
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 5

Brownian dynamics with periodic boundary conditions

Simulate an infinite system of particles using a periodic simulation box
with a fixed number of particles

Brownian dynamics with periodic boundary conditions

I When a particle exits the box, an image of the particle enters the
box

I We only need to keep track of one of these two particles

I keep track of the original particle that left the box
I since we need to measure how far it has moved
I do not need to “wrap” that particle’s positions back into the box

I However, when computing distances to see if particles overlap, we
need to consider all possible images of all particles

I when computing the distance between a particle and another
particle and all its images, convert that distance to the smallest
distance

I this is handled by:

dx = remainder(ri[0]-rj[0], L);
dy = remainder(ri[1]-rj[1], L);
dz = remainder(ri[2]-rj[2], L);

Mean squared displacement (MSD)

In 3D, the mean square displacement of particles is

〈r2〉= 6Dt

where t is the time interval during which particles are moving, and D is
the diffusion constant.

“Displacement” is used to mean the magnitude of the displacement; not
the cumulative distance moved (which is linear in t)

Therefore the diffusion constant can be computed as follows:

I Consider the graph of the mean of the square of the displacement
for each t (note, this is different from the square root of the average
displacement)

I This graph is expected to be linear in t (except for very small t in
some cases)

I The slope of this line divided by 6 is D

Simulation box width L

I How many particles? What size box?

I Suppose that particles have radius a = 1
I Suppose that we want a volume fraction of particles of φ = 0.1

(when particles are not overlapping) for n particles

I Solve for L in 4
3 πa3n = φL3

I Different volume fractions will lead to different diffusion constants D

Simulation box width L

I How many particles? What size box?

I Suppose that particles have radius a = 1
I Suppose that we want a volume fraction of particles of φ = 0.1

(when particles are not overlapping) for n particles

I Solve for L in 4
3 πa3n = φL3

I Different volume fractions will lead to different diffusion constants D

Simulation box width L

I How many particles? What size box?

I Suppose that particles have radius a = 1
I Suppose that we want a volume fraction of particles of φ = 0.1

(when particles are not overlapping) for n particles

I Solve for L in 4
3 πa3n = φL3

I Different volume fractions will lead to different diffusion constants D

Notes on assignment submissions

I No need to make pull requests

I Executables and objects are normally not checked into the
repository

I Do not use tabs in your source files

I My editor generally doesn’t map tabs to the same number of
spaces as your editor; therefore we don’t see your source the way
you intended

I Use your editor settings to change tabs to spaces

HPC Algorithms

I In HPC research, use of good algorithms is just as important as
good parallel implementations

I Usually, the best sequential algorithms are not the best parallel
algorithms, and the best parallel algorithms can be very
complicated

Computing steric repulsions

I For n particles, there are n(n+1)/2 possible interactions

I How to reduce the complexity to O(n) ?

Cell lists

I Divide space into a set of cells, with cell width ≥ rc , where rc = 2
in our case

I Particle i interacts only with particles in its own cell and its
neighboring cells

I One sweep through all the particles is used to construct the cell list
data structure (list of particles in each cell)

I When particles move, the cell list data structure must be
reconstructed

rc

Interesting optimization for cell lists

I Make the cells slightly larger, so that they can be reused for many
time steps (or use cells that are one layer beyond the immediate
neighbor cells)

I How can we optimize to exploit Newton’s third law, i.e., don’t
compute equal and opposite interactions?

I Traversing all the particles to construct the cell lists can be
expensive

Interesting optimization for cell lists

I Make the cells slightly larger, so that they can be reused for many
time steps (or use cells that are one layer beyond the immediate
neighbor cells)

I How can we optimize to exploit Newton’s third law, i.e., don’t
compute equal and opposite interactions?

I Traversing all the particles to construct the cell lists can be
expensive

Interesting optimization for cell lists

I Make the cells slightly larger, so that they can be reused for many
time steps (or use cells that are one layer beyond the immediate
neighbor cells)

I How can we optimize to exploit Newton’s third law, i.e., don’t
compute equal and opposite interactions?

I Traversing all the particles to construct the cell lists can be
expensive

Neighbor list method

I Exploits the idea that particles are moving slowly
I Each particle maintains a list of neighbors within a cutoff of rv > rc

I The neighbor list can be reused for a given number of time steps,
in which it could be guaranteed that an particle beyond rv does not
move closer than rc

I How to exploit Newton’s third law?

rvrc

How do we construct the neighbor list?

I Naive: O(n2)

I Better: use cell lists whenever the neighbor lists must be
reconstructed

I this is the strategy of many particle codes

Sequential interactions.c code for cell lists

Code will be in the repo ex05 directory.

Exercise 5

I Integrate the (sequential) interactions function into your
Brownian dynamics code; you are free to make any modifications

I Compare the performance between your Exercise 4 code and your
code using the interactions function

I Submit your results in the ex05 directory, including

I ex05.c or ex05.cpp source file and makefile
I ex05.pdf report with performance comparison

I Due 10 pm, Wed., Sept. 7

I We are working toward a parallel version of the interactions
function for mini-project 1.

