
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 15



Numerically solve a 2D boundary value problem

I Example: temperature
distribution in a square room,
given heat sources and sinks
inside the room;
many more complicated and
realistic examples with similar
communication and
computation patterns

I Solve for the unknown
(e.g., temperature) at each
grid point

I Values on the boundary
(dotted lines) are known.
We will use zero on the
boundary for simplicity.



Numerically solve a 2D boundary value problem

I A discrete formula relates the
value at a grid point with the
values at its four neighbors

I For temperature, the formula is

4uC = uN +uW +uS +uE + fC

where fC is the value of the
source or sink at point C, and
the other subscripts are the
north, west, south, and east
points.



Non-parallel solution method

Solve the matrix equation
Au = f



Parallel Solution

I To solve the problem in
parallel, partition the
unknowns into subdomains,
one for each process



Block Jacobi method

I Each subdomain is a
boundary value problem

I Note that the boundary values
are generally the unknowns
stored in other processes

I Boundary for top-left
subdomain is shown



Block Jacobi method

In a distributed computation, each process performs:

For s = 0, 1, 2, ... until convergence
Send boundary values needed by other processes
Receive boundary values needed by this process
Solve local boundary value problem
Compute the residual norm and stop if converged

Endfor

Important: no processor stores the entire global problem.
This allows very large problems to be solved by distributing it across
many compute nodes.



Local boundary value problem

This is a sparse linear matrix equation to be solved

Alocalulocal = flocal

where the number of equations is equal to the number of local grid
points (or unknowns), assuming the flocal has been modified to
incorporate the boundary values from other processors

Need to assemble the sparse matrix, and solve the equations, e.g.,
using MKL. (Hint: use CSR format, to be described in the next lecture.)



Nonzero pattern of Alocal

25×25 sparse matrix

0 5 10 15 20 25

0

5

10

15

20

25



Vector flocal

The vector flocal is constructed from the local part of the global f , but
must also be modified depending on the boundary values

Suppose we have the equation

−uN −uW +4uc −uS −uE = fC

but that uE is on the boundary and has value α.
Then the equation is modified as

−uN −uW +4uc −uS = fC +α

i.e., the boundary value is added to the appropriate component of flocal



Solving the local equations Alocalulocal = flocal

I For mini-project 3, simplest approach is to use a “direct” method
implemented in MKL

I MKL provides the PARDISO method. It can be accessed through
its native interface or the DSS interface

I Example programs

I dss_unsym_c.c
I dss_sym_c.c
I pardiso_unsym_c.c
I pardiso_sym_c.c

I Note, our matrices are symmetric and positive definite, but you can
also use the unsymmetric interface functions if you wish



Jacobi-Schwarz method (faster convergence)

I Partition the unknowns as
before



Jacobi-Schwarz method (faster convergence)

Top left subdomain is grown by 1
grid spacing in each direction

I Partition the unknowns as
before

I Grow the subdomains (grow
by 1 or more in each direction
except at the real boundaries)



Jacobi-Schwarz method (faster convergence)

All subdomains are grown by 1 grid
spacing

I Partition the unknowns as
before

I Grow the subdomains (grow
by 1 or more in each direction
except at the real boundaries)

I Now the subdomains overlap



Jacobi-Schwarz method (faster convergence)

Boundary for top-left subdomain is
shown

I Partition the unknowns as
before

I Grow the subdomains (grow
by 1 or more in each direction
except at the real boundaries)

I Now the subdomains overlap

I Solve the boundary value
problem on each subdomain



Jacobi-Schwarz method (faster convergence)

Boundary for top-left subdomain is
shown

I Note that some points (which
will be used as boundary
points) are defined by more
than one subdomain.
What value should be
used?

I Could use an average value

I Could use the value defined by
the “owner” subdomain, i.e.,
original partitioning before
growing subdomains (better
choice)



Jacobi-Schwarz method (faster convergence)

Each process performs:

For s = 0, 1, 2, ... until convergence
Send boundary values needed by other processes
Receive boundary values needed by this process
Solve local boundary value problem
Only store the part of the solution corresponding to
the original subdomain (before growing)

Compute the residual norm and stop if converged
Endfor

Again, no process stores the global problem



Matlab examples

I jacobi_schwarz.m



Mini-Project 3

I Write a MPI program for solving a 2D Poisson boundary value
problem using the Jacobi-Schwarz method

I Use a single thread per MPI process (i.e., no multithreading,
including in MKL function calls)

I Input f is zero, i.e., solution is zero

I Initial approximation is random, distributed between -0.5 and 0.5.



Stopping criterion

I For mini-project 3, the solution is the zero vector

I After each iteration, compute the 2-norm of the error, and stop if
this quantity is small enough, i.e.,(

∑e2
i

)1/2
< tolerance

I Hint: use MPI_Allreduce to sum a vector across all MPI
processes and put the result on all processes

I Another hint, MPI_Wtime can be used to measure wall-clock time



Mini-Project 3: Grading

I 0-7 points: correctness and programming style
I must use scalable data structures (no data structures with size

proportional to the global problem size)

I 0-2 points: execution time
I 0-2 points for error norm graphs: Plot the error norm (log scale)

vs. iteration count (for 1 to 100 iterations) for:
I 10 by 6 processor mesh, and 100 by 100 local grid, grow=0
I 10 by 6 processor mesh, and 100 by 100 local grid, grow=1
I 10 by 6 processor mesh, and 100 by 100 local grid, grow=10

I 0-2 points: table of time per iteration and number of iterations to
reduce the error norm to less than 10−3:

I 1 by 1 processor mesh, and 700 by 700 local grid (no grow)
I 2 by 2 processor mesh, and 350 by 350 local grid, grow = 1
I 4 by 4 processor mesh, and 175 by 175 local grid, grow = 1
I 7 by 7 processor mesh, and 100 by 100 local grid, grow = 1

I 0-2 points: speedup graph (relative to 1 process) for above 4 cases



Mini-Project 3: Due date

Sunday, Oct. 30, at 10 p.m.


