
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 1



Welcome!

CSE 6230 – High Performance Computing: Tools and Applications

I Practical, hands-on course on parallel programming.

I We will develop our skills using real scientific applications.



Forms of parallelism

I Multiple compute nodes connected via a network

I Multiple chips on a compute node

I Accelerators and co-processors on a compute node

I Multiple cores on a chip

I Multiple functional units in a core (leading to instructions that can
be performed at the same time)

I SIMD units in a core (same operation on multiple data items at the
same time)



Shared memory vs. distributed memory

I Shared memory parallelism: multiple threads of a process run on a
single node

I Distributed memory parallelism: multiple processes run on multiple
nodes (e.g., one process per node)



Course Topics

I Review of POSIX threads
I Advanced OpenMP
I Advanced MPI, including nonblocking collectives, one-sided/RMA

and MPI shared memory
I Global Arrays, PGAS languages
I Task-based runtime systems
I Hybrid programming (MPI+OpenMP, MPI+MPI)
I SIMD programming with intrinsics
I Intel Xeon Phi (KNC) offloading
I Intel tools and libraries: VTune, MKL, compiler vectorization

reports, etc.
I Other programming models, parallel languages, and tools
I Applications in PDE simulations
I Applications in dynamic particle simulations
I Applications in quantum chemistry



Grading

I 20% Exercises. Assigned after most lectures and due
approximately 36 hours later. These are designed to help you get
hands-on experience with the material in the lecture. Graded on 2
point scale. You can miss two exercises without penalty. First
exercise will be assigned today!

I 30% Mini-projects. About 3 during the semester.

I 50% Project (with presentation and report). Individual projects
chosen from a set of pre-defined research questions given in class.



What you need to succeed in this course

I Desire to learn how to make programs run fast
I Curiosity to investigate performance anomalies
I Expertise in C or C++ programming
I Familiarity with using the Linux command line, including:

I using shell and environment variables
I shell scripting
I git revision control

I Not afraid of matrix operations and reading Matlab code
I Not afraid to get your hands dirty!



Related courses

I CSE 6220 – High Performance Computing

I emphasis on parallel algorithms

I CSE 6230 – High Performance Computing: Tools and Applications

I hands-on parallel programming
I this course!

I CSE 6010 – Computational Problem Solving

I C programming, data structures, algorithms
I Module on HPC



Measuring execution time: Best practices

I Measure runs multiple times and report and average (and a
measure of the deviation of the deviation is large and cannot be
reduced)

I May be allowable to throw out the timing of the first iteration (if the
intention is to measure time with a warm cache)

I Be careful of clock granularity if what you are measuring is just a
few instructions



Shared memory parallel programming

I POSIX threads

I OpenMP

I Shared memory MPI

I Global arrays (logically shared; physically distributed)

I Many others



POSIX threads

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int work(void)
{

int i, j;
int sum = 0;
for (i=0; i<10000; i++)

for (j=0; j<10000; j++)
sum++;

return sum;
}



POSIX threads

// signature of thread start routine must be "void *foo(void *data)"
void *thread_worker(void *data)
{

(void) work();
printf("%s\n", (char *) data);
return NULL;

}

int main()
{

pthread_t thread1, thread2;
void *thread_return1, *thread_return2;
int iret1, iret2;
char *message1 = "data for thread 1";
char *message2 = "data for thread 2";

// spawn threads
iret1 = pthread_create(&thread1, NULL, thread_worker, (void *) message1);
iret2 = pthread_create(&thread2, NULL, thread_worker, (void *) message2);

printf("thread 1, pthread_create: %d\n", iret1);
printf("thread 2, pthread_create: %d\n", iret2);

// wait for spawned threads to finish
iret1 = pthread_join(thread1, NULL);
iret2 = pthread_join(thread2, NULL);

printf("thread 1, pthread_join: %d\n", iret1);
printf("thread 2, pthread_join: %d\n", iret2);

return 0;
}



POSIX threads

Compile using

gcc -pthread filename.c



C++11 threads

#include <iostream>
#include <thread>

void worker(int id) {
std::cout << "Hello from " << id << std::endl;

}

int main() {
// declare/construct a variable of type thread
std::thread t(worker, 5);

// join thread with main thread
t.join();

return 0;
}



C++11 threads

I Compile using

g++ -std=c++11 -pthread filename.cpp



Exercise 1

I Write a program that computes x = x +αy where x and y are
input vectors and α is a scalar. The program uses pthreads or
C++11 threads to parallelize the computation.

I Graph the computation time vs. number of threads used. For this,
consider the following questions:

I Length of the vectors?
I Maximum number of threads to use?
I Best way to perform the timings?

I Submit a short report with the following sections:

I Listing of your program.
I Graph of the computation time vs. number of threads used.
I Discussion on whether or not your results are expected.

I Due at the beginning of the next class


