
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 11



False sharing

I threads that share an array may use different parts of the array;
similarly, threads may use their own private variables

I logically, these memory locations are not shared

I however, if these memory locations used by different threads are
on the same cache line, then sharing does physically occur

I this is called false sharing and can hurt performance

I cache lines are 64 bytes on x86 processors (at all levels), and
cache lines are read/written from/to main memory as a unit



False sharing example: false_sharing.c

Generating a sequence of random numbers for each thread:

int *data = (int *) malloc(LEN*sizeof(int));
__declspec(align(64)) int seeds[16];

#pragma omp parallel num_threads(16)
{

int threadid = omp_get_thread_num();
#pragma omp for
for (i=0; i<LEN; i++)

data[i] = rand_r(&seeds[threadid]);
}

I The array seeds is on a single cache line. When one thread writes
to the array, the entire cache line is invalidated

I Note: this is a bad way to generate random numbers in parallel
(sequences may overlap)



False sharing example: false_sharing2.c

Generating a sequence of random numbers for each thread:

int *data = (int *) malloc(LEN*sizeof(int));
__declspec(align(64)) int seeds[16*16];

#pragma omp parallel num_threads(16)
{

int threadid = omp_get_thread_num();
#pragma omp for
for (i=0; i<LEN; i++)

data[i] = rand_r(&seeds[16*threadid]);
}



Timings

joker:~$ icc -qopenmp false_sharing.c
joker:~$ ./a.out
time: 8.207102

joker:~$ icc -qopenmp false_sharing2.c
joker:~$ ./a.out
time: 0.503792

16 times faster! Why do we get a factor of 16?
10 times faster if we use 10 threads.



Timings

joker:~$ icc -qopenmp false_sharing.c
joker:~$ ./a.out
time: 8.207102

joker:~$ icc -qopenmp false_sharing2.c
joker:~$ ./a.out
time: 0.503792

16 times faster! Why do we get a factor of 16?

10 times faster if we use 10 threads.



Timings

joker:~$ icc -qopenmp false_sharing.c
joker:~$ ./a.out
time: 8.207102

joker:~$ icc -qopenmp false_sharing2.c
joker:~$ ./a.out
time: 0.503792

16 times faster! Why do we get a factor of 16?
10 times faster if we use 10 threads.



Avoiding false sharing

Assure that threads write to different cache lines (but don’t need to
worry if only reading data)

I use padding of memory locations to cache line boundaries

I replicate data, e.g., by using private (but this can deplete cache
if many threads)



Brownian dynamics with hydrodynamic interactions

I Small particles in a fluid interact hydrodynamically

I Instead of Brownian forces on each particle that are independent,
the Brownian forces are correlated

I The correlation matrix for hydrodynamic interactions is called the
Rotne-Prager-Yamakawa (RPY) mobility matrix, M

I To generate a correlated Brownian displacement vector, compute
the Cholesky factorization M = LLT and then compute y = Lz,
where z is a vector with a standard normal distribution

I To simulate hydrodynamic interactions, use this correlated vector y
instead of the uncorrelated vector z



RPY mobility matrix

I For n particles, this is a 3n×3n matrix

I Example for 2 particles (assuming particles do not overlap, and
assuming non-periodic boundary conditions):

Mii = 1/6πηa · I

Mij =
1

8πη‖rij‖

[(
I +

rij rT
ij

‖rij‖2

)
+

2a2

‖rij‖2

(
1
3

I−
rij rT

ij

‖rij‖2

)]



RPY mobility matrix with periodic boundary conditions

Infinite sum:

Mij = ∑
j ′

1
8πη‖rij ′‖

[(
I +

rij ′ rT
ij ′

‖rij ′‖2

)
+

2a2

‖rij ′‖2

(
1
3

I−
rij ′ rT

ij ′

‖rij ′‖2

)]
where j ′ is an image of j .



Ewald summation for the RPY matrix

Mij = Mij ·erfc(ξrij)+Mij ·erf(ξrij)

Mij = Mrealij +Mrecipij

Mrealij =
∞

∑
m

M1(rij +mL)≈ ∑
rij<rcut

M1(rij)

Mrecipij =
1
L3

∞

∑
k 6=0

exp(−ik · rij)M2(k)≈
1
L3

k∞

∑
k 6=0

exp(−ik · rij)M2(k)

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

erf(r)

erfc(r)



Code

The code rpy_ewald_polyd.c computes the (scaled) RPY mobility
matrix for a given set of particle positions and a periodic box width L.

A matlab version of the code is also provided.



Mini-Project 2

I Parallelize, by using multithreading and vectorization, the
computation of M, the Ewald-summed mobility matrix.

I You may want to consider

I false sharing
I SIMD-enabled functions



Mini-Project 2: Grading

I 0-5 points for correctness of computing M, the Ewald-summed
mobility matrix, using multithreading and vectorization

I 0-4 points for overall speed on one Intel Xeon Phi coprocessor
I provide a makefile for compiling vectorized and unvectorized

(vectorization turned off, see below) versions of your code, and for
running these versions on the coprocessors

I 0-3 points for vectorization
I how fast is your code compared to your code when vectorization is

turned off with -qno-openmp-simd -no-vec -no-simd

I 0-3 points for report (‘proj2.pdf’)
I graph the time (on a log scale) for computing M vs. number of

threads for the vectorized case and the case with vectorization
turned off. Use the the input file lac1_novl2.xyz and parameters
xi= 1.5π/L, nr=2 and nk=3.

I graph the speedup for the vectorized and non-vectorized cases
I describe your implementation choices and explain why they are

expected to yield higher performance than other choices



Mini-Project 2: things to consider

I Code computes one 3x3 block at a time. For better vector
performance could try to compute all blocks at the same time, i.e.,
invert the loops and do inner loops first (maybe use elemental
functions?)

I Possibly will observe better vectorization with larger matrices
I C code only computes a triangular part, need to compute the

entire matrix
I rewrite code to compute all entries
I utilize symmetry to compute the other triangular part

I Matrix lda being a multiple of 64 bytes could improve efficiency
I do not share cache lines between threads
I rows are aligned on 64 byte boundaries

I In real applications, matrix is computed repeatedly for different
particle positions

I could separate out the preprocessing step (computing coefficients
for reciprocal space calculation)

I time 100 iterations (or whatever the test harness does) of matrix
construction (rather than 1)



Mini-Project 2

Due Wed., Oct. 12, at 10 pm


