
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 8



Processor-level SIMD

I SIMD instructions can perform an operation on multiple words
simultaneously

I This is a form of data parallelism

I SIMD: single-instruction, multiple data

Recent SIMD versions

Nehalem SSE 4.2 (128 bit)
Sandy Bridge AVX (256 bit)
Haswell AVX2 (256 bit with FMA)
MIC AVX-512 (512 bit)

Versions are not backward compatible, i.e., cannot use AVX instructions
on Nehalem.



Example

Loops such as the following could exploit SIMD

for (i=0; i<n; i++)
a[i] = a[i] + b[i];

With AVX, 8 floats or 4 doubles are computed at the same time.

Historical note: CRAY computers had vector units (often 64 words long)
that operated in pipelined fashion.

I processor-level SIMD instructions are often called short vector
instructions, and using these instructions is called vectorization

I exploiting SIMD is essential in HPC codes, especially on
processors with wide SIMD units, e.g., Intel Xeon Phi



Many ways to exploit SIMD

I use the auto-vectorizer in the compiler (i.e., do nothing except help
make sure that the coding style will not prevent vectorization)

I use SIMD intrinsic functions in your code (when the auto-vectorizer
does not seem to do what you want)



Example use of intrinsic functions (AVX)

__mm256 qa, qb;

for (i=0; i<n/4; i++) {
qa = _mm256_load_ps(a);
qb = _mm256_load_ps(b);
qa = _mm256_add_ps(qa, qb);
_mm256_store_ps(a, qa);
a += 4;
b += 4;

}



Data alignment

I Many things can prevent automatic vectorization or produce
suboptimal vectorized code

I In the previous example, the loads into the vector qa must come
from an address a that is 256-bit (32 bytes) aligned

for (i=0; i<n; i++)
a[i] = a[i] + b[i];

I If a and/or b can be unaligned, then the compiler will not vectorize
the code or will generate extra code at the beginning and/or end of
the loop to handle the misaligned elements.

I Need to allocate memory that is aligned
I Need to tell the compiler that the memory is aligned



Allocating aligned memory

I In these examples, assume AVX-512, or 64-byte alignment needed

#include <stdlib.h>
...
buffer = _mm_malloc(num_bytes, 64);
...
_mm_free(buffer);

I Other functions for allocating aligned memory also available

#include <stdlib.h>
...
ret = posix_memalign(&buffer, 64, num_bytes);
buffer = aligned_alloc(64, num_bytes); // C11
...
free(buffer);



Compiler hints

I Aligned memory on the stack

__declspec(align(64)) double a[4000];

I Telling the compiler that memory is aligned

__assume_aligned(ptr, 64);



Auto vectorization

I Tell the compiler what architecture you are using. Examples:

-mmic (Intel)
-msse4.2 (Gnu)



Auto vectorization

I Vectorization is enabled with -O1 and above (otherwise vector
instructions not used?)

I Default is -O2 which is the same as -O or not specifying the
optimization level flag



Disabling vectorization

I -no-vec disables auto-vectorization
I -no-simd disables vectorization of loops with Intel SIMD pragmas

(see also -qno-openmp-simd)



Vectorization reports

The compiler can tell you how well your code was vectorized. Compile
with

-qopt-report=1 -qopt-report-phase=vec

The compiler will output an *.optrpt file.



Will these loops vectorize?

for (i=0; i<n; i+=2)
b[i] += a[i]*x[i];

for (i=0; i<n; i++)
b[i] += a[i]*x[index[i]];



Will these loops vectorize?

for (i=0; i<n; i+=2)
b[i] += a[i]*x[i];

for (i=0; i<n; i++)
b[i] += a[i]*x[index[i]];



Obstacles to vectorization

I non-contiguous memory access



Will these loops vectorize?

for (i=1; i<=n; i++)
a[i] = a[i-1] + 1.;

a[1] = a[0] + 1;
a[2] = a[1] + 1;
a[3] = a[2] + 1;
a[4] = a[3] + 1;

for (i=1; i<=n; i++)
a[i-1] = a[i] + 1.;

a[0] = a[1] + 1;
a[1] = a[2] + 1;
a[2] = a[3] + 1;
a[3] = a[4] + 1;

No and Yes.



Will these loops vectorize?

for (i=1; i<=n; i++)
a[i] = a[i-1] + 1.;

a[1] = a[0] + 1;
a[2] = a[1] + 1;
a[3] = a[2] + 1;
a[4] = a[3] + 1;

for (i=1; i<=n; i++)
a[i-1] = a[i] + 1.;

a[0] = a[1] + 1;
a[1] = a[2] + 1;
a[2] = a[3] + 1;
a[3] = a[4] + 1;

No and Yes.



Will these loops vectorize?

for (i=1; i<=n; i++)
a[i] = a[i-1] + 1.;

a[1] = a[0] + 1;
a[2] = a[1] + 1;
a[3] = a[2] + 1;
a[4] = a[3] + 1;

for (i=1; i<=n; i++)
a[i-1] = a[i] + 1.;

a[0] = a[1] + 1;
a[1] = a[2] + 1;
a[2] = a[3] + 1;
a[3] = a[4] + 1;

No and Yes.



Obstacles to vectorization

I non-contiguous memory access

I data dependencies



Will this loop vectorize?

double sum = 0.;
for (j=0; j<n; j++)

sum += a[j]*b[j];

Yes, the compiler recognizes this as a reduction.



Will this loop vectorize?

double sum = 0.;
for (j=0; j<n; j++)

sum += a[j]*b[j];

Yes, the compiler recognizes this as a reduction.



Will this loop vectorize?

void add(int n, double *a, double *b, double *c)
{
for (int i=0; i<n; i++)
c[i] = a[i] * b[i];

}

No, array c might overlap with array a or b.

However, the compiler might generate code that tests for overlap and
use different code depending on whether or not there is overlap.



Will this loop vectorize?

void add(int n, double *a, double *b, double *c)
{
for (int i=0; i<n; i++)
c[i] = a[i] * b[i];

}

No, array c might overlap with array a or b.

However, the compiler might generate code that tests for overlap and
use different code depending on whether or not there is overlap.



Use the restrict keyword

Tell the compiler that a pointer is the only way to access an array

void add(int n, double * restrict a,
double * restrict b, double * restrict c)

{
for (int i=0; i<n; i++)
c[i] = a[i] * b[i];

}

I restrict is not available on all compilers

I on Intel compilers, use -restrict on the compile line



Use #pragma ivdep

Tell the compiler to ignore any potential data dependencies

void add(int n, double *a, double *b, double *c)
{

#pragma ivdep
for (int i=0; i<n; i++)
c[i] = a[i] * b[i];

}

Another example (restrict cannot help):

void ignore_vec_dep(int *a, int k, int c, int m)
{

#pragma ivdep
for (int i=0; i<m; i++)
a[i] = a[i + k] * c; // cannot vectorize if k<0

}



ivdep and other pragmas

I #pragma ivdep - ignore potential data dependencies in loop
I #pragma novector - do not vectorize loop
I #pragma loop count(n) - typical trip count tells compiler

whether vectorization is worthwhile
I #pragma vector always - always vectorize
I #pragma vector align - asserts data in loop is aligned
I #pragma vector nontemporal - hints to compiler that data will

not be reused, and therefore to use streaming stores that bypass
cache



Which is better?

struct Particle {
double pos[3];
double radius;
int type;

};
// array of structures
struct Particle allparticles[10000];

struct AllParticles {
double pos[3][10000];
double radius[10000];
int type[10000];

};
// structure of arrays
struct AllParticles allparticles;



Array of structures (AOS) vs. Structure of arrays (SOA)

I Data layout may affect vectorization e.g., how will positions be
updated in AOS case?

I SOA is often better for vectorization

I AOS may also be bad for cache line alignment (but padding can be
used here)

I If particles are accessed in a “random” order and particle radius
and type are accessed with positions, then SOA may underutilize
cache lines



Can this pseudocode be vectorized?

for i = 1 to npos
for j = 1 to npos
if (i == j)
continue

vec = p(i)-p(j)
dist = norm(vec);
force(i) += k*vec/(dist^2);

end
end



Trick to remove the if test

for i = 1 to npos
for j = 1 to npos

vec = p(i)-p(j)
dist = norm(vec) + eps;
force(i) += k*vec/(dist^2);

end
end



Next time: #pragma omp simd


