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CSE 6230 — High Performance Computing: Tools and Applications

» Practical, hands-on course on parallel programming.
» We will develop our skills using real scientific applications.



Forms of parallelism

» Multiple compute nodes connected via a network

» Multiple chips on a compute node

» Accelerators and co-processors on a compute node

» Multiple cores on a chip

» Multiple functional units in a core (leading to instructions that can
be performed at the same time)

» SIMD units in a core (same operation on multiple data items at the
same time)



Shared memory vs. distributed memory

» Shared memory parallelism: multiple threads of a process run on a
single node

» Distributed memory parallelism: multiple processes run on multiple
nodes (e.g., one process per node)



Course Topics
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Review of POSIX threads

Advanced OpenMP

Advanced MPI, including nonblocking collectives, one-sided/RMA
and MPI shared memory

Global Arrays, PGAS languages

Task-based runtime systems

Hybrid programming (MP1+OpenMP, MPI+MPI)

SIMD programming with intrinsics

Intel Xeon Phi (KNC) offloading

Intel tools and libraries: VTune, MKL, compiler vectorization
reports, etc.

Other programming models, parallel languages, and tools
Applications in PDE simulations

Applications in dynamic particle simulations

Applications in quantum chemistry



Grading

» 20% Exercises. Assigned after most lectures and due
approximately 36 hours later. These are designed to help you get
hands-on experience with the material in the lecture. Graded on 2
point scale. You can miss two exercises without penalty. First
exercise will be assigned today!

» 30% Mini-projects. About 3 during the semester.

» 50% Project (with presentation and report). Individual projects
chosen from a set of pre-defined research questions given in class.



What you need to succeed in this course

Desire to learn how to make programs run fast

Curiosity to investigate performance anomalies
Expertise in C or C++ programming

Familiarity with using the Linux command line, including:
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» using shell and environment variables
» shell scripting
» git revision control

v

Not afraid of matrix operations and reading Matlab code
Not afraid to get your hands dirty!

v



Related courses

» CSE 6220 — High Performance Computing
» emphasis on parallel algorithms
» CSE 6230 — High Performance Computing: Tools and Applications

» hands-on parallel programming
» this course!

» CSE 6010 — Computational Problem Solving

» C programming, data structures, algorithms
» Module on HPC



Measuring execution time: Best practices

» Measure runs multiple times and report and average (and a
measure of the deviation of the deviation is large and cannot be
reduced)

» May be allowable to throw out the timing of the first iteration (if the
intention is to measure time with a warm cache)

» Be careful of clock granularity if what you are measuring is just a
few instructions
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POSIX threads
OpenMP
Shared memory MPI
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Global arrays (logically shared; physically distributed)
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Many others



#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int work (void)
{
int i, j;
int sum = 0;
for (i=0; 1<10000; i++)
for (j=0; j<10000; j++)
sum++;
return sum;




// signature of thread start routine must be "void *foo(void xdata)"
void *thread_worker (void *data)

{

}

(void) work();
printf("$s\n", (char *) data);
return NULL;

int main()

{

pthread_t threadl, thread2;

voild *thread_returnl, *thread_return2;
int iretl, iret2;

char *messagel = "data for thread 1";
char *message2 = "data for thread 2";

// spawn threads
iretl = pthread_create (&threadl, NULL, thread_worker, (void *)
iret2 = pthread_create(&thread2, NULL, thread worker, (void *)

printf("thread 1, pthread_create: %d\n", iretl);
printf("thread 2, pthread_create: %d\n", iret2);

// wait for spawned threads to finish
iretl = pthread_join(threadl, NULL);
iret2 = pthread_join(thread2, NULL);

printf ("thread 1, pthread_join: %d\n", iretl);
printf ("thread 2, pthread_join: %d\n", iret2);

return 0;

messagel) ;
message2) ;



Compile using

gcc -pthread filename.c



#include <iostream>
#include <thread>

void worker (int id) {

std::cout << "Hello from " << id << std::endl;

int main() {
// declare/construct a variable of type thread
std::thread t (worker, 5);

// join thread with main thread
t.join();

return 0;




» Compile using

gt+t+ -std=c++11 -pthread filename.cpp



Exercise 1

» Write a program that computes x = x 4 oy where x and y are
input vectors and o is a scalar. The program uses pthreads or
C++11 threads to parallelize the computation.

» Graph the computation time vs. number of threads used. For this,
consider the following questions:

» Length of the vectors?
» Maximum number of threads to use?
» Best way to perform the timings?

» Submit a short report with the following sections:

» Listing of your program.
» Graph of the computation time vs. number of threads used.
» Discussion on whether or not your results are expected.

» Due at the beginning of the next class



