
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 16



Sparse matrix data structures

I Only nonzero elements are stored in sparse matrix data
structures, which makes possible the storage of sparse
matrices of large dimension.

I Sometimes some zeros are stored (explicit zeros) to
maintain block or symmetric sparsity patterns, for example.

I Formats are generally optimized for sparse matrix-vector
multiplication (SpMV).

I Conversion cost to an efficient format may be important.



Coordinate format (COO)

Example: 10 11
12 13

14


COO format uses three arrays for the above matrix:

with N=3 and NNZ=5.

Nonzeros can be in any order in general.



Compressed sparse row format (CSR)

Example: 10 11
12 13

14


CSR format uses three arrays for the above matrix:

with N=3.

Rows are stored contiguously in memory. This is useful if
row-wise access should be effcient. (Within a row, entries may
not be in order.)
A simple variation is compressed sparse row format (CSC).



Data access patterns for SpMV

In straightforward implementations of y = Ax for matrices in
COO and CSR formats, the arrays are traversed in order.
Memory access of data in these arrays is predictable and
efficient.

However, x is accessed in irregular order in general, and may
use caches poorly.

Example: 

y1
y2
y3
y4
y5
y6
y7
y8


=



x x x
x x x

x x x
x x x

x x x
x x

x x x
x x





x1
x2
x3
x4
x5
x6
x7
x8





Data access patterns for SpMV

If “cache size” for x is 3, this SpMV has bad cache behavior:

y1

y2

y3

y4

y5

y6

y7

y8


=



x x x
x x x

x x x
x x x

x x x
x x

x x x
x x





x1

x2

x3

x4

x5

x6

x7

x8


The matrix can be reordered to be banded:

y1

y2

y3

y4

y5

y6

y7

y8


=



x x
x x x

x x x
x x x

x x x
x x x

x x x
x x





x1

x2

x3

x4

x5

x6

x7

x8


so that it has perfect cache behavior.



Viewing Matlab’s internal sparse matrix data structure

For sparse matrices, Matlab uses compressed sparse column
format.

We can use Matlab’s mex interface to view the raw sparse
matrix data structure.



Mex files – calling C codes from Matlab

I C codes are usually more efficient than Matlab programs.
I Some types of algorithms are easier to to write in C than in

Matlab.
I You may want to use Matlab to call functions in an existing

C library.



Mex gateway function

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[]);

nlhs – number of objects to return
plhs – array of objects to be returned
nrhs – number of inputs
prhs – array of input objects

Example: a = add_mex(b,c);

nlhs = 1 nrhs = 2
plhs = [a] prhs = [b, c]

Compile mex program: mex add_mex.c from Matlab prompt.
Compile with -largeArrayDims flag if sparse matrices are used.



add_mex.c

#include <stdio.h>
#include "mex.h"

// Usage: a = add_mex(b,c), where a,b,c are scalars

void mexFunction(int nlhs , mxArray *plhs[],
int nrhs , const mxArray *prhs [])

{
printf("sizeof nlhs: %d\n", nlhs);
printf("sizeof nrhs: %d\n", nrhs);

double b = *mxGetPr(prhs [0]);
double c = *mxGetPr(prhs [1]);

printf("b: %f\n", b);
printf("c: %f\n", c);

double a = b+c;

plhs [0] = mxCreateDoubleScalar(a);
}



dump_matrix_mex.c

// Usage: dump_matrix_mex(A) where A is a sparse matrix.
// Matlab sparse matrices are CSC format with 0-based indexing.

void mexFunction(int nlhs , mxArray *plhs[],
int nrhs , const mxArray *prhs [])

{
int n;
const mwIndex *ia, *ja;
const double *a;

n = mxGetM (prhs [0]);
ia = mxGetJc(prhs [0]); // column pointers
ja = mxGetIr(prhs [0]); // row indices
a = mxGetPr(prhs [0]); // values

int i, j;
for (i=0; i<n; i++)

for (j=ia[i]; j<ia[i+1]; j++)
printf("%5d %5d %f\n", ja[j]+1, i+1, a[j]);

}



matvec_mex.c

static void Matvec(int n, const mwIndex *ia, const mwIndex *ja,
const double *a, const double *x, double *y)

{
int i, j;
double t;

for (i=0; i<n; i++) {
t = 0.;
for (j=ia[i]; j<ia[i+1]; j++)

t += a[j]*x[ja[j]];
y[i] = t;

}
}

// Usage: y = matvec_mex(a, x);
void mexFunction(int nlhs , mxArray *plhs[],

int nrhs , const mxArray *prhs [])
{

int n = mxGetN(prhs [0]);
plhs [0] = mxCreateDoubleMatrix(n, 1, mxREAL ); // solution vector

Matvec(n, mxGetJc(prhs [0]), mxGetIr(prhs [0]), mxGetPr(prhs [0]),
mxGetPr(prhs [1]), mxGetPr(plhs [0]));

}



Advanced sparse matrix data structures

Reference:
M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R.
Bishop: A unified sparse matrix data format for modern
processors with wide SIMD units, 2014.

Some figures below are taken from the above reference.



Advanced sparse matrix data structures

Computational considerations:
I SpMV is generally viewed as being limited by memory

bandwidth
I On accelerators and coprocessors, memory bandwith may

not be the limiting factor
I SIMD (single instruction, multiple data) must be used to

increase the flop rate
I It is desirable to use long loops (rather than short loops) to

reduce overheads
I Efficient use of SIMD may result in bandwidth being

saturated when using a smaller number of cores (saving
energy)



CSR format



SpMV code using CSR format (SIMD illustration)

If rows are short, then SIMD is not effectively utilized, and
“overhead” of the remainder loop and the reduction (line 11) is
relatively large.



ELLPACK format

ELLPACK format:
I Entries are stored in a dense array in column major order,

resulting in long columns, good for efficient computation.
I Explicit zeros are stored if necessary (zero padding).
I Little zero padding if all rows are about the same length.
I Not efficient if have short and long rows.



Potential solutions for the zero-padding problem

I Hybrid format (ELL+COO) used on GPUs
I Jagged diagonal (JDS) format used on old vector

supercomputers
I Sliced ELLPACK (SELL) format
I A combination of SELL and JDS: SELL-C-σ



Potential solutions for the zero-padding problem

I Hybrid format (ELL+COO) used on GPUs

I Jagged diagonal (JDS) format used on old vector
supercomputers

I Sliced ELLPACK (SELL) format
I A combination of SELL and JDS: SELL-C-σ



Potential solutions for the zero-padding problem

I Hybrid format (ELL+COO) used on GPUs
I Jagged diagonal (JDS) format used on old vector

supercomputers

I Sliced ELLPACK (SELL) format
I A combination of SELL and JDS: SELL-C-σ



Potential solutions for the zero-padding problem

I Hybrid format (ELL+COO) used on GPUs
I Jagged diagonal (JDS) format used on old vector

supercomputers
I Sliced ELLPACK (SELL) format

I A combination of SELL and JDS: SELL-C-σ



Potential solutions for the zero-padding problem

I Hybrid format (ELL+COO) used on GPUs
I Jagged diagonal (JDS) format used on old vector

supercomputers
I Sliced ELLPACK (SELL) format
I A combination of SELL and JDS: SELL-C-σ



Jagged diagonal format

JDS format sorts the rows by length.

A disadvantage of JDS format is that access to x (in y = Ax)
may be irregular, leading to poor cache usage.



Sliced ELLPACK format

Dense matrix is “sliced” row-wise into chunks.

Avoids problem of irregular access of x since the given ordering
can be used in the SpMV computation.



SELL-C-σ format

C = chunk size (like in SELL); 6 in above example.
σ = sorting window size; 12 in above example. This parameter
helps preserve locality in accesses in x (e.g., if the matrix is
banded).



Block formats

A more explicit way to ensure locality in accesses to x is to
partition the matrix by block columns.

The ELLPACK Sparse Block (ESB) format uses both
partitioning by block rows (like Sliced ELLPACK) and by block
columns (for x locality), giving sparse blocks that are stored in
an ELLPACK-like format.

In this figure, c = 3 block columns are used. Rows are sorted
within windows of size w . Instead of column lengths, bit vectors
are used to identify which elements are nonzero in the blocks.



Some references

I Jagged diagonal format: Saad, Krylov subspace methods
on supercomputers, 1989.

I Hybrid ELL+COO format: Bell and Garland, Implementing
sparse matrix-vector multiplication on throughput-oriented
processors, 2009.

I Sliced ELLPACK format: Monakov, Lokhmotov, and
Avetisyan, Automatically tuning sparse matrix-vector
multiplication for GPU architectures, 2010.

I ELLPACK Sparse Block (ESB) format: Liu, Smelyanskiy,
Chow, and Dubey, Efficient sparse matrix-vector
multiplication on x86-based many-core processors, 2013.

I SELL-C-σ format: Kreutzer, Hager, Wellein, Fehske, and
Bishop, A unified sparse matrix data format for modern
processors with wide SIMD units, 2014.


