Edmond Chow
School of Computational Science and Engineering
Georgia Institute of Technology

Lecture 19



MPI remote memory access (RMA)

» Put/Get directly from/to the memory of another process

» In contrast to “message passing,” processes do not need to
coordinate the communication. This is most valuable when
processes don’'t know what data is needed on another process, or
what data will be sent from another process.

» Similarities and contrasts with shared memory programming



Abstract view - addresses on the remote process

» To put or get data on a remote process, we need to know about
addresses on the remote process.

» Instead of having all memory accessible to RMA operations, each
process defines a window of its memory that can be accessed.

» This is much cheaper than making all memory accessible to RMA
» This helps solve the problem of remote addresses

» Addresses of memory on remote processes begin at 0,
corresponding to the beginning of the window on the remote
process

» Above, each remote location is a process and its address. There is
different functionality in MPI called shared memory MPI that
defines a global shared address space used by all the processes
(rather than have to specify which process and its address, an
address is enough).



Put (write)
Get (read) - often more expensive than put
Accumulate

vV v v Vv

All operations are nonblocking



Abstract view - completion

» How can a process know that a put onto its process has been
completed (ready for reading)?

» Needing this is not intuitive. There is no equivalent in shared
memory.

» A “barrier” can be used after all puts.



Abstract view - completion

» How can a process know that a get has been completed?

» blocking get?
» nonblocking get with wait?

» “get start” and “get end” functions could be used to signal that the
gets are completed



1. Define windows
2. Move the data
3. Find out when the data is available



» don’t need to define windows

» read/write; writes to same location in a window leads to undefined
behavior

» don’t need completion functions



Memory windows

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win *win);

» Called collectively by all processes in comm

» base is the local address of beginning of window

» size is size of window in bytes

» disp_unit is the unit size for displacements (in bytes)

» info used to provide performance tuning options;
MPI_INFO_NULL can be used

» free the window: MPI_Win_free (MPI_Win *win);



» origin = the process performing the get or put (not the origin of the
data)

» target = the other process



Moving data

int MPI_Put (const void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Win win);

int MPI_Get (void *origin_addr, ...others same...);

» address on target is target_disp units relative to beginning of
target’s window

» for put, source data (origin) can be anywhere in process memory

» for get, destination data (origin) can be anywhere in process
memory

» What happens if different processes put to the same location in the
window of a process? Result is undefined.

» Note: result of get may be stored in the origin’s window, so gets
cannot be overlapped or else result is undefined



Accumulate

» Accumulate a value onto a target, e.g., a[1] = a[l] + bona
target

int MPI_Accumulate (const void *origin_addr, int origin_count
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win win);

» related to put; signature same as MPI_Put except for MPI_Op

» targets from different origins can overlap (unlike puts), but order of
accumulates is not defined

» cannot overlap puts and accumulates on a target



Completing RMA data transfers

int MPI_Win_fence (int assert, MPI_Win win);

» Called collectively by all processes that earlier collectively created
win

» Blocks until all RMA operations complete (that were initiated since
the last fence)

» Example: Jacobi-Schwarz. Interleaved stages of computation and
communication.

» What happens if a process writes to its local window? Result is
undefined. (Use fence to separate puts/accumulates with local
writes.)

» Can a write to a local window be visible to another process
immediately via get?

» assert can be used for performance tuning; can use value 0



Passive target synchronization

» Completion of MPI_Get on origin should not involve the target
» Abstract example: code on the origin:

MPI_Win_lock (target)

MPI_Get (target)

MPI_Get (target)

MPI_Win_unlock (target)

// results of gets are now available

» Note: lock and unlock are not called collectively like in fence
» Example with puts:

MPI_Win_lock (target)

MPI_Put (target)

MPI_Put (target)

MPI_Win_unlock (target)

// put 1is done; could overwrite local buffer

» How efficient is this compared to Irecv/Send?



Passive target synchronization

Instead of “lock” and unlock®, think:"begin access" and “end access”

int MPI_Win_lock (int lock_type, int rank,
int assert, MPI_Win win);

int MPI_Win_unlock (int rank, MPI_Win win);

» unlock will block until RMA operation completes
» lock_type
» MPI_LOCK_SHARED

> many processes can access the target window
» not a lock; just a way to indicate completion
> like before, access cannot overlap (except for accumulate)

» MPI_LOCK_EXCLUSIVE
» exclusive or “atomic” access to target window
» There are also MPI_Win_flush and MPI_Win_flush_local to
flush RMA operations if you don’t want to unlock the window yet
(useful when you immediately need the result of an RMA op)



Non-collective active target synchronization

» Also known as “scalable synchronization”
» Like MPI_Win_fence, but only between processes that
communicate

» Better than fence for Jacobi-Schwarz, because don’t need a
barrier between all processes

» Exposure epoch: period of time that local window can be a target
of RMA ops

» Access epoch: period of time that process can access remote
windows

» Abstract example: code on one process:

MPI_Win_post (neighbor_group, win); // begin exposure epoch
MPI_Win_start (neighbor_group, win); // begin access epoch

MPI_Win_complete (win); // end access epoch
MPI_Win_wait (win); // end exposure epoch



Summary of completion techniques

» collective fence (active target synchronization)
» passive target synchronization (true one-sided operation)

» scalable synchronization (non-collective active target
synchronization)



