
High Performance Computing:
Tools and Applications

Edmond Chow
School of Computational Science and Engineering

Georgia Institute of Technology

Lecture 20



Shared memory computers and clusters

I On a shared memory computer, use MPI or a shared memory
mechanism (e.g., OpenMP)?

I Disadvantage of MPI: may need to replicate common data
structures; not scalable memory use (scales with number of
processes)

I also, may allow you to use larger “blocks” in algorithms that are
more efficient this way, e.g., Jacobi-Schwarz with larger and fewer
blocks

I cannot continue to use MPI for compute nodes as number of cores
increases and memory and network bandwidth per core decreases

I MPI uses data copying in its protocols; should not be necessary
with shared memory

I Advantage of MPI: do not have threads that might interfere with
each other (sharing of heap);

I also, forces you to decompose problems for locality



Shared memory computers and clusters (continued)

I In general, on clusters, and even Intel Xeon Phi, MPI may be
combined with OpenMP

I reduce number of MPI processes (MPI processes have overhead)
I max number of MPI processes may be limited



MPI shared memory

MPI-3 provides for shared memory programming within a compute node
(use load/store instead of get/put)

I Alternative to MPI+X, which might not interoperate well, e.g.,
X=OpenMP

I MPI+MPI has no interoperability issues



Recall MPI RMA

I define memory regions

I use put/get

I synchronize

MPI-3 shared memory programming extends some RMA ideas, but
uses load/store instead of get/put



Shared memory programming with processes?

I processes have their own address space

I a shared memory region may have different addresses on each
process (but is physically the same memory – copies are avoided)



Recall creating memory windows for RMA

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win *win);

I base is the local address of beginning of window

I this memory can be any memory, including memory allocated by
MPI_Alloc_mem (and freed by MPI_Free_mem)



Allocating memory and creating a memory window at the
same time

MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,
MPI_Comm comm, void *baseptr, MPI_Win *win);

Call it this way:

double *baseptr;
MPI_Win win;
MPI_Win_allocate(..., &baseptr, &win);

Free the window (also frees the allocated memory)

MPI_Win_free(&win);



Philosophy: shared memory windows

I data is private by default (like MPI programs running in different
processes)

I data is made public explicitly through shared memory windows

I allows graceful migration of “pure” MPI programs to use multicore
processors more efficiently

I “communication” (load/store) via shared memory does not involve
extra copies

I creating a shared memory window is a collective operation (done
at the same time on all ranks, allowing the optimization of the
memory layout)



Allocating shared memory windows

Window on a process’s memory that can be accessed by other
processes on the same node

int MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, void *baseptr, MPI_Win *win);

I called collectively by processes in comm
I processes in comm must be those that can access shared memory

(e.g., processes on the same compute node)
I by default, a contiguous region of memory is allocated and shared

(noncontiguous allocation is also possible, and may be more
efficient as each contributed region could be page aligned)

I each process contributes size bytes to the contiguous region;
size can be different for each process and can be zero

I the contribution to the shared region is in order by rank
I baseptr is the pointer to a process’s contributed memory (not the

beginning of the shared region) in the address space of the
process



Allocating shared memory windows (continued)

I the shared region can now be used using load/store, with all the
usual caveats about race conditions when accessing shared
memory from different processes

I the shared region can also be accessed using RMA operations
(particularly for synchronization)



How it works

I Process with rank 0 in comm allocates the entire shared memory
region for all processes

I Other processes attach to this shared memory region

I The entire memory region may reside in a single locality domain,
which may not be desirable

I Therefore, using noncontiguous allocation may be advantageous
(set the alloc_shared_noncontig info key to true)



Address of shared memory contributed by another process

int MPI_Win_shared_query(MPI_Win win, int rank,
MPI_Aint *size, int *disp_unit, void *baseptr);

I baseptr returns the address (in the local address space) of the
beginning of the shared memory segment contributed by another
process, the target rank

I also returns the size of the segment and the displacement unit

I if rank is MPI_PROC_NULL, then the address of the beginning of
the first memory segment is returned

I this function could be useful if processes contribute segments of
different sizes (so addresses cannot be computed locally), or if
noncontiguous allocation is used

I in many programs, knowing the “owner” of each segment may not
be necessary



Extension to MPI+MPI

I Function for determining which ranks are common to a compute
node:

MPI_Comm_split_type (comm, MPI_COMM_TYPE_SHARED, 0,
MPI_INFO_NULL, &shmcomm);

I Function for mapping group ranks to global ranks:
MPI_Group_translate_ranks


