
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 4



OpenMP directives

So far we have seen

#pragma omp parallel

#pragma omp for



Implied barrier at end of for construct

#pragma omp parallel
{

#pragma omp for
for (i=0; i<n; i++)
{
a[i] = i;

}

// implied barrier

// any thread sees all components of "a"
// as updated

}

There is also an implied barrier at the end of sections and single
constructs.



firstprivate and lastprivate clauses in for directive

I With the private clause, private variables are undefined at the
beginning of the loop, and values within the loop are not visible
after the loop

I firstprivate clause instead initializes the private variables

I lastprivate clause copies value of last iteration to the variable
after the loop



Example: both firstprivate and lastprivate

#include <stdio.h>
#include <omp.h>

int main (int argc, char *argv[])
{

int i, a = 1000;

#pragma omp parallel for firstprivate(a) lastprivate(a)
for (i=0; i<10; i++)
{
a = a + i;

}
printf("value of a: %d\n", a);

return 0;
}



sections directive

I Used when different threads must execute different code
I Must still create threads with parallel directive
I In general, p threads created and n sections

#pragma omp parallel
#pragma omp sections
{
#pragma omp section
printf("First thread %d\n", omp_get_thread_num());

#pragma omp section
printf("Second thread thread %d\n", omp_get_thread_num());

}

What happens if p < n ?
What happens if p > n ?



Notes on sections directive

I at most n threads run in parallel

I can also use firstprivate and lastprivate with obvious
definitions of first and last

I can combine parallel and sections directives #pragma omp
parallel sections like parallel for



What is wrong with this code?

#pragma omp parallel
{

a = 255;

#pragma omp for
for (i=0; i<n; i++)
b[i] = a;

}



What is wrong with this code?

I Depending on hardware, write to a may not be atomic, and thread
0 may read a when thread 1 has only partially written to it.

I Possible solution is to use a barrier after the write.

I Multiple threads writing to a is also unnecesssary.

I Solution here is to use single directive.



single directive

I Used when code should only be executed by a single thread
I Can be executed by any thread (related master directive)

#pragma omp parallel
{

#pragma single
a = 255;

#pragma omp for
for (i=0; i<n; i++)
b[i] = a;

}

Implied barrier at end of structured block (of single).



atomic directive

I thread-safe update of shared variables

I generally requires the compiler to use atomic instructions in the
instruction set

I applies to single statements only (not blocks) with specific forms of
updating a memory location

#pragma omp atomic
i = i + 1;



atomic directive: example allowed form

x = x binop expr;

where x is an l-value with scalar type, expr does not access the same
storage as x, and binop is a binary operation, e.g., +.

For more details:
https://software.intel.com/en-us/node/524509



More OpenMP directives

#pragma omp sections

#pragma omp single

#pragma omp master
// no implied barrier on exit

#pragma omp barrier

#pragma omp ordered
// used inside parallel for loop

#pragma omp critical [name]

#pragma omp atomic
// only for statements of specific form



Some OpenMP clauses

I num_threads sets the number of threads in parallel directive

I if controls the parallel directive depending on a condition

I nowait removes the barrier at the end of omp for and other
constructs

I ordered needed to indicate that an ordered directive is within an
omp for loop



Example if clause

Only spawn threads if the “problem” is large enough:

#pragma omp parallel if (n > 1000)



More realistic particle simulations

I Particles have radius a

I Cubical simulation box has width L and periodic boundaries

I Particles interact with each other

I repulsive force when they overlap
I other forces, e.g., when particles are charged



Repulsive force when particles overlap

If distance s between particles i and j is less than 2a, then force on
particle i due to particle j is

fij = kr (2a− s) · n̂

where kr = 100 is the repulsion force constant and n̂ is the unit vector
from j to i .



Updating the particle positions, including repulsive force

x(i) = x(i) + M · f (i)∆t +
√

2∆t · y(i)

where f (i) is the total force on particle i and M = 1 is a constant.



Code to compute forces from the positions

for (i=0; i<np; i++) {
for (j=i+1; j<np; j++) {

ri = &pos[3*i];
rj = &pos[3*j];
dx = remainder(ri[0]-rj[0], L);
dy = remainder(ri[1]-rj[1], L);
dz = remainder(ri[2]-rj[2], L);

s2 = dx*dx + dy*dy + dz*dz;
if (s2 < 4.*a*a) {

s = sqrt(s2);
f = krepul*(2.-s);

forces[3*i+0] += f*dx/s;
forces[3*i+1] += f*dy/s;
forces[3*i+2] += f*dz/s;
forces[3*j+0] -= f*dx/s;
forces[3*j+1] -= f*dy/s;
forces[3*j+2] -= f*dz/s;

}
}

}



How to parallelize this code using OpenMP?

Iterations on i are not independent, since different iterations can write
to the same location in forces.

I Update forces in a critical section

I Use atomic operations to update components of the force array

I Rewrite the outer loop so that iterations are independent (only
update the forces for particle i , not j)

I Each thread sums the forces locally, and then a sequential
reduction computes the total force (requires storage local to each
thread)

I Tabulate the overlaps in parallel, but sum the forces sequentially
(could work if few overlaps; tabulation needs shared data structure)



How to parallelize this code using OpenMP?

Iterations on i are not independent, since different iterations can write
to the same location in forces.

I Update forces in a critical section

I Use atomic operations to update components of the force array

I Rewrite the outer loop so that iterations are independent (only
update the forces for particle i , not j)

I Each thread sums the forces locally, and then a sequential
reduction computes the total force (requires storage local to each
thread)

I Tabulate the overlaps in parallel, but sum the forces sequentially
(could work if few overlaps; tabulation needs shared data structure)



How to parallelize this code using OpenMP?

Iterations on i are not independent, since different iterations can write
to the same location in forces.

I Update forces in a critical section

I Use atomic operations to update components of the force array

I Rewrite the outer loop so that iterations are independent (only
update the forces for particle i , not j)

I Each thread sums the forces locally, and then a sequential
reduction computes the total force (requires storage local to each
thread)

I Tabulate the overlaps in parallel, but sum the forces sequentially
(could work if few overlaps; tabulation needs shared data structure)



How to parallelize this code using OpenMP?

Iterations on i are not independent, since different iterations can write
to the same location in forces.

I Update forces in a critical section

I Use atomic operations to update components of the force array

I Rewrite the outer loop so that iterations are independent (only
update the forces for particle i , not j)

I Each thread sums the forces locally, and then a sequential
reduction computes the total force (requires storage local to each
thread)

I Tabulate the overlaps in parallel, but sum the forces sequentially
(could work if few overlaps; tabulation needs shared data structure)



How to parallelize this code using OpenMP?

Iterations on i are not independent, since different iterations can write
to the same location in forces.

I Update forces in a critical section

I Use atomic operations to update components of the force array

I Rewrite the outer loop so that iterations are independent (only
update the forces for particle i , not j)

I Each thread sums the forces locally, and then a sequential
reduction computes the total force (requires storage local to each
thread)

I Tabulate the overlaps in parallel, but sum the forces sequentially
(could work if few overlaps; tabulation needs shared data structure)



How to parallelize this code using OpenMP?

Iterations on i are not independent, since different iterations can write
to the same location in forces.

I Update forces in a critical section

I Use atomic operations to update components of the force array

I Rewrite the outer loop so that iterations are independent (only
update the forces for particle i , not j)

I Each thread sums the forces locally, and then a sequential
reduction computes the total force (requires storage local to each
thread)

I Tabulate the overlaps in parallel, but sum the forces sequentially
(could work if few overlaps; tabulation needs shared data structure)



Exercise 4

I Update your code from Exercise 2 to include repulsive interactions
between particles when they overlap. Parallelize using OpenMP
and run on jinx or deepthought.

I Compare the performance between using critical sections, atomic
operations, and independent iterations (which do twice the number
of distance computations).

I Submit your results in the ex04 directory (do not forget to update
your fork), including

I ex04.c or ex04.cpp source file and makefile
I ex04.pdf report with performance comparison

I Due 10 pm, Monday, Sept. 5


