
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 10



Thread affinity

Don’t forget about:

KMP_AFFINITY=verbose,none
KMP_AFFINITY=verbose,compact
KMP_AFFINITY=verbose,granularity=fine,compact



Intel Xeon Phi



Intel Xeon Phi

Logically an UMA architecture.



OpenMP and non-loop-based programs

OpenMP is good at parallelizing loops.

What if we want to parallelize

I while loops where we don’t know the number of iterations in
advance

I traversing linked lists

I recursive functions

I batch of tasks, where performing a task can create new tasks



OpenMP task-based parallelism

I OpenMP has the facility to define a pool of tasks

I These tasks are executed by threads when threads are free

I Tasks can be added to the pool dynamically



First example

#pragma omp parallel
#pragma omp single
{
printf("Start creating tasks by thread %d\n",omp_get_thread_num());

#pragma omp task
printf("1st task executed by thread %d\n",omp_get_thread_num());

#pragma omp task
printf("2nd task executed by thread %d\n",omp_get_thread_num());

#pragma omp task
printf("3rd task executed by thread %d\n",omp_get_thread_num());

printf("Done creating tasks\n");

// taskwait is needed if a barrier is desired
#pragma omp taskwait
printf("All tasks completed by now.\n");

}



omp task

I the task may be run by a thread immediately or added to pool of
tasks to be executed later (depends on runtime system)

I tasks are not consumed in any order

I when a task is created, it takes up resources including memory for
private variables

I some omp task clauses

I if
I untied
I default
I mergeable
I private
I firstprivate
I shared



private and firstprivate in tasks

I if a variable is private in the enclosing context, then the default is
that it is firstprivate in the task

I if task clause is private, then initial copy is not performed



Second example – there is a bug in this code

int taskid;

#pragma omp parallel
#pragma omp single
{
for (int i=0; i<10; i++) {
taskid = i+1;

#pragma omp task
printf("thread %2d: task %2d\n",
omp_get_thread_num(), taskid);

}

printf("Done creating tasks\n");
}

// implied barrier
int threadid = omp_get_thread_num();
if (threadid == 0) printf("All tasks completed by now.\n");



Bug fix: taskid needs to be (first)private within the task

#pragma omp parallel
#pragma omp single
{
for (int i=0; i<10; i++) {
int taskid = i+1; // taskid is private

#pragma omp task // for each task, taskid is threadprivate
printf("thread %2d: task %2d\n",
omp_get_thread_num(), taskid);

}

printf("Done creating tasks\n");
}

// implied barrier
int threadid = omp_get_thread_num();
if (threadid == 0) printf("All tasks completed by now.\n");



Fibonnaci numbers (recursive algorithm)

// 1 1 2 3 5 8 13 ...

int fib(int n)
{

int x, y;
if (n < 2) return n;
x = fib(n-1);
y = fib(n-2);
return x+y;

}

void main()
{

int n = 20;
printf("fib(%d) = %d\n", n, fib(n));

}



Fibonnaci numbers with tasks

int fib(int n) {
int x, y;
if (n < 2) return n;

#pragma omp task shared(x)
x = fib(n-1);

#pragma omp task shared(y)
y = fib(n-2);

#pragma omp taskwait
return x+y;

}

void main() {
int n = 20;

#pragma omp parallel
#pragma omp single

printf("fib(%d) = %d\n", n, fib(n));
}

Note: without shared clause, x and y would be firstprivate in the tasks because x
and y are private in the enclosing context.



Cilk Plus features of Intel compilers

I Cilk Plus defines three keywords

I cilk_spawn
I cilk_sync
I cilk_for

I Philosophy is for the programmer to expose parallelism, and let the
runtime decide how to optimize thread scheduling, vectorization,
etc.

I Cilk Plus is arguably more task-based than OpenMP. Task-stealing,
which is transparent to the user, is used for balancing load.

I Cilk Plus also defines array notation (facilitates both multithreading
and vectorization) and reducers (parallel data types that help avoid
the use of locks)

I On Intel compilers, simply include Cilk Plus header files, generally
cilk/cilk.h for nicer keywords. No special compilation flags are
needed



Fibonnaci numbers with Cilk Plus

int fib(int n)
{

int x, y;
if (n < 2) return n;
x = cilk_spawn fib(n-1);
y = fib(n-2); // No cilk_spawn needed here.
cilk_sync; // Block here until all

// spawned functions are complete.
return x+y;
// Implied cilk_sync at end of any function
// that contains cilk_spawn.

}

void main()
{

int n = 20;
printf("fib(%d) = %d\n", n, fib(n));

}



What happens with cilk_spawn

I Only functions can be spawn, not sections of code. This makes it
easier (than OpenMP) to define the data environemnt (e.g., no
need for threadprivate). This also makes it unnecessary to use
pragmas to define sections of code.

I Each thread has its own work queue
I When a thread encounters cilk_spawn, then a task, which is the

continuation of the original task is added to the end of its own work
queue; the thread executes the code that is spawn

I When a thread has finished a task, it takes a new task from the
end of the queue (this is better for cache usage)

I When threads do not have work, they steal tasks from other
threads from the front of their queues

I In this sense, Cilk Plus does not force parallel execution, but
provides the opportunity for parallel execution

I Like OpenMP, removing the keywords should give a correct serial
program



cilk_for

int i;
cilk_for (i=0; i<10; i++)
{

int id = __cilkrts_get_worker_number();
printf("iteration %2d: worker %2d\n", i, id);

}

I Using the worker number is discouraged in Cilk Plus
I Programmer should not worry about how threads are scheduled

(trade-off between easier programming and performance)



But how is cilk_for parallelized?

I Divide and conquer

I The thread encountering does the following:

I makes a task that is the first half of the iterations; adds task to its
queue

I for the remaining iterations, repeat the above, by making a task that
is the first half of the remaining iterations, and adding this task to
the queue

I etc.

I Free threads will steal tasks from the front of another task’s queue

I How much to steal?

I stealing half of the total work is good for balancing load
I this means stealing one item (more efficient than stealing many

items)



Cilk Plus reducers

I To sum an array of numbers with multiple threads, locks or similar
mechanisms are needed

I Reducers in Cilk Plus are C++ classes that perform reduction
operations without the need for the programmer to use locks or
critical sections



reducer-opadd-demo.cpp from Cilk Plus Tutorial

// Sum the numbers 1-1000 in parallel,
// adding a pause to allow the continuation to be stolen
cilk::reducer< cilk::op_add<int> > parallel_sum(0);
cilk_for(int i = 0; i < 1000; i++)
{

if (0 == i % 10)
stall();

*parallel_sum += i;
}
printf("Parallel sum: %d\n", parallel_sum.get_value());

Reference: www.cilkplus.org



How is reduction implemented in Cilk Plus?

I Reduction is performed between two threads when they join.

I Thus the reduction is performed like a binary tree.



How is reduction implemented in Cilk Plus?

I Reduction is performed between two threads when they join.

I Thus the reduction is performed like a binary tree.



Cilk Plus array notation

Array notation: A[start:length:stride]
Array notation implies independent operations and vector code will be
generated

A[:] = 5; // set all elements of static array
A[7:3] = 4; // set elements 7, 8, 9
A[1:5:2] = 4; // set elements 1, 3, 5, 7, 9

A[:] = B[:] * C[:] + 5; // Cilk assumes no overlap
C[X][:] = A[:]; // X is an expression

C[:] = A[B[:]]; // gather
A[B[:]] = C[:]; // scatter

C[:][:] = 12; // two-dimensional arrays
func(A[:]); // pass elements one-by-one

__sec_reduce_add(A[:]) // returns scalar

Reference: www.cilkplus.org



Cilk Plus array notation

int a[array_size];
const char *results[array_size];

if (5 == a[:])
results[:] = "Matched";

else
results[:] = "Not Matched";

is equivalent to

int a[array_size];
const char *results[array_size];

for (int i = 0; i < array_size; i++)
{

if (5 == a[i])
results[i] = "Matched";

else
results[i] = "Not Matched";

}

Reference: www.cilkplus.org



Setting number of threads

I environment variable: CILK_NWORKERS

I at run time: __cilkrts_set_param("nworkers","N")



Administrative note

I Class on Tuesday, Sept. 27 is cancelled.


