
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 12



Intel Math Kernel Library (MKL)

I Many functions will create their own team of threads

I You usually do not want to call these multithreaded functions from
a parallel region

I If calling from a parallel region using all the cores, you usually want
to set the number of threads to 1 (library function operates
sequentially)

I All functions are thread-safe

I environment variable MKL_NUM_THREADS to set maximum number
of threads used by MKL



LAPACK in MKL

I LAPACK is a FORTRAN multithreaded linear algebra library

I LAPACKE is the C interface to LAPACK

I Function for computing a Cholesky factorization (of a symmetric
positive definite matrix)

#include <mkl.h>

lapack_int LAPACKE_dpotrf(int matrix_layout,
char uplo,
lapack_int n,
double *a,
lapack_int lda);



LAPACKE_dpotrf

matrix_layout = LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR
uplo = U or L (use only a triangular portion of a)
n = number of rows and columns
a = array of size lda*n containing the matrix
lda = leading dimension of a

I For efficiency, you may want have rows/cols aligned on 64 byte
boundaries (use lda for this)

I On output, the array a is overwritten by the Cholesky factor. Which
factor is computed depends on uplo.

I Return value 0 means success.

I Positive return value means a negative pivot was encountered.

I Negative return value means a parameter has an illegal value.



C interface to BLAS

Example: compute C = alpha*op(A)*op(B) + beta*C

#include <mkl.h>

void cblas_dgemm(const CBLAS_LAYOUT Layout, // CblasRowMajor or CblasColMajor
const CBLAS_TRANSPOSE transa, // CblasNoTrans or CblasTrans
const CBLAS_TRANSPOSE transb,
const MKL_INT m, // C is m by n
const MKL_INT n,
const MKL_INT k, // inner dimension
const double alpha,
const double *a,
const MKL_INT lda,
const double *b,
const MKL_INT ldb,
const double beta,
double *c,
const MKL_INT ldc);



Read time stamp counter (Intel compilers)

I High resolution timing could be performed using the rdtsc
instruction

unsigned long int start, stop;
start = __rdtsc();
...
stop = __rdtsc();

I To measure how many ticks there are in a second, you could time
sleep(1);

I It is also possible to access the rdtsc instruction on Gnu
compilers by inserting assembly instructions



Example

#include <stdio.h>
#include <unistd.h> // sleep

void main()
{

unsigned long int start, stop;

start = __rdtsc();
sleep(1);
stop = __rdtsc();

printf("%ld\n", stop-start);
}



Killing your jobs

I Log onto the mic coprocessors and kill any of your runaway jobs.

I On joker, your uid on the host and on the coprocessors may be
different, so you may have permissions problems. Try:

ssh mic0 pkill bd_mic

I To check your uid, run id on the host and on the coprocessor.


