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False sharing

I threads that share an array may use different parts of the array;
similarly, threads may use their own private variables

I logically, these memory locations are not shared

I however, if these memory locations used by different threads are
on the same cache line, then sharing does physically occur

I this is called false sharing and can hurt performance

I cache lines are 64 bytes on x86 processors (at all levels), and
cache lines are read/written from/to main memory as a unit



False sharing example: false_sharing.c

Generating a sequence of random numbers for each thread:

int *data = (int *) malloc(LEN*sizeof(int));
__declspec(align(64)) int seeds[16];

#pragma omp parallel num_threads(16)
{

int threadid = omp_get_thread_num();
#pragma omp for
for (i=0; i<LEN; i++)

data[i] = rand_r(&seeds[threadid]);
}

I The array seeds is on a single cache line. When one thread writes
to the array, the entire cache line is invalidated

I Note: this is a bad way to generate random numbers in parallel
(sequences may overlap)



False sharing example: false_sharing2.c

Generating a sequence of random numbers for each thread:

int *data = (int *) malloc(LEN*sizeof(int));
__declspec(align(64)) int seeds[16*16];

#pragma omp parallel num_threads(16)
{

int threadid = omp_get_thread_num();
#pragma omp for
for (i=0; i<LEN; i++)

data[i] = rand_r(&seeds[16*threadid]);
}



Timings

joker:~$ icc -qopenmp false_sharing.c
joker:~$ ./a.out
time: 8.207102

joker:~$ icc -qopenmp false_sharing2.c
joker:~$ ./a.out
time: 0.503792

16 times faster! Why do we get a factor of 16?
10 times faster if we use 10 threads.
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Avoiding false sharing

Assure that threads write to different cache lines (but don’t need to
worry if only reading data)

I use padding of memory locations to cache line boundaries

I replicate data, e.g., by using private (but this can deplete cache
if many threads)



Brownian dynamics with hydrodynamic interactions

I Small particles in a fluid interact hydrodynamically

I Instead of Brownian forces on each particle that are independent,
the Brownian forces are correlated

I The correlation matrix for hydrodynamic interactions is called the
Rotne-Prager-Yamakawa (RPY) mobility matrix, M

I To generate a correlated Brownian displacement vector, compute
the Cholesky factorization M = LLT and then compute y = Lz,
where z is a vector with a standard normal distribution

I To simulate hydrodynamic interactions, use this correlated vector y
instead of the uncorrelated vector z



RPY mobility matrix

I For n particles, this is a 3n×3n matrix

I Example for 2 particles (assuming particles do not overlap, and
assuming non-periodic boundary conditions):
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RPY mobility matrix with periodic boundary conditions

Infinite sum:
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where j ′ is an image of j .



Ewald summation for the RPY matrix

Mij = Mij ·erfc(ξrij)+Mij ·erf(ξrij)

Mij = Mrealij +Mrecipij
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Code

The code rpy_ewald_polyd.c computes the (scaled) RPY mobility
matrix for a given set of particle positions and a periodic box width L.

A matlab version of the code is also provided.



Mini-Project 2

I Parallelize, by using multithreading and vectorization, the
computation of M, the Ewald-summed mobility matrix.

I You may want to consider

I false sharing
I SIMD-enabled functions



Mini-Project 2: Grading

I 0-5 points for correctness of computing M, the Ewald-summed
mobility matrix, using multithreading and vectorization

I 0-4 points for overall speed on one Intel Xeon Phi coprocessor
I provide a makefile for compiling vectorized and unvectorized

(vectorization turned off, see below) versions of your code, and for
running these versions on the coprocessors

I 0-3 points for vectorization
I how fast is your code compared to your code when vectorization is

turned off with -qno-openmp-simd -no-vec -no-simd

I 0-3 points for report (‘proj2.pdf’)
I graph the time (on a log scale) for computing M vs. number of

threads for the vectorized case and the case with vectorization
turned off. Use the the input file lac1_novl2.xyz and parameters
xi= 1.5π/L, nr=2 and nk=3.

I graph the speedup for the vectorized and non-vectorized cases
I describe your implementation choices and explain why they are

expected to yield higher performance than other choices



Mini-Project 2: things to consider

I Code computes one 3x3 block at a time. For better vector
performance could try to compute all blocks at the same time, i.e.,
invert the loops and do inner loops first (maybe use elemental
functions?)

I Possibly will observe better vectorization with larger matrices
I C code only computes a triangular part, need to compute the

entire matrix
I rewrite code to compute all entries
I utilize symmetry to compute the other triangular part

I Matrix lda being a multiple of 64 bytes could improve efficiency
I do not share cache lines between threads
I rows are aligned on 64 byte boundaries

I In real applications, matrix is computed repeatedly for different
particle positions

I could separate out the preprocessing step (computing coefficients
for reciprocal space calculation)

I time 100 iterations (or whatever the test harness does) of matrix
construction (rather than 1)



Mini-Project 2
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