
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 3

Free Intel compilers and other tools

I Free for students

I Available for Linux, Windows, OS X

I https://software.intel.com/en-us/articles/free-mkl

jinx and deepthought clusters

I https://support.cc.gatech.edu/facilities/
instructional-labs/jinx-cluster

I https://support.cc.gatech.edu/facilities/
instructional-labs/deepthought-cluster

I ssh jdoe1@jinx-login.cc.gatech.edu
ssh jdoe1@deepthought-login.cc.gatech.edu

I When you log in, you are on a head node. Do not run jobs on this
head node. Instead, submit jobs to the compute nodes or obtain
an interactive node.

I Access is possible from outside the GT network.

I The two clusters use a common home directory.

I git is available on these clusters.

Job control

show all jobs
qstat -a

show details about job
qstat -f <jobid>

list queues and their limits
qstat -q

check which nodes are down
pbsnodes

request interactive node
qsub -I -q class -l nodes=1:sixcore -l walltime=30:00

Requesting node attributes

qstat -l nodes=1

qstat -l nodes=1:sixcore

qstat -l nodes=jinx1

Jinx node attributes: - sixcore, fourcore, bigmem, gpu, m2070, m2090

Interactive jobs vs. batch jobs

I Usual practice at supercomputer centers is to submit a batch script

I Interactive jobs are useful for debugging

I Cluster etiquette

I Log out of interactive jobs when you are not using them
I Use batch jobs if possible

Interactive jobs

I If you are using multithreaded parallelism, you will usually want to
request an entire node; otherwise you may be sharing a node with
others

I When you are allocated a node, you can also ssh into that node.

Intel Xeon Phi servers: joker and gotham

I Each server has 8 Intel Xeon Phi (Knights Corner) cards.

I No resource management on these servers. Each card will be
assigned to two students, and students coordinate the
old-fashioned way.

I ssh jdoe1@joker.cc.gatech.edu
ssh jdoe1@gotham.cc.gatech.edu

I Your account name will be your GT login name. For us to create an
initial password, provide a throw-away password on the course
github repo in the ex03/accountpass file.

github

I We will use the Georgia Tech github system for distributing course
materials and submiting assignments. Go to:

https://github.gatech.edu

and sign in with your GT credentials. This creates your account if
you don’t already have one.

I After your account is created, we will give you access to the
repository called chow-courses/cse6230. You will get an email
when you have access to the repository.

I Fork this repository. The fork button is in the top-right corner of the
screen. This creates a copy of the repository such that the TA and
instructor can see your updates to your fork. Note, this fork of the
repository stays on the github server.

github

I To make a copy of the fork so that you can make changes to it, you
need to clone your fork. To do this, follow the instructions on the
web page for your fork, e.g., use:

git clone git@github.gatech.edu:jdoe1/cse6230.git

I When you submit an assignment, commit and push your files in
your clone. Commit will update your local copy. Push will update
the fork on the server (which the instructor and TA can see).

What is a fork?

I A fork is a clone of a repo, but. . .

I The owner of the original repo can see the files in your fork.

Big picture

Course repo
chow-courses/cse6230

(upstream)
|
| pull updates
|
v

Your local repo
jinx:cse6230

|
| push commits
|
v

Your fork
jdoe1/cse6230

(origin)

Getting updates into your local repo from the course repo

First set the upstream repo. It is only needed once.

git remote add upstream \
git@github.gatech.edu:chow-courses/cse6230.git

Then pull from the upstream repo (from the master branch), and merge
with your changes (if any):

git pull upstream master

Finally, push the changes to your fork to also keep it up to date:

git push

Getting updates into your local repo from your fork

I This is simple:

git pull

I However, we do not recommend changing files in your fork using
github. This just gives you an extra place to make changes which
you must keep synchronized.

git – distributed version control system

I all repositories are equivalent and contain the entire history (but
bare repositories do not have working directories)

I commits are local (do not need to be connected to a central
repository)

I but a central repository is still useful. These are implemented as
bare repositories

Creating a git repository

cd project # change to project directory
git init # create empty repo
git add filename # add file to index
git commit # commit the file to the repo

git

Conceptually, there are four locations for your files

I working copy
I staging area (a.k.a. index), which is simply a file
I local repository
I remote repository

git cheat sheet (without branches)

working copy <---> index <---> local repo <---> remote repo

git clone # clone a git repository
git init # initialize git for the current directory
git status # status of all files (differences between work

directory, index, and most recent commit)
git log # history of commits
git diff # show changes between working and local copies
git ls-files # what files are being managed by git?

(files in index)
git add <file> # stage a file
git reset HEAD <file> # unstage a file
git checkout -- <file> # revert a file to latest version in repo
git checkout <commit> <file> # revert to old version of file
git commit # commit files
git fetch # fetch from remote repo and update local repo
git merge # merge local repo files
git pull # fetch and merge changes with your working copy
git push # push from local to remote repo

git log and git show

given a file, which commits is it in?
git log <file>

when was a file added? (Or just use the above command.)
git log --diff-filter=A -- <file>

see the changes in a commit
git show <commit>

list files that changed in a commit
git show --name-only <commit>

see version of file at a given commit
git show <commit>:<file> # note colon

git diff

I git diff Show differences between your working directory and the index.
Useful when you are editing a file and want to see what changes you have made
since the last add.

I git diff -cached Show differences between the index and the most recent
commit. After you do an add, you can see what will be committed.

I git diff HEAD Show the differences between your working directory and the
most recent commit. Usually the most recent commit and what is in the index is
the same because you have not yet done an add, so this command may not be
so useful (just use git diff by itself). However, consider this: You change a file and
do an add. Then you change the file again. Now git diff HEAD will show you the
two changes that you have made. This could be useful if you do an add but did
not mean to.

I git diff <commit> <file> compare workspace file with file in previous
commit

I git diff <commit1> <commit2> <file> compare file from two different
commits

Specifying revisions

I use the hash of the commit
I HEAD - most recent commit
I HEAD~ - parent of most recent commit
I HEAD~~ or HEAD~2 - grandparent

There is also ˆ2, etc., which can be used to specify which parent of a
commit, if there is more than one. If there is only one parent, then ~ and
ˆ are equivalent.
There is also a reflog, a history of where HEAD has been pointing.
Reflogs use @ in its syntax. Since HEAD can be moved without doing
commits, this may not necessarily be what you want.

Bare repositories (special property of some repositories)

I repositories that are shared

I typical use: this shared repository acts as the master copy, so
there is typically only this one centralized repository

I this shared, centralized repository does not have a working
directory, therefore it is bare

I the directory names of bare repos end in .git by convention

Bare repo and normal repo for a fresh project (single user)

I In the directory where you want the bare repo stored,

git init --bare project.git

I Then in the directory where you want your normal repo stored,

git clone /path_or_url/to/project.git

I When you are ready to push the first time, use

git push origin master

since the bare repo does not yet have any branches on it.
Subsequently, git push is enough.

Bare repo for an existing git project (single user)

I In the directory where you want the bare repo stored,

git clone --bare /path_or_url/to/existing_repo

I Then in the directory of the existing repo,

git remote add origin /path_or_url/to/bare_repo

Using git the first time

You may get a message asking you to set some variables for
convenience:

git config --global user.name "Your Name"
git config --global user.email your@email.com
git config --global core.editor vim

Use color!

git config --global color.diff auto
git config --global color.status auto
git config --global color.branch auto

Exercise 3

I Due before Wednesday (i.e., do it today): log in to
https://github.gatech.edu

I Your accounts will be created by Wednesday and you will get an
email.

I Due by Friday 11:59 pm: Fork the chow-courses/cse6230
repository.
Clone the fork to your jinx or deepthought account. Edit the file
ex03/accountpass and provide an initial password for your Intel
Xeon Phi account.
Do whatever is necessary to push your changes to your fork so
that the instructor and TA can see it.

I If you have not used jinx or deepthought, we suggest you also
compile and run your Exercise 2 on one of the compute nodes.

