Edmond Chow
School of Computational Science and Engineering
Georgia Institute of Technology

Lecture 1

CSE 6230 — High Performance Computing: Tools and Applications

» Practical, hands-on course on parallel programming.
» We will develop our skills using real scientific applications.

Forms of parallelism

» Multiple compute nodes connected via a network

» Multiple chips on a compute node

» Accelerators and co-processors on a compute node

» Multiple cores on a chip

» Multiple functional units in a core (leading to instructions that can
be performed at the same time)

» SIMD units in a core (same operation on multiple data items at the
same time)

Shared memory vs. distributed memory

» Shared memory parallelism: multiple threads of a process run on a
single node

» Distributed memory parallelism: multiple processes run on multiple
nodes (e.g., one process per node)

Course Topics

vy

vV VvV vy VvYVvYyy

vV vyYyysy

Review of POSIX threads

Advanced OpenMP

Advanced MPI, including nonblocking collectives, one-sided/RMA
and MPI shared memory

Global Arrays, PGAS languages

Task-based runtime systems

Hybrid programming (MP1+OpenMP, MPI+MPI)

SIMD programming with intrinsics

Intel Xeon Phi (KNC) offloading

Intel tools and libraries: VTune, MKL, compiler vectorization
reports, etc.

Other programming models, parallel languages, and tools
Applications in PDE simulations

Applications in dynamic particle simulations

Applications in quantum chemistry

Grading

» 20% Exercises. Assigned after most lectures and due
approximately 36 hours later. These are designed to help you get
hands-on experience with the material in the lecture. Graded on 2
point scale. You can miss two exercises without penalty. First
exercise will be assigned today!

» 30% Mini-projects. About 3 during the semester.

» 50% Project (with presentation and report). Individual projects
chosen from a set of pre-defined research questions given in class.

What you need to succeed in this course

Desire to learn how to make programs run fast

Curiosity to investigate performance anomalies
Expertise in C or C++ programming

Familiarity with using the Linux command line, including:

vV vyYyywy

» using shell and environment variables
» shell scripting
» git revision control

v

Not afraid of matrix operations and reading Matlab code
Not afraid to get your hands dirty!

v

Related courses

» CSE 6220 — High Performance Computing
» emphasis on parallel algorithms
» CSE 6230 — High Performance Computing: Tools and Applications

» hands-on parallel programming
» this course!

» CSE 6010 — Computational Problem Solving

» C programming, data structures, algorithms
» Module on HPC

Measuring execution time: Best practices

» Measure runs multiple times and report and average (and a
measure of the deviation of the deviation is large and cannot be
reduced)

» May be allowable to throw out the timing of the first iteration (if the
intention is to measure time with a warm cache)

» Be careful of clock granularity if what you are measuring is just a
few instructions

v

POSIX threads
OpenMP
Shared memory MPI

v

v

v

Global arrays (logically shared; physically distributed)

v

Many others

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int work (void)
{
int i, j;
int sum = 0;
for (i=0; 1<10000; i++)
for (j=0; j<10000; j++)
sum++;
return sum;

// signature of thread start routine must be "void *foo(void xdata)"
void *thread_worker (void *data)

{

}

(void) work();
printf("$s\n", (char *) data);
return NULL;

int main()

{

pthread_t threadl, thread2;

voild *thread_returnl, *thread_return2;
int iretl, iret2;

char *messagel = "data for thread 1";
char *message2 = "data for thread 2";

// spawn threads
iretl = pthread_create (&threadl, NULL, thread_worker, (void *)
iret2 = pthread_create(&thread2, NULL, thread worker, (void *)

printf("thread 1, pthread_create: %d\n", iretl);
printf("thread 2, pthread_create: %d\n", iret2);

// wait for spawned threads to finish
iretl = pthread_join(threadl, NULL);
iret2 = pthread_join(thread2, NULL);

printf ("thread 1, pthread_join: %d\n", iretl);
printf ("thread 2, pthread_join: %d\n", iret2);

return 0;

messagel) ;
message2) ;

Compile using

gcc -pthread filename.c

#include <iostream>
#include <thread>

void worker (int id) {

std::cout << "Hello from " << id << std::endl;

int main() {
// declare/construct a variable of type thread
std::thread t (worker, 5);

// join thread with main thread
t.join();

return 0;

» Compile using

gt+t+ -std=c++11 -pthread filename.cpp

Exercise 1

» Write a program that computes x = x 4 oy where x and y are
input vectors and o is a scalar. The program uses pthreads or
C++11 threads to parallelize the computation.

» Graph the computation time vs. number of threads used. For this,
consider the following questions:

» Length of the vectors?
» Maximum number of threads to use?
» Best way to perform the timings?

» Submit a short report with the following sections:

» Listing of your program.
» Graph of the computation time vs. number of threads used.
» Discussion on whether or not your results are expected.

» Due at the beginning of the next class

