughout the history of
packet networks, in both research and practice. In the con-
text of transport protocols, the robust and efficient use of
avail-bw has always been a major issue, including Jacob-
son’s TCP [9]. The avail-bw is also a crucial parameter in
capacity provisioning, routing and traffic engineering, QoS
management, streaming applications, server selection, and
in several other areas.

Researchers have been trying to create end-to-end mea-
surement algorithms for avail-bw over the last 15 years.
From Keshav’s packet pair [15] to Carter and Crovella’s
cprobe [6], the objective was to measure end-to-end avail-
bw accurately, quickly, and without affecting the traffic in
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the path, i.e., non-intrusively. What makes the measure-
ment of avail-bw hard is, first, that there is no consensus
on how to precisely define it, second, that it varies with
time, and third, that it exhibits high variability in a wide
range of timescales.

1.1 Definitions

We next define the avail-bw in an intuitive but precise man-
ner. The definition does not depend on higher-level issues,
such as the transport protocol or the number of flows that
can capture the avail-bw in a path.

A network path P is a sequence of H store-and-forward
links that transfer packets from a sender SA'D to a receiver
RCYV. We assume that the path is fixed and unique, i.e., no
routing changes or multipath forwarding occur during the
measurements. Each link ¢ can transmit data with a rate
C; bps, that is referred to as link capacity. Two throughput
metrics that are commonly associated with P are the end-
to-end capacity C' and available bandwidth A. The capacity
is defined as

¢=.min, ¢ g
and it is the maximum rate that the path can provide to a
flow, when there is no other traffic in P.

Suppose that link 4 transmitted Cju;(to, to +7) bits dur-
ing a time interval (tg,to + 7). The term w;(to,t0 + 7),
or simply u? (to), is the average utilization of link ¢ during
(to,to + 7), with 0 < ul(tg) < 1. Intuitively, the avail-bw
AT (to) of link ¢ in (¢, o +7) can be defined as the fraction
of the link’s capacity that has not been utilized during that
interval, i.e.,

A (to) = Ci [1 — uj(to)] (2)

Extending this concept to the entire path, the end-to-end
avail-bw A7 (t9) during (o, to +7) is the minimum avail-bw
among all links in P,

A7(to) = min {Ci[1 — u] ()]} 3)

Thus, the end-to-end avail-bw is defined as the mazimum
rate that the path can provide to o flow, without reducing
the rate of the rest of the traffic in P.

To avoid the term bottleneck link, that has been widely
used in the context of both capacity and avail-bw, we in-
troduce two new terms. The narrow link is the link with
the minimum capacity, and it determines the capacity of
the path. The tight link, on the other hand, is the link with



the minimum avail-bw, and it determines the avail-bw of
the path.

The parameter 7 in (3) is the avail-bw averaging timescale.
If we consider A7 (t) as a stationary random process, the
variance Var{A”} of the process decreases as the averaging
timescale 7 increases. We note that if A7 is self-similar,
the variance Var{A"} decreases slowly, in the sense that
the decrease of Var{A"} as 7 increases is slower than the
reciprocal of 7 [19].

1.2 Main contributions

In this paper, we present an original end-to-end avail-bw

what was previously available.

1.3 Overview

§2 summarizes previous work on bandwidth estimation.
§3 explains the SLoPS measurement methodology. §4 de-
scribes the pathload implementation. §5 presents simula-
tion and experimental verification results. §6 evaluates the
dynamics of avail-bw using pathload. §7 examines the re-
lation between avail-bw and TCP throughput. §8 shows
that pathload is not network intrusive and §9 concludes the
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or SLoPS. The basic idea in SLoPS is that the one-way de-
lays of a periodic packet stream show an increasing trend
when the stream’s rate is higher than the avail-bw. SLoPS
has been implemented in a measurement tool called pathload.
The tool has been verified experimentally, by comparing
its results with MRTG utilization graphs for the path links
[25]. We have also evaluated pathload in a controlled and
reproducible environment using NS simulations. The sim-
ulations show that pathload reports a range that includes
the average avail-bw in a wide range of load conditions and
path configurations. The tool underestimates the avail-bw,
however, when the path includes several tight links. The
pathload measurements are non-intrusive, meaning that they
do not cause significant increases in the network utilization,
delays, or losses. Pathload is described in detail in a dif-
ferent publication [12]; here we describe the tool’s salient
features and show a few experimental and simulation re-
sults to evaluate the tool’s accuracy.

An important feature of pathload is that, instead of re-
porting a single figure for the average avail-bw in a time
interval (tg,to + ©), it estimates the range in which the
avail-bw process A7 (t) varies in (to,to+©), when it is mea-
sured with an averaging timescale T < ©. The timescales
7 and O are related to two tool parameters, namely the
‘stream duration’ and the ‘fleet duration’.

We have used pathload to estimate the variability (or ‘dy-
namics’) of the avail-bw in different paths and load condi-
tions. An important observation is that the avail-bw be-
comes more variable as the utilization of the tight link in-
creases (i.e., as the avail-bw decreases). Similar observa-
tions are made for paths of different capacity that oper-
ate at about the same utilization. Specifically, the avail-
bw shows higher variability in paths with smaller capacity,
probably due to a lower degree of statistical multiplexing.

Finally, we examined the relation between the avail-bw
and the throughput of a ‘greedy’ TCP connection, i.e., a
persistent bulk transfer with sufficiently large advertised
window. Our experiments show that such a greedy TCP
connection can be used to roughly measure the end-to-end
avail-bw, but TCP saturates the path, increases signifi-
cantly the delays and jitter, and potentially causes losses
to other TCP flows. The increased delays and losses in
the path cause other TCP flows to slow down, allowing
the greedy TCP connection to grab more bandwidth than

Although there are several bandwidth estimation tools,
most of them measure capacity rather than avail-bw. Specif-
ically, pathchar [10], clink [8], pchar [20], and the tailgating
technique of [17] measure per-hop capacity. Also, bprobe
[6], nettimer [16], pathrate [7], and the PBM methodology
[28] measure end-to-end capacity.

Allman and Paxson noted that an avail-bw estimate can
give a more appropriate value for the ssthresh variable, im-
proving the slow-start phase of TCP [2]. They recognized,
however, the complexity of measuring avail-bw from the
timing of TCP packets, and they focused instead on ca-
pacity estimates.

The first tool that attempted to measure avail-bw was
cprobe [6]. cprobe estimated the avail-bw based on the
dispersion of long packet trains at the receiver. A simi-
lar approach was taken in pipechar [14]. The underlying
assumption in these works is that the dispersion of long
packet trains is inversely proportional to the avail-bw. Re-
cently, however, [7] showed that this is not the case. The
dispersion of long packet trains does not measure the avail-
bw in a path; instead, it measures a different throughput
metric that is referred to as Asymptotic Dispersion Rate
(ADR).

A different avail-bw measurement technique, called Del-
phi, was proposed in [29]. The main idea in Delphi is that
the spacing of two probing packets at the receiver can pro-
vide an estimate of the amount of traffic at a link, provided
that the queue of that link does not empty between the ar-
rival times of the two packets. Delphi assumes that the
path can be well modeled by a single queue. This model
is not applicable when the tight and narrow links are dif-
ferent, and it interprets queueing delays anywhere in the
path as queuing delays at the tight link.

Another technique, called TOPP, for measuring avail-bw
was proposed in [23]. TOPP uses sequences of packet pairs
sent to the path at increasing rates. From the relation be-
tween the input and output rates of different packet pairs,
one can estimate the avail-bw and the capacity of the tight
link in the path. In certain path configurations, it is possi-
ble to also measure the avail-bw and capacity of other links
in the path. Both TOPP and our technique, SLoPS, are
based on the observation that the queueing delays of suc-
cessive periodic probing packets increase when the probing



rate is higher than the avail-bw in the path. The two tech-
niques, however, are quite different in the actual algorithm
they use to estimate the avail-bw. A detailed comparison
of the two estimation methods is an important task for
further research.

Paxson defined and measured a relative avail-bw metric
B [28]. His metric is based on the one-way delay variations
of a flow’s packets. 3 measures the proportion of packet de-
lays that are due to the flow’s own load. If each packet was
only queued behind its predecessors, the path is considered
empty and § =~ 1. On the other hand, if the observed de-
lay variations are mostly due to cross traffic, the path is
considered saturated and 8 =~ 0. Unfortunately, there is no
direct relationship between 8 and the avail-bw in the path
or the utilization of the tight link.

An issue of major importance is the predictability of the
avail-bw. Paxson’s metric g is fairly predictable: on aver-
age, a measurement of 3 at a given path falls within 10%
of later 8 measurements for periods that last for several
hours [28]. Balakrishnan et.al. examined the throughput
stationarity of successive Web transfers to a set of clients
[4]. The throughput to a given client appeared to be piece-
wise stationary in timescales that extend for hundreds of
minutes. Additionally, the throughput of successive trans-
fers to a given client varied by less than a factor of 2 over
three hours. A more elaborate investigation of the sta-
tionarity of avail-bw was recently published in [30]. Zhang
et.al. measured the TCP throughput of 1MB transfers ev-
ery minute for five hours. Their dataset includes 49,000
connections in 145 distinct paths. They found out that
the throughput Change Free Regions, i.e., the time periods
in which the throughput time series can be modeled as a
stationary process, often last for more than an hour. Also,
the throughput stays in a range with peak-to-peak varia-
tion of a factor of 3 for several hours. An important point is
that these previous works did not correlate the variability
of avail-bw with the operating conditions in the underlying
paths. We attempt such an approach in §6.

To characterize the ability of a path to transfer large
files using TCP, the IETF recommends the Bulk-Transfer-
Capacity (BTC) metric [22]. The BTC of a path in a
certain time period is the throughput of a persistent (or
‘bulk’) TCP transfer through that path, when the transfer
is only limited by the network resources and not by buffer,
or other, limitations at the end-systems. The BTC can be
measured with Treno [21] or cap [1]. It is important to
distinguish between the avail-bw and the BTC of a path.
The former gives the total spare capacity in the path, inde-
pendent of which transport protocol attempts to capture
it. The latter, on the other hand, depends on TCP’s con-
gestion control, and it is the maximum throughput that
a single and persistent TCP connection can get. Parallel
persistent connections, or a large number of short TCP
connections (‘mice’), can obtain an aggregate throughput
that is higher than the BTC. The relation between BTC
and avail-bw is investigated in §7.

Finally, several congestion control algorithms, such as
those proposed in [24, 13, 5, 3], infer that the path is

congested (or that there is no avail-bw) when the round-
trip delays in the path start increasing. This is similar
to the basic idea of our estimation methodology: the one-
way delays of a periodic packet stream are expected to
show an increasing trend when the stream’s rate is higher
than the avail-bw. The major difference between SLoPS
and those proposals is that we use the relation between
the probing rate and the observed delay variations to de-
velop an elaborate avail-bw measurement algorithm, rather
than a congestion control algorithm. Also, SLoPS is based
on periodic rate-controlled streams, rather than window-
controlled transmissions, allowing us to compare a certain
rate with the avail-bw more reliably.

3 Self-Loading Periodic Streams

In this section, we describe the Self-Loading Periodic Streams
(SLoPS) measurement methodology. A periodic stream in
SLoPS consists of K packets of size L, sent to the path at
a constant rate R. If the stream rate R is higher than the
avail-bw A, the one-way delays of successive packets at the
receiver show an increasing trend. We first illustrate this
fundamental effect in its simplest form through an analyt-
ical model with stationary and fluid cross traffic. Then,
we show how to use this ‘increasing delays’ property in an
iterative algorithm that measures end-to-end avail-bw. Fi-
nally, we depart from the previous fluid model, and observe
that the avail-bw may vary during a stream. This requires
us to refine SLoPS in several ways, that is the subject of
the next section.

3.1 SLoPS with fluid cross traffic

Consider a path from SND to RCV that consists of H
links, s = 1,..., H. The capacity of link i is C;. We con-
sider a stationary (i.e., time invariant) and fluid model for
the cross traffic in the path. So, if the avail-bw at link ¢
is A;, the utilization is u; = (C; — A;)/C; and there are
u; C; T bytes of cross traffic departing from, and arriving
at, link ¢ in any interval of length 7. Also, assume that
the links follow the First-Come First-Served queueing dis-
cipline!, and that they are adequately buffered to avoid
losses. We ignore any propagation or fixed delays in the
path, as they do not affect the delay variation between
packets. The avail-bw A in the path is determined by the
tight link ¢ € {1,..., H} with?

Suppose that SND sends a periodic stream of K packets
to RCV at a rate Ry, starting at an arbitrary time instant.
The packet size is L bytes, and so packets are sent with
a period of T = L/Ry time units. The One-Way Delay

n links with per-flow or per-class queueing, SLoPS can monitor the
sequence of queues that the probing packets go through.

2If there are more than one links with avail-bw A, the tight link is the
first of them, without loss of generality.



(OWD) D* from SN'D to RCV of packet k is
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where ¢¥ is the queue size at link 4 upon the arrival of
packet k (¢¥ does not include packet k), and d¥ = ¢¥/C;
is the queueing delay of packet k at link ¢. The OWD
difference between two successive packets k£ and k + 1 is

H
Agk

AD* = DF! — DF =
C;

H
=Y ad ©

i=1

where Agf = qf""l — ¢k, and AdF = Agt/C;.

We can now show that, if Ry > A the K packets of the
periodic stream will arrive at RCV with increasing OWDs,
while if Ry < A the stream packets will encounter equal
OWDs. This property is stated next, and proved in Ap-
pendix A.

Proposition 1: If Ry > A, then AD* > 0 for k =
1,...K —1. Else, if Ry < A, AD* =0fork=1,... K —1.

?

One may think that the avail-bw A can be computed
directly from the rate at which the stream arrives at RCV.
This is the approach followed in packet train dispersion
techniques. The following result, however, shows that, in
a general path configuration, this would be possible only if
the capacity and avail-bw of all links (except the avail-bw
of the tight link) are a priori known.

Proposition 2: The rate Ry of the packet stream at
RCYV is a function, in the general case, of C; and A; for
alli=1,... H.

This result follows from the proof in Appendix A (apply
recursively Equation 19 until ¢ = H).

3.2 An iterative algorithm to measure A

Based on Proposition 1, we can construct an iterative al-
gorithm for the end-to-end measurement of A. Suppose
that SN'D sends a periodic stream n with rate R(n). The
receiver analyzes the OWD variations of the stream, based
on Proposition 1, to determine whether R(n) > A or not.
Then, RCY notifies SN'D about the relation between R(n)
and A. If R(n) > A, SN'D sends the next periodic stream
n + 1 with rate R(n + 1) < R(n). Otherwise, the rate of
stream n + 1is R(n + 1) > R(n).
Specifically, R(n + 1) can be computed as follows,

If R(n) > A,R™** = R(n);

If R(n) < A, R™"™ = R(n);
R(n+1) = (R™ + R™")/2; (7)
R™™ and R™?* are lower and upper bounds for the avail-
bw after stream n, respectively. Initially, R™"=0 and

R™% can be set to a sufficiently high value RJ**® > A3
The algorithm terminates when R™® — R™" < ), where w

3A better way to initialize R™*® is described in [12].

is the user-specified estimation resolution. If the avail-bw
A does not vary with time, the previous algorithm will
converge to a range [R™ R™%] that includes A after
[log, (Ry*** [w)] streams.
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Figure 1: OWD variations for a periodic stream when R >
A.
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Figure 2: OWD variations for a periodic stream when R <
A.
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Figure 3: OWD variations for a periodic stream when R <
A.

3.3 SLoPS with real cross traffic

We assumed so far that the avail-bw A is constant during
the measurement process. In reality, the avail-bw may vary
because of two reasons. First, the avail-bw process A7 (t)



of (3) may be non-stationary, and so its expected value
may also be a function of time. Even if A7 (¢) is stationary,
however, the process A™ can have a significant statistical
variability around its (constant) mean E[A7], and to make
things worse, this variability may extend over a wide range
of timescales 7. How can we refine SLoPS to deal with the
dynamic nature of the avail-bw process?

To gain some insight into this issue, Figures 1, 2, and
3 show the OWD variations in three periodic streams that
crossed a 12-hop path from Univ-Oregon to Univ-Delaware.
All three streams have K =100 packets with T=100us. The
5-minute average avail-bw in the path during these mea-
surements was about 74Mbps, according to the MRTG uti-
lization graph of the tight link. In Figure 1, the stream
rate is R=96Mbps, i.e., higher than the long-term avail-bw.
Notice that the OWDs between successive packets are not
strictly increasing, as one would expect from Proposition
1, but overall, the stream OWDs have a clearly increasing
trend. This is shown both by the fact that most packets
have a higher OWD than their predecessors, and because
the OWD of the last packet is about 4ms larger than the
OWD of the first packet. On the other hand, the stream of
Figure 2 has a rate R=37Mbps, i.e., lower than the long-
term avail-bw. Even though there are short-term intervals
in which we observe increasing OWDs, there is clearly not
an increasing trend in the stream. The third stream, in
Figure 3, has a rate R=82Mbps. The stream does not
show an increasing trend in the first half, indicating that
the avail-bw during that interval is higher than R. The
situation changes dramatically, however, after roughly the
60-th packet. In that second half of the stream there is a
clear increasing trend, showing that the avail-bw decreases
to less than R.

The previous example motivates two important refine-
ments in the SLoPS methodology. First, instead of analyz-
ing the OWD variations of a stream, expecting one of the
two cases of Proposition 1 to be strictly true for every pair
of packets, we should instead watch for the presence of an
overall increasing trend during the entire stream. Second,
we have to accept the possibility that the avail-bw may
vary around rate R during a probing stream. In that case,
there is no strict ordering between R and A, and thus a
third possibility comes up, that we refer to as ‘grey-region’
(denoted as R < A). The next section gives a concrete
specification of these two refinements, as implemented in
pathload.

4 Measurement tool: pathload

We implemented SLoPS in a tool called pathload. Pathload,
together with its experimental verification, is described in
detail in [12]. In this section, we provide a description of
the tool’s salient features.

Pathload consists of a process SA'D running at the sender,
and a process RCV running at the receiver. The stream
packets use UDP, while a TCP connection between the
two end-points controls the measurements.

Clock and timing issues. SND timestamps each packet
upon its transmission. So, RCV can measure the relative
OWD DF of packet k, that differs from the actual OWD by
a certain offset. This offset is due to the non-synchronized
clocks of the end-hosts. Since we are only interested in
OWD differences though, a constant offset in the measured
OWDs does not affect the analysis. Clock skew can be a
potential problem,* but not in pathload. The reason is that
each stream lasts for only a few milliseconds (§4), and so
the skew during a stream is in the order of nanoseconds,
much less than the OWD variations due to queueing.

Stream parameters. A stream consists of K packets of
size L, sent at a constant rate R. R is adjusted at run-
time for each stream, as described in §4. The packet inter-
spacing 7' is normally set to T},;,, which is based on the
minimum possible period that the end-hosts can achieve.
The receiver measures the inter-spacing 7' with which the
packets left the sender, using the SND timestamps, to
detect context switches and other rate deviations [12].

Given R and T, the packet size is computed as L = RT.
L, however, has to be smaller than the path MTU L™** (to
avoid fragmentation), and larger than a minimum possible
size L™"=200B. The reason for the L™ constraint is to
reduce the effect of Layer-2 headers on the stream rate (see
[26]). If R < L™ /T, the inter-spacing 7 is increased to
L™n/R. The maximum rate that pathload can generate,
and thus the maximum avail-bw that it can measure, is
[ mozx /Tmz‘n-

The stream length K is chosen based on two constraints.
First, a stream should be relatively short, so that it does
not cause large queues and potentially losses in the path
routers. Second, K controls the stream duration V= KT,
which is related to the averaging timescale T (see §6.3).
A larger K (longer stream) increases 7, and thus reduces
the variability in the measured avail-bw. In pathload, the
default value for K is 100 packets.

Detecting an increasing OWD trend. Suppose that

the (relative) OWDs of a particular stream are D', D2, ..., DX,

As a pre-processing step, we partition these measurements
into T = VK groups of T' consecutive OWDs. Then, we
compute the median OWD D¥ of each group. Pathload
analyzes the set {D* k = 1,...,T'}, which is more robust
to outliers and errors.

We use two complementary statistics to check if a stream
shows an increasing trend. The Pairwise Comparison Test
(PCT) metric of a stream is

s [(DF > DF-1)
T ®8)

where I(X) is one if X holds, and zero otherwise. PCT
measures the fraction of consecutive OWD pairs that are
increasing, and so 0 < Spor < 1. If the OWDs are inde-
pendent, the expected value of Spcr is 0.5. If there is a
strong increasing trend, Spor approaches one.

Spcr =

4And there are algorithms to remove its effects [27].



The Pairwise Difference Test (PDT) metric of a stream
is
pr_ pt
D ©)
Dp=a |DF = DFY

PDT quantifies how strong is the start-to-end OWD vari-
ation, relative to the OWD absolute variations during the
stream. Note that —1 < Sppr < 1. If the OWDs are
independent, the expected value of Sppr is zero. If there
is a strong increasing trend, Sppr approaches one.

There are cases in which one of the two metrics is better
than the other in detecting an increasing trend (see [12]).
Consequently, if either the PCT or PDT metrics shows
an ‘increasing trend’, pathload characterizes the stream as
type-I, i.e., increasing. Otherwise, the stream is consid-
ered of type-N, i.e., non-increasing. In the current release
of pathload, the PCT metric shows an increasing trend if
Spcr > 0.55, while the PDT shows increasing trend if
Sppr > 0.4. The effect of the PCT and PDT thresh-
olds (0.55 and 0.4, respectively) on the pathload accuracy
is shown in the next section.

Sppr =

Fleets of streams. Pathload does not determine whether
R > A based on a single stream. Instead, it sends a fleet of
N streams, so that it samples whether R > A N successive
times. All streams in a fleet have the same rate R. Each
stream is sent only when the previous stream has been ac-
knowledged, to avoid a backlog of streams in the path. So,
there is always an idle interval A between streams, which is
larger than the Round-Trip Time (RTT) of the path. The
duration of a fleet is U=N(V + A)=N(KT + A). Given V
and A, N determines the fleet duration, which is related
to the pathload measurement latency. The default value for
N is 12 streams. The effect of N is discussed in §6.4.
The average pathload rate during a fleet of rate R is

NKL _ 1
NV+4A) T1+4

In order to limit the average pathload rate to less than 10%
of R, the current version of pathload sets the inter-stream
latency to A = max{RTT,9V}.

If a stream encounters excessive losses (>10%), or if more
than a number of streams within a fleet encounter moderate
losses (>3%), the entire fleet is aborted and the rate of the
next fleet is decreased. For more details, see [12].

Grey-region. If a large fraction f of the N streams in a
fleet are of type-I, the entire fleet shows an increasing trend
and we infer that the fleet rate is larger than the avail-bw
(R > A). Similarly, if a fraction f of the N streams are
of type-N, the fleet does not show an increasing trend and
we infer that the fleet rate is smaller than the avail-bw
(R < A). It can happen, though, that less than N x f
streams are of type-I, and also that less than N x f streams
are of type-N. In that case, some streams ‘sampled’ the
path when the avail-bw was less than R (type-I), and some
others when it was more than R (type-N). We say, then,
that the fleet rate R is in the ‘grey-region’ of the avail-bw,

and write R > A. The interpretation that we give to the
grey-region is that when R < A, the avail-bw process AT (t)
during that fleet varied above and below rate R, causing
some streams to be of type-I and some others to be of type-
N. The averaging timescale 7, here, is related to the stream
duration V. We discuss the effect of f on the pathload
outcome in the next section.

Rate adjustment algorithm. After a fleet n of rate
R(n) is over, pathload determines whether R(n) > A, R(n) <
A, or R(n) px A. The iterative algorithm that determines
the rate R(n + 1) of the next fleet is quite similar to the
binary-search approach of (7). There are two important
differences though.

First, together with the upper and lower bounds for the
avail-bw R™% and R™", pathload also maintains upper
and lower bounds for the grey-region, namely G™%* and
G™". When R(n) 1 A, one of these bounds is updated
depending on whether G™*® < R(n) < R™** (update
G™%), or G™" > R(n) > R™™" (update G™"). If a grey-
region has not been detected up to that point, the next rate
R(n + 1) is chosen, as in (7), half-way between R™" and
R™ae®_ 1f a grey-region has been detected, R(n + 1) is set
half-way between G™** and R™%® when R(n) = G™**, or
half-way between G™" and R™" when R(n) = G™". The
complete rate adjustment algorithm, including the initial-
ization steps, is given in [12]. It is important to note that
this binary-search approach succeeds in converging to the
avail-bw, as long as the avail-bw variation range is strictly
included in the [R™" R™%] range. The experimental and
simulation results of the next section show that this is the
case generally, with the exception of paths that include
several tight links.

The second difference is that pathload terminates not
only when the avail-bw has been estimated within a cer-
tain resolution w (i.e., R™*® — R™" < w), but also when
Rmar _ GmaT <y and G™" — R™"™ < Yy, i.e., when both
avail-bw boundaries are within x from the corresponding
grey-region boundaries. The parameter x is referred to as
grey-region resolution.

The tool eventually reports the range [R™", R™?],

Measurement latency. Since pathload is based on an
iterative algorithm, it is hard to predict how long will a
measurement take. For the default tool parameters, and
for a path with A= 100Mbps and A=100ms, the tool needs
less than 15 seconds to produce a final estimate. The mea-
surement latency increases as the absolute magnitude of
the avail-bw and/or the width of the grey-region increase,
and it also depends on the resolution parameters w and x.

5 Verification

The objective of this section is to evaluate the accuracy of
pathload with both NS simulations, and experiments over
real Internet paths.



5.1 Simulation results

The following simulations evaluate the accuracy of pathload
in a controlled and reproducible environment under vari-
ous load conditions and path configurations. Specifically,
we implemented the pathload sender (SN'D) and receiver
(RCV) in application-layer NS modules. The functional-
ity of these modules is identical as in the original pathload,
with the exception of some features that are not required
in a simulator (such as the detection of context switches).
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Figure 4: Simulation topology.

In the following, we simulate the H-hop topology of Fig-
ure 4. The pathload packets enter the path in hop 1 and exit
at hop H. The hop in the middle of the path is the tight
link, and it has capacity Cy, avail-bw A;, and utilization
ug. We refer to the rest of the links as non-tight, and con-
sider the case where they all have the same capacity Cp;,
avail-bw A, and utilization u,. Cross-traffic is generated
at each link from ten random sources that, unless specified
otherwise, generate Pareto interarrivals with a=1.9. The
cross-traffic packet sizes are distributed as follows: 40% are
40B, 50% are 550B, and 10% are 1500B. The end-to-end
propagation delay in the path is 50 msec, and the links are
sufficiently buffered to avoid packet losses. Another impor-
tant factor is the relative magnitude of the avail-bw in the
non-tight links A,; and in the tight link A;. To quantify
this, we define the path tightness factor as

t

(10)

Unless specified otherwise, the default parameters in the
following simulations are H=5 hops, Cy=10Mbps, =5,
Us=uns=60%, f=0.7, while the PCT threshold is 0.55 and
the PDT threshold is 0.4.

Figure 5 examines the accuracy of pathload in four tight
link utilization values, ranging from light load (u:=30%)
to heavy load (u;=90%). We also consider two cross-traffic
models: exponential interarrivals and Pareto interarrivals
with infinite variance (a@=1.5). For each utilization and
traffic model, we run pathload 50 times to measure the
avail-bw in the path. After each run, the tool reports
a range [R™" R™%] in which the avail-bw varies. The
pathload range that we show in Figure 5 results from aver-
aging the 50 lower bounds R™" and the 50 upper bounds
R™e*_ The coefficient of variation for the 50 samples of
R™™ and R™%* in the following simulations was typically
between 0.10 and 0.30.

The main observation in Figure 5 is that pathload pro-
duces o range that includes the average avail-bw in the path,
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Figure 7: Simulation results for different path tightness
factors .

in both light and heavy load conditions at the tight link.
This is true with both the smooth interarrivals of Poisson
traffic, and with the infinite-variance Pareto model. For
instance, when the avail-bw is 4Mbps, the average pathload
range in the case of Pareto interarrivals is from 2.4 to 5.6
Mbps. It is also important to note that the center of the
pathload range is relatively close to the average avail-bw.
In Figure 5, the maximum deviation between the average
avail-bw and the center of the pathload range is when the



former is 1Mbps and the latter is 1.5Mbps.

The next issue is whether the accuracy of pathload de-
pends on the number and load of the non-tight links. Fig-
ure 6 shows, as in the previous paragraph, 50-sample aver-
age pathload ranges for four different utilization points w,,;
at the non-tight links, and for two different path lengths
H. Since C;=10Mbps and u;=60%, the end-to-end avail-
bw in these simulations is 4Mbps. The path tightness fac-
tor is =5, and so the avail-bw in the non-tight links is
Ant=20Mbps. So, even when there is significant load and
queueing at the non-tight links (which is the case when
unt=90%), the end-to-end avail-bw is quite lower than the
avail-bw in the H — 1 non-tight links.

The main observation in Figure 6 is that pathload es-
timates a Tange that includes the actual avail-bw in all
cases, independent of the number of non-tight links or of
their load. Also, the center of the pathload range is within
10% of the average avail-bw A;. So, when the end-to-end
avail-bw is mostly limited by a single link, pathload is able
to estimate accurately the avail-bw in a multi-hop path
even when there are several other queueing points. The
non-tight links introduce noise in the OWDs of pathload
streams, but they do not affect the OWD trend that is
formed when the stream goes through the tight link.

Let us now examine whether the accuracy of pathload
depends on the path tightness factor 5. Figure 7 shows
50-sample average pathload ranges for four different values
of B, and for two different path lengths H. As previously,
Cy=10Mbps, u;=60%, and so the average avail-bw is A;=4
Mbps. Note that when the path tightness factor is =1, all
H links have the same avail-bw A,;=A;=4Mbps, meaning
that they are all tight links. The main observation in Fig-
ure 7 is that pathload succeeds in estimating a range that
includes the actual avail-bw when there is only one tight
link in the path, but it underestimates the avail-bw when
there are multiple tight links.

To understand the nature of this problem, note that an
underestimation occurs when R™%* is set to a fleet rate
R, even though R is less than the avail-bw A;. Recall that
pathload sets the state variable R™®® to a rate R when more
than f=70% of a fleet’s streams have an increasing delay
trend. A stream of rate R, however, can get an increasing
delay trend at any link of the path in which the avail-
bw during the stream is less than R. Additionally, after a
stream gets an increasing delay trend it is unlikely that it
will loose that trend later in the path. Consider a path
with Hy tight links, all of them having an average avail-bw
Ay. Suppose that p is the probability that a stream of rate
R will get an increasing delay trend at a tight link, even
though R < A;. Assuming that the avail-bw variations
at different links are independent, the probability that the
stream will have an increasing delay trend after H; tight
links is 1 — (1 — p)#, that increases very quickly with H;.
This explains why the underestimation error in Figure 7
appears when § is close to one (i.e., Hy > 1), and why it is
more significant with H;=7 rather than with 3 hops.

Finally, we examine the effect of f and of the PCT/PDT
thresholds on the pathload results.
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Figure 9: Simulation results for different values of the PDT
threshold.

Figure 8 shows the effect of f on the pathload estimates.
The reported pathload range, here, is a result of a single

pathload run. In these simulations, C;=50Mbps, u;=u,;=60%,

and so the average avail-bw in the path is A;=20Mbps.
Note that as f increases, the width of the grey region, and
hence the range of the estimated avail-bw, increases as well.
The reason is that, for a given R and A, a higher f means
that a larger fraction of streams must be of type-I when
R > A (or of type-N when R < A) in order to correctly
characterize the entire fleet as increasing (or non-increasing
when R < A).

Figure 9 shows the effect of the PDT threshold on the
pathload estimates. The simulation parameters are as in
Figure 8, but here we use only the PDT metric to detect
increasing delay trend. Note that pathload underestimates
the avail-bw when the PDT threshold is too small (= 0),
and it overestimates the avail-bw when the PDT threshold
is too large (= 1). To understand why, recall that a stream
is characterized as type-I if Sppr is larger than the PDT
threshold. A small PDT threshold means that a stream
can be marked as type-I even if R < A. Similarly, with a
large PDT threshold, a stream can be marked as type-N
even if R > A. The PCT threshold has a similar effect on
the accuracy of pathload; we do not include those results
due to space constraints.



5.2 Experimental results

We have also verified pathload experimentally, comparing
its output with the avail-bw shown in the MRTG [25] graph
of the path’s tight link. Even though this verification
methodology is not too accurate, it was the only way in
which we could evaluate pathload in real and wide-area
Internet paths. For additional experimental results, and
information about the use of MRTG in the verification of
pathload, see [12].
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Figure 10: A verification experiment.

In the experiments of Figure 10, the resolution parame-
ters were w=1Mbps and xy=1.5Mbps, while f and the PCT
and PDT thresholds were 0.7, 0.6 and 0.5, respectively.

An MRTG reading is a 5-minute average avail-bw. Pathload,

however, takes about 10-30 seconds to produce an estimate.
To compare these short-term pathload estimates with the
MRTG average, we run pathload consecutively for 5 min-
utes. Suppose that in a 5-min (300sec) interval we run
pathload W times, and that run ¢ lasted for ¢; seconds, re-
porting an avail-bw range [R7™", R™%%] (; = 1,...W). The
5-min average avail-bw R that we report here for pathload
is the following weighted average of (RT™™ + R™%)/2:

len + Rmaw

w
2 (11)

Figure 10 shows the MRTG and pathload results for 12
independent runs in a path from a Univ-Oregon host to a
Univ-Delaware host.> An interesting point about this path
is that the tight link is different than the narrow link. The
former is a 155Mbps POS OC-3 link, while the latter is a
100Mbps Fast Ethernet interface. The MRTG readings are
given as 6Mbps ranges, due to the limited resolution of the
graphs. Note that the pathload estimate falls within the
MRTG range in 10 out of the 12 runs, while the deviations
are marginal in the two other runs.

5More information about the location of the measurements hosts and
the underlying routes is given in [12].

6 Available bandwidth dynamics

In this section, we use pathload to evaluate the variability
of the avail-bw in different timescales and operating con-
ditions. Given that our experiments are limited to a few
paths, we do not attempt to make quantitative statements
about the avail-bw variability in the Internet. Instead, our
objective is to show the relative effect of certain operational
factors on the variability of the avail-bw.

In the following experiments, w=1Mbps and x=1.5Mbps.
Note that because w < x, pathload terminates due to the w
constraint only if there is no grey-region; otherwise, it exits
due to the x constraint. So, the final range [R™", R™a%]
that pathload reports is either at most 1Mbps (w) wide, in-
dicating that there is no grey-region, or it overestimates the
width of the grey-region by at most 2y. Thus, [R™", R™]
is within 2x (or w) of the range in which the avail-bw var-
ied during that pathload run. To compare the variability
of the avail-bw across different operating conditions and
paths, we define the following relative variation metric:

RmMmaz _ Rmin
(Rmaz‘ + Rmzn)/2

p= (12)

In the following graphs, we plot the {5,15, ... 95} per-
centiles of p based on 110 pathload runs for each experi-
ment.
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Figure 11: Variability of avail-bw in different load condi-
tions.
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Figure 12: Variability of avail-bw in different paths.



6.1 Variability and load conditions

Figure 11 shows the CDF of p for a path with C=12.4Mbps
in three different utilization ranges of the tight link: u=20-
30%, 40-50%, and 75-85%. Notice that the variability of
the avail-bw increases significantly as the utilization u of
the tight link increases (i.e., as the avail-bw A decreases).
This observation is not a surprise. In Markovian queues,
say in M|M|1, the variance of the queueing delay is in-
versely proportional to the square of the avail-bw. The
fact that increasing load causes higher variability was also
observed for self-similar traffic in [19]. Returning to Fig-
ure 11, the 75-percentile shows that when the avail-bw is
around A=9Mbps (4=20-30%), three quarters of the mea-
surements have a relative variation p <0.25. In heavy-
load conditions (u=75-85%) on the other hand, when A=2-
3Mbps, the same fraction of measurements give almost five
times higher relative variation (p <1.3).

We observed a similar trend in all the paths that we ex-
perimented with. For users, this suggests that a lightly
loaded network will not only provide more avail-bw, but
also a more predictable and smooth throughput. This lat-
ter attribute is even more important for some applications,
such as streaming audio/video.

6.2 Variability and statistical multiplexing

In this experiment, we run pathload in three different paths,
(A), (B), and (C), when the tight link utilization was roughly
the same (around 65%) in all paths. The capacity of the
tight link is 155Mbps (A), 12.4Mbps (B), and 6.1Mbps (C).
The tight link in (A) connects the Oregon GigaPoP to the
Abilene network, the tight link in (B) connects a large uni-
versity in Greece (Univ-Crete) to a national network (GR-
net), while the tight link in (C) connects a smaller univer-
sity (Univ-Pireaus) to the same national network. Based
on these differences, it is reasonable to assume that the
degree of statistical multiplexing, i.e., the number of flows
that simultaneously use the tight link, is highest in path
(A), and higher in (B) than in (C). Figure 12 shows the
CDF of p in each path. If our assumption about the num-
ber of simultaneous flows in the tight link of these paths
is correct, we observe that the variability of the avail-bw
decreases significantly as the degree of statistical multiplex-
ing increases. Specifically, looking at the 75-percentile, the
relative variation is p <0.4 in path (A), it increases by al-
most a factor of two (p <0.74) in path (B), and by almost
a factor of three (p <1.18) in path (C). It should be noted,
however, that there may be other differences between the
three paths that cause the observed variability differences;
the degree of statistical multiplexing is simply one plausible
explanation.

For users, the previous measurements suggest that if they
can choose between two networks that operate at about
the same utilization, the network with the wider pipes,
and thus with a higher degree of statistical multiplexing,
will offer them a more predictable throughput. For network
providers, on the other hand, it is better to aggregate traffic
in a higher-capacity trunk than to split traffic in multiple
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parallel links of lower capacity, if they want to reduce the
avail-bw variability.
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Figure 13: The effect of K on the variability of the avail-
bw.
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Figure 14: The effect of NV on the variability of the avail-
bw.

6.3 The effect of the stream length

Since V=KT, the stream duration V increases proportion-
ally to the stream length K. With a longer stream, we ex-
amine whether R > A over wider timescales. As mentioned
in the introduction, however, the variability of the avail-bw
A decreases as the averaging timescale increases. So, the
variability in the relation between R and A, and thus the
variability of the pathload measurements, is expected to
decrease as the stream duration increases.

Figure 13 shows the CDF of p for three different values
of K in a path with C=12.4Mbps. During the measure-
ments, A was approximately 4.5Mbps. The stream dura-
tion V for R = A, L=200B, and T'=356us is 18ms for
K =50, 36ms for K=100, and 180ms for K=500. The ma-
jor observation here is that the variability of the avail-bw
decreases significantly as the stream duration increases, as
expected. Specifically, when V'=180ms, 75% of the mea-
surements produced a range that is less than 2.0Mbps wide
(p <0.45). When V=18ms, on the other hand, the corre-
sponding maximum avail-bw range increases to 4.7Mbps



(p <1.05).

6.4 The effect of the fleet length

Suppose that we measure the avail-bw A7 (¢) in a time in-
terval (to,to + ©), with a certain averaging timescale 7
(tr < ©). These measurements will produce a range of

avail-bw values, say from a minimum A7 . to a maximum

AT .« If we keep 7 fixed and increase the measurement
period O, the range [A7 ., AT .| becomes wider because

it tracks the boundaries of the avail-bw process during a
longer time period. An additional effect is that, as © in-
creases, the variation of the width A7, — AT . decreases.

max
The reason is that the boundaries A7 . and A7, tend to

mn
their expected values (assuming a stationary process), as
the duration of the measurement increases.

The measurement period O is related to the number
of streams N in a fleet, and to the fleet duration U =
N(V + A). As we increase N, keeping V fixed, we expand
the time window in which we examine the relation between
R and A, and thus we increase the likelihood that the rate
R will be in the grey-region of the avail-bw (R 1 A). So,
the grey-region at the end of the pathload run will be wider,
causing a larger relative variation p. This effect is shown in
Figure 14 for three values of N. Observe that as the fleet
duration increases, the variability in the measured avail-bw
increases. Also, as the fleet duration increases, the vari-
ation across different pathload runs decreases, causing a
steeper CDF.

7 'TCP and available bandwidth

We next focus on the relationship between the avail-bw in
a path and the throughput of a persistent (or ‘bulk’) TCP
connection with arbitrarily large advertised window. There
are two questions that we attempt to explore. First, can a
bulk TCP connection measure the avail-bw in a path, and
how accurate is such an avail-bw measurement approach?
Second, what happens then to the rest of the traffic in the
path, i.e., how intrusive is a TCP-based avail-bw measure-
ment?

It is well-known that the throughput of a TCP connec-
tion can be limited by a number of factors, including the re-
ceiver’s advertised window, total transfer size, RTT, buffer
size at the path routers, probability of random losses, and
avail-bw in the forward and reverse paths. In the follow-
ing, we use the term Bulk Transfer Capacity (BTC) con-
nection (in relation to [22]) to indicate a TCP connection
that is only limited by the network, and not by end-host
constraints.

Let us first describe the results of an experiment that
measures the throughput of a BTC connection from Univ-
Toannina (Greece) to Univ-Delaware. The TCP sender was
a SunOS 5.7 box, while the TCP receiver run FreeBSD 4.3.
The tight link in the path has a capacity of 8.2Mbps. Con-
sider a 25-minute (min) measurement interval, partitioned
in five consecutive 5-min intervals (A), (B), (C), (D), and
(E). During (B) and (D) we perform a BTC connection,
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Figure 15: Available bandwidth and BTC throughput.
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Figure 15.

and measure its throughput in both 1-sec intervals and in
the entire 5-min interval. During (A), (C), and (E), we do
not perform a BTC connection. Throughout the 25-min
interval, we also monitor the avail-bw in the path using
MRTG data for each of the 5-min intervals. In parallel, we
use ping to measure the RTT in the path at every second.
Figure 15 shows the throughput of the two BTC connec-
tions, as well as the 5-min average avail-bw in the path,
while Figure 16 shows the corresponding RTT measure-
ments.

We make three important observations from these fig-
ures. First, the avail-bw during (B) and (D) is less than
0.5Mbps, and so for most practical purposes, the BTC con-
nection manages to saturate the path. Also note, however,
that the BTC throughput shows high variability when mea-
sured in 1-sec intervals, often being as low as a few hun-
dreds of kbps. Consequently, even though a bulk TCP
connection that lasts for several minutes should be able to
saturate a path when not limited by the end-hosts®, shorter
TCP connections should expect a significant variability in
their throughput.

Second, there is a significant increase in the RTT mea-

8This will not be the case however in under-buffered links, or paths
with random losses [18].



surements during (B) and (D), from a ‘quiescent point’
of 200ms to a high variability range between 200ms and
370ms. The increased RTT measurements can be explained
as follows: the BTC connection increases its congestion
window until a loss occurs. A loss however does not occur
until the queue of the tight link overflows”. Thus, the queue
size at the tight link increases significantly during the BTC
connection, causing the large RTT measurements shown.
To quantify the queue size increase, note that the maxi-
mum RTTs climb up to 370ms, or 170ms more than their
quiescent point. The tight link has a capacity of 8.2Mbps,
and so its queue size becomes occasionally at least 170KB
larger during the BTC connection. The RTT jitter is also
significantly higher during (B) and (D), as the queue size of
the tight link varies between high and low occupancy due
to the ‘sawtooth’ behavior of the BTC congestion window.

Third, the BTC connection gets an average throughput
during (B) and (D), that is about 20-30% more than the
avail-bw in the surrounding intervals (A), (C), and (E).
This indicates that a BTC connection can get more band-
width than what was previously available in the path, grab-
bing part of the throughput of other TCP connections. To
see how this happens, note that the presence of the BTC
connection during (B) and (D) increases the RTT of all
other TCP connections that go through the tight link, be-
cause of a longer queue at that link. Additionally, the
BTC connection causes buffer overflows, and thus poten-
tial losses to other TCP flows®. The increased RTTs and
losses reduce the throughput of other TCP flows, allowing
the BTC connection to get a larger share of the tight link
than what was previously available.

To summarize, a BTC connection measures more than
the avail-bw in the path, because it shares some of the
previously utilized bandwidth of other TCP connections,
and it causes significant increases in the delays and jitter
at the tight link of its path. This latter issue is crucial for
real-time and streaming applications that may be active
during the BTC connection.

8 Is pathload intrusive?

An important question is whether pathload has an intrusive
behavior, i.e., whether it causes significant decreases in the
avail-bw, and increased delays or losses.

Figures 17 and 18 show the results of a 25-min experi-
ment, performed similarly with the experiment of §7. Specif-
ically, pathload runs during the 5-min intervals (B) and (D).
We monitor the 5-min average avail-bw in the path using
MRTG (Figure 17), and also perform RTT measurements
in every 100ms (Figure 18). The RTT measurement period
here is ten times smaller than in §7, because we want to
examine whether pathload causes increased delays or losses
even in smaller timescales than one second.

The results of the experiment are summarized as follows.
First, the avail-bw during (B) and (D) does not show a

7 Assuming Drop-Tail queueing, which is the common practice today.
8We did not observe however losses of ping packets.
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measurable decrease compared to the intervals (A), (C),
and (E). Second, the RT'T measurements do not show any
measurable increase when pathload runs. So, pathload does
not seem to cause a persistent queue size increase, despite
the fact that it often sends streams of higher rate than the
avail-bw. The reason is that each stream is only K=100
packets, and a stream is never sent before the previous has
been acknowledged. We also note that none of the pathload
streams encountered any losses in this experiment. None
of the ping packets was lost either.

9 Conclusions

We described an original end-to-end available bandwidth
measurement methodology, called SLoPS. The key idea in
SLoPS is that the one-way delays of a periodic stream show
increasing trend if the stream rate is greater than the avail-
bw. Such an end-to-end avail-bw measurement methodol-
ogy can have numerous applications, such as tuning TCP’s
ssthresh parameter, overlay networks and end-system mul-
ticast, rate adaptation in streaming applications, end-to-
end admission control, server selection and anycasting, and
verification of SLAs. We have implemented SLoPS in a tool
called pathload, and showed through simulations and Inter-



net experiments that pathload is non-intrusive and that it
measures avail-bw accurately under various load conditions
and typical path configurations. We finally examined the
variability of avail-bw in different paths and load condi-
tions, as well as the relationship between TCP throughput
and avail-bw.
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10 Proof of Proposition 1

At the first link.

Case 1: Ry > A;.

Suppose that t* is the arrival time of packet & in the queue.
Over the interval [t*,t* + T), with T = L/Ry, the link is
constantly backlogged because the arriving rate is higher
than the capacity (Ro + u1 C1 = C1 + (Ro — A1) > Ch1)
Over the same interval, the link receives L +uy C1 T bytes
and services C1 T bytes. Thus,

M= L+ T -GT=(R-A)T>0 (1)

and so,

Ro — Ay
C1
Packet k+ 1 departs the first link A time units after packet

k, where

Adb = T>0 (14)

Ry — 44
—7T
&

that is independent of k. So, the packets of the stream
depart the first link with o constant rate R;, where

R=Lf_p__ 9

A Ci+ (Ro — A1)

We refer to rate R;_1 as the entry-rate in link i, and to R;
as the exit-rate from link . Given that Ry > A; and that
C1 > Ay, it is easy to show that the exit-rate from link 1
is larger or equal than A,° and lower than the entry-rate,

Ay < R; < Ry (17)

A= 4 d ) — (b +db) =T + (15)

(16)

Case 2: Rg < A;.
In this case, the arrival rate at the link in interval [t*, t*+T')
is Ry +u1 C7 < C1. So, packet k is serviced before packet

k + 1 arrives at the queue. Thus,
A¢¥ =0, Adt =0, and R, =R, (18)

9Ry = A; when A; = Cj.
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Induction to subsequent links. The results that were
previously derived for the first link can be proved induc-
tively for each link in the path. So, we have the following
relationship between the entry and exit rates of link i:

Cs i . )
with
A;<R;<R; 1 when R; 1 > A; (20)
Consequently, the exit-rate from link 7 is
R; > min{R;_1, A;} (21)

Also, the queueing delay difference between successive pack-
ets at link 7 is

Adf:{ BT >0 i Ry > A; (22)
0 otherwise
OWD variations. If Ry > A, we can apply (20) recur-
sively for ¢ = 1,...(t — 1) to show that the stream will
arrive at the tight link with a rate Ry 1 > Ay 1 > A;.
Thus, based on (22), AdF > 0, and so the OWD difference
between successive packets will be positive, Ad* > 0.

On the other hand, if Ry < A, then Ry < A; for every
link ¢ (from the definition of A). So, applying (21) recur-
sively from the first link to the last, we see that R; < A;
for i =1,...H. Thus, (22) shows that the delay difference
in each link 4 is Adf = 0, and so the OWD differences are
AdF = 0.
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