Numerically solve a 2D boundary value problem

Example: temperature distribution in a square room, given heat sources and sinks inside the room; many more complicated and realistic examples with similar communication and computation patterns.

- Solve for the unknown (e.g., temperature) at each grid point.
- Values on the boundary (dotted lines) are known. We will use zero on the boundary for simplicity.
Numerically solve a 2D boundary value problem

A discrete formula relates the value at a grid point with the values at its four neighbors.

For temperature, the formula is

$$4u_C = u_N + u_W + u_S + u_E + f_C$$

where f_C is the value of the source or sink at point C, and the other subscripts are the north, west, south, and east points.
Solve the matrix equation

\[Au = f \]
To solve the problem in parallel, partition the unknowns into subdomains, one for each process.
Each subdomain is a boundary value problem

Note that the boundary values are generally the unknowns stored in other processes

Boundary for top-left subdomain is shown
In a distributed computation, each process performs:

\[
\text{For } s = 0, 1, 2, \ldots \text{ until convergence}
\]
- Send boundary values needed by other processes
- Receive boundary values needed by this process
- Solve local boundary value problem
- Compute the residual norm and \textbf{stop if} converged

Endfor

Important: no processor stores the entire global problem. This allows very large problems to be solved by distributing it across many compute nodes.
Local boundary value problem

This is a sparse linear matrix equation to be solved

\[A_{local} u_{local} = f_{local} \]

where the number of equations is equal to the number of local grid points (or unknowns), assuming the \(f_{local} \) has been modified to incorporate the boundary values from other processors.

Need to assemble the sparse matrix, and solve the equations, e.g., using MKL. (Hint: use CSR format, to be described in the next lecture.)
Nonzero pattern of A_{local}

25 × 25 sparse matrix
Vector f_{local}

The vector f_{local} is constructed from the local part of the global f, but must also be modified depending on the boundary values.

Suppose we have the equation

$$-u_N - u_W + 4u_c - u_S - u_E = f_C$$

but that u_E is on the boundary and has value α. Then the equation is modified as

$$-u_N - u_W + 4u_c - u_S = f_C + \alpha$$

i.e., the boundary value is added to the appropriate component of f_{local}.
Solving the local equations $A_{local} u_{local} = f_{local}$

- For mini-project 3, simplest approach is to use a “direct” method implemented in MKL.
- MKL provides the *PARDISO* method. It can be accessed through its native interface or the DSS interface.
- Example programs
 - `dss_unsym_c.c`
 - `dss_sym_c.c`
 - `pardiso_unsym_c.c`
 - `pardiso_sym_c.c`
- Note, our matrices are symmetric and positive definite, but you can also use the unsymmetric interface functions if you wish.
Jacobi-Schwarz method (faster convergence)

- Partition the unknowns as before
Jacobi-Schwarz method (faster convergence)

Partition the unknowns as before

Grow the subdomains (grow by 1 or more in each direction except at the real boundaries)

Top left subdomain is grown by 1 grid spacing in each direction
Jacobi-Schwarz method (faster convergence)

- Partition the unknowns as before
- Grow the subdomains (grow by 1 or more in each direction except at the real boundaries)
- Now the subdomains overlap

All subdomains are grown by 1 grid spacing
Jacobi-Schwarz method (faster convergence)

- Partition the unknowns as before
- Grow the subdomains (grow by 1 or more in each direction except at the real boundaries)
- Now the subdomains overlap
- Solve the boundary value problem on each subdomain

Boundary for top-left subdomain is shown
Jacobi-Schwarz method (faster convergence)

Boundary for top-left subdomain is shown

- Note that some points (which will be used as boundary points) are defined by more than one subdomain. What value should be used?
 - Could use an average value
 - Could use the value defined by the "owner" subdomain, i.e., original partitioning before growing subdomains (better choice)
Jacobi-Schwarz method (faster convergence)

Each process performs:

For \(s = 0, 1, 2, \ldots \) until convergence
- Send boundary values needed by other processes
- Receive boundary values needed by this process
- Solve local boundary value problem
 Only store the part of the solution corresponding to the original subdomain (before growing)
- Compute the residual norm and stop if converged

Endfor

Again, no process stores the global problem
Matlab examples

- jacobi_schwarz.m
Mini-Project 3

- Write a MPI program for solving a 2D Poisson boundary value problem using the Jacobi-Schwarz method
- Use a single thread per MPI process (i.e., no multithreading, including in MKL function calls)
- Input f is zero, i.e., solution is zero
- Initial approximation is random, distributed between -0.5 and 0.5.
For mini-project 3, the solution is the zero vector.

After each iteration, compute the 2-norm of the error, and stop if this quantity is small enough, i.e.,

\[(\sum e_i^2)^{1/2} < \text{tolerance}\]

Hint: use `MPI_Allreduce` to sum a vector across all MPI processes and put the result on all processes.

Another hint: `MPI_Wtime` can be used to measure wall-clock time.
Mini-Project 3: Grading

- 0-7 points: correctness and programming style
 - must use scalable data structures (no data structures with size proportional to the global problem size)

- 0-2 points: execution time

- 0-2 points for error norm graphs: Plot the error norm (log scale) vs. iteration count (for 1 to 100 iterations) for:
 - 10 by 6 processor mesh, and 100 by 100 local grid, grow=0
 - 10 by 6 processor mesh, and 100 by 100 local grid, grow=1
 - 10 by 6 processor mesh, and 100 by 100 local grid, grow=10

- 0-2 points: table of time per iteration and number of iterations to reduce the error norm to less than 10^{-3}:
 - 1 by 1 processor mesh, and 700 by 700 local grid (no grow)
 - 2 by 2 processor mesh, and 350 by 350 local grid, grow = 1
 - 4 by 4 processor mesh, and 175 by 175 local grid, grow = 1
 - 7 by 7 processor mesh, and 100 by 100 local grid, grow = 1

- 0-2 points: speedup graph (relative to 1 process) for above 4 cases
Mini-Project 3: Due date

Sunday, Oct. 30, at 10 p.m.